Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells
Abstract
:1. Introduction
2. Highly Active and Stable Pt- and Pd-Based Catalysts for EOR
2.1. Nanostructure Engineering and Composition Control
2.2. Configuration of Composite Catalysts
2.3. Optimization of Support Materials
2.3.1. Carbon-Based Materials
2.3.2. Non-Carbon-Based Supports
3. Development of Non-Noble Metal Catalysts for EOR
4. Outlook and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akhairi, M.; Kamarudin, S.K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energy 2016, 41, 4214–4228. [Google Scholar] [CrossRef]
- Li, X.; Faghri, A. Review and advances of direct methanol fuel cells (DMFCs) part I: Design, fabrication, and testing with high concentration methanol solutions. J. Power Sources 2013, 226, 223–240. [Google Scholar] [CrossRef]
- Jin, L.; Xu, H.; Chen, C.; Shang, H.; Wang, Y.; Wang, C.; Du, Y. Porous Pt–Rh–Te nanotubes: An alleviated poisoning effect for ethanol electrooxidation. Inorg. Chem. Front. 2020. [Google Scholar] [CrossRef]
- Ross, D.K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum 2006, 80, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Azam, A.M.I.N.; Lee, S.H.; Masdar, M.S.; Zainoodin, A.M.; Kamarudin, S.K. Parametric study on direct ethanol fuel cell (DEFC) performance and fuel crossover. Int. J. Hydrogen Energy 2019, 44, 8566–8574. [Google Scholar] [CrossRef]
- Corti, H.R.; Gonzalez, E.R. Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Braunchweig, B.; Hibbitts, D.; Neurock, M.; Wieckowski, A. Electrocatalysis: A direct alcohol fuel cell and surface science perspective. Catal. Today 2013, 202, 197–209. [Google Scholar] [CrossRef]
- Chauhan, R.; Srivastava, V. Advances in Electrocatalyst for Ethanol Electro-Oxidation. Nanomater. Alcohol Fuel Cells 2019, 49, 293–320. [Google Scholar]
- Marinkovic, N.S.; Li, M.; Adzic, R.R. Pt-Based Catalysts for Electrochemical Oxidation of Ethanol. Top. Curr. Chem. 2019, 377, 11. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Giddey, S.; Kulkarni, A.; Goel, J.; Basu, S. Direct ethanol fuel cells for transport and stationary applications—A comprehensive review. Appl. Energy 2015, 145, 80–103. [Google Scholar] [CrossRef]
- Camara, G.A.; Iwasita, T. Parallel pathways of ethanol oxidation: The effect of ethanol concentration. J. Electroanal. Chem. 2005, 578, 315–321. [Google Scholar] [CrossRef]
- Ren, X.; Lv, Q.; Liu, L.; Liu, B.; Wang, Y.; Liu, A.; Wu, G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels 2020, 4, 15–30. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Yang, H.-L.; Wang, Y.-X.; Dou, S.-X.; Liu, H.-K. A Comprehensive Review on Controlling Surface Composition of Pt-Based Bimetallic Electrocatalysts. Adv. Energy Mater. 2018, 8, 1703597. [Google Scholar] [CrossRef] [Green Version]
- Vyas, A.N.; Saratale, G.D.; Sartale, S.D. Recent developments in nickel based electrocatalysts for ethanol electrooxidation. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-L.; Wang, Y.; Liao, W.-P.; Suo, Z.-h. Ethanol electrocatalytic oxidation performance of carbon black-supported Pt-Sn bimetallic catalysts. J. Mol. Catal. 2014, 39, 35–44. [Google Scholar]
- Wu, F.; Zhang, L.; Lai, J.; Niu, W.; Luque, R.; Xu, G. PtCu–O highly excavated octahedral nanostructures built with nanodendrites for superior alcohol electrooxidation. J. Mater. Chem. A 2019, 7, 8568–8572. [Google Scholar] [CrossRef]
- Bai, P.; Tian, F.; Wang, H.; Yang, T.; Bi, X.; Chai, Z.; Wang, X. Electrocatalytic Enhancement of 0D/1D/2D Multidimensional PtCo Alloy@Cobalt Benzoate/Graphene Composite Catalyst for Alcohol Electro-Oxidation. Adv. Mater. Interfaces 2019, 6, 1900946. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, X.; Cao, M.; Chen, L.; Nie, K.; Zhang, Y.; Xu, Y.; Sun, X.; Li, Y.; Zhang, Q. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 2019, 12, 429–436. [Google Scholar] [CrossRef]
- Ahmad, Y.H.; Mohamed, A.T.; Youssef, K.M.; Kundu, S.; Mkhoyan, K.A.; Al-Qaradawi, S.Y. Rational synthesis of ternary PtIrNi nanocrystals with enhanced poisoning tolerance for electrochemical ethanol oxidation. Electrochem. Commun. 2019, 101, 61–67. [Google Scholar] [CrossRef]
- Torrero, J.; Montiel, M.; Peña, M.A.; Ocón, P.; Rojas, S. Insights on the electrooxidation of ethanol with Pd-based catalysts in alkaline electrolyte. Int. J. Hydrogen Energy 2019, 44, 31995–32002. [Google Scholar] [CrossRef]
- Zhu, Y.; Bu, L.; Shao, Q.; Huang, X. Subnanometer PtRh Nanowire with Alleviated Poisoning Effect and Enhanced C–C Bond Cleavage for Ethanol Oxidation Electrocatalysis. ACS Catal. 2019, 9, 6607–6612. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, X.; Qi, K.; Wei, S.; Wang, Q.; Zheng, W. Interface engineered surface morphology evolution of Au@Pd core–shell nanorods. Nanoscale 2018, 10, 21161–21167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, Y.; Huang, B.; Lv, F.; Wang, K.; Li, N.; Luo, M.; Chao, Y.; Li, Y.; Sun, Y.; et al. Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Adv. Mater. 2019, 31, 1805833. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Liu, Y.; Zhou, W.; Zhen, X.; Lang, M.-F. Facile fabrication of a flexible electrode by electrodeposition of palladium on silver nanowires for ethanol oxidation. Int. J. Hydrogen Energy 2019, 44, 5990–5996. [Google Scholar] [CrossRef]
- Lv, H.; Sun, L.; Xu, D.; Suib, S.L.; Liu, B. One-pot aqueous synthesis of ultrathin trimetallic PdPtCu nanosheets for the electrooxidation of alcohols. Green Chem. 2019, 21, 2367–2374. [Google Scholar] [CrossRef]
- Benipal, N.; Qi, J.; Liu, Q.; Li, W. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells. Appl. Catal. B Environ. 2017, 210, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Cui, H.; Wang, C. In situ formation of porous trimetallic PtRhFe nanospheres decorated on ultrathin MXene nanosheets as highly efficient catalysts for ethanol oxidation. Nano Energy 2019, 66, 104196. [Google Scholar] [CrossRef]
- Akbari, E.; Buntat, Z. Benefits of using carbon nanotubes in fuel cells: A review. Int. J. Energy Res. 2017, 41, 92–102. [Google Scholar] [CrossRef]
- Rao, L.; Jiang, Y.-X.; Zhang, B.-W.; Cai, Y.-R.; Sun, S.-G. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys. Chem. Chem. Phys. 2014, 16, 13662–13671. [Google Scholar] [CrossRef]
- Themsirimongkon, S.; Sarakonsri, T.; Lapanantnoppakhun, S.; Jakmunee, J.; Saipanya, S. Carbon nanotube-supported Pt-Alloyed metal anode catalysts for methanol and ethanol oxidation. Int. J. Hydrogen Energy 2019, 44, 30719–30731. [Google Scholar] [CrossRef]
- Liu, X.; Ning, L.; Deng, M.; Wu, J.; Zhu, A.; Zhang, Q.; Liu, Q. Self-recoverable Pd–Ru/TiO2 nanocatalysts with ultrastability towards ethanol electrooxidation. Nanoscale 2019, 11, 3311–3317. [Google Scholar] [CrossRef] [PubMed]
- García-Mateos, F.J.; Cordero-Lanzac, T.; Berenguer, R.; Morallón, E.; Cazorla-Amorós, D.; Rodríguez-Mirasol, J.; Cordero, T. Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation. Appl. Catal. B Environ. 2017, 211, 18–30. [Google Scholar] [CrossRef]
- Yan, Z.; Lu, M.; Li, Q.; An, L.; Xu, Z.; Zhu, L. Efficient Ni (OH)2 Supported Ultra-Low Content of Pt Electrocatalyst for Ethanol Oxidation in Alkaline Solution. Curr. Nanosci. 2019, 15, 242–247. [Google Scholar] [CrossRef]
- Valério Neto, E.S.; Gomes, M.A.; Salazar-Banda, G.R.; Eguiluz, K.I.B. Pt and Pt–Rh nanowires supported on carbon and SnO2: Sb nanoparticles for ethanol electrochemical oxidation in acidic media. Int. J. Hydrogen Energy 2018, 43, 178–188. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Wan, Q.; Li, Y.; Yang, N. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon 2018, 131, 111–119. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Sayed, E.T.; Mohamed, H.O.; Obaid, M.; Rezk, H.; Chae, K.-J. Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress. Prog. Energy Combust. Sci. 2020, 77, 100805. [Google Scholar] [CrossRef]
- Bai, J.; Liu, D.; Yang, J.; Chen, Y. Nanocatalysts for Electrocatalytic Oxidation of Ethanol. ChemSusChem 2019, 12, 2117–2132. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, S.; Cai, W.-B. Recent advances on electro-oxidation of ethanol on Pt-and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534. [Google Scholar] [CrossRef]
- Huang, D.-B.; Yuan, Q.; He, P.-L.; Wang, K.; Wang, X. A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation. Nanoscale 2016, 8, 14705–14710. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Lim, S.-C.; Kuo, C.-H.; Tuan, H.-Y. Sub-1 nm PtSn ultrathin sheet as an extraordinary electrocatalyst for methanol and ethanol oxidation reactions. J. Colloid Interface Sci. 2019, 545, 54–62. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, X.; Wei, S.; Zhang, Q.; Gu, L.; Meng, F.; Fan, J.; Zheng, W. Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Res. 2019, 12, 1173–1179. [Google Scholar] [CrossRef]
- Rizo, R.; Sebastián, D.; Lázaro, M.J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B Environ. 2017, 200, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, H.; Qin, C.; Liang, Z.; Scida, A.; Yue, S.; Tong, X.; Adzic, R.R.; Wong, S.S. Ultrathin PtxSn1−x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition. ACS Appl. Nano Mater. 2018, 1, 1104–1115. [Google Scholar] [CrossRef]
- Geng, X.; Cen, Y.; Sisson, R.; Liang, J. An effective approach towards the immobilization of PtSn nanoparticles on noncovalent modified multi-walled carbon nanotubes for ethanol electrooxidation. Energies 2016, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Mattarozzi, L.; Cattarin, S.; Comisso, N.; Gerbasi, R.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L. Preparation of compact and porous Pd-Ni alloys and study of their performances for ethanol oxidation in alkali. Electrochim. Acta 2019, 307, 503–511. [Google Scholar] [CrossRef]
- Cermenek, B.; Ranninger, J.; Feketeföldi, B.; Letofsky-Papst, I.; Kienzl, N.; Bitschnau, B.; Hacker, V. Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell. Nano Res. 2019, 12, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.D.; Stančić, Z.M.; Lačnjevac, U.Č.; Radmilović, V.V.; Gavrilović-Wohlmuther, A.; Radmilović, V.R.; Gojković, S.L. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. Appl. Catal. B Environ. 2016, 189, 110–118. [Google Scholar] [CrossRef]
- Fontes, E.H.; Ramos, C.E.D.; Nandenha, J.; Piasentin, R.M.; Neto, A.O.; Landers, R. Structural analysis of PdRh/C and PdSn/C and its use as electrocatalysts for ethanol oxidation in alkaline medium. Int. J. Hydrogen Energy 2019, 44, 937–951. [Google Scholar] [CrossRef]
- Geraldes, A.N.; Furtunato da Silva, D.; Martins da Silva, J.C.; Antonio de Sá, O.; Spinacé, E.V.; Neto, A.O.; Coelho dos Santos, M. Palladium and palladium–tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell. J. Power Sources 2015, 275, 189–199. [Google Scholar] [CrossRef]
- Huang, W.; Kang, X.; Xu, C.; Zhou, J.; Deng, J.; Li, Y.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962. [Google Scholar] [CrossRef]
- Douk, A.S.; Saravani, H.; Farsadrooh, M.; Noroozifar, M. An environmentally friendly one-pot synthesis method by the ultrasound assistance for the decoration of ultrasmall Pd-Ag NPs on graphene as high active anode catalyst towards ethanol oxidation. Ultrason. Sonochem. 2019, 58, 104616. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.S.R.; Almeida, C.V.S.; Meneses, C.T.; Batista, E.A.; Santos, S.F.; Eguiluz, K.I.B.; Salazar-Banda, G.R. AuPd/C core–shell and alloy nanoparticles with enhanced catalytic activity toward the electro-oxidation of ethanol in alkaline media. Appl. Catal. B Environ. 2019, 251, 313–325. [Google Scholar] [CrossRef]
- Meléndez-González, P.C.; Sánchez-Castro, M.E.; Alonso-Lemus, I.L.; Pérez-Hernández, R.; Escobar-Morales, B.; Garay-Tapia, A.M.; Rodríguez-Varela, F.J. Highly Active Pd-CeO2-NR/C (Cerium Oxide Nanorods) Bifunctional Nanocatalysts with Remarkable Stability for the Ethanol Oxidation and Oxygen Reduction Reactions in Alkaline Media. ECS Trans. 2019, 92, 671–678. [Google Scholar] [CrossRef]
- Zhou, Y.; Niu, M.; Zhu, S.; Liang, Y.; Cui, Z.; Yang, X.; Inoue, A. Preparation and electrocatalytic performance of nanoporous Pd/Sn and Pd/Sn-CuO composite catalysts. Electrochim. Acta 2019, 296, 397–406. [Google Scholar] [CrossRef]
- Huang, W.; Ma, X.Y.; Wang, H.; Feng, R.; Zhou, J.; Duchesne, P.N.; Zhang, P.; Chen, F.; Han, N.; Zhao, F.; et al. Promoting Effect of Ni(OH)2 on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Adv. Mater. 2017, 29, 1703057. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, J.; Yang, S.; Ding, B.; Song, X. Au@Pd Core–Shell Nanobricks with Concave Structures and Their Catalysis of Ethanol Oxidation. ChemSusChem 2013, 6, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, D.; Bao, Y.; Yu, X.; Feng, L. One-step efficiently coupling ultrafine Pt–Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction. J. Power Sources 2019, 434, 226754. [Google Scholar] [CrossRef]
- Wang, F.; Fang, B.; Yu, X.; Feng, L. Coupling Ultrafine Pt Nanocrystals over the Fe2P Surface as a Robust Catalyst for Alcohol Fuel Electro-Oxidation. ACS Appl. Mater. Interfaces 2019, 11, 9496–9503. [Google Scholar] [CrossRef]
- Xu, Z.; Rao, L.; Song, H.; Yan, Z.; Zhang, L.; Yang, S. Enhanced ethanol electro-oxidation on CeO2-modified Pt/Ni catalysts in alkaline solution. Chin. J. Catal. 2017, 38, 305–312. [Google Scholar] [CrossRef]
- Gruzeł, G.; Piekarz, P.; Pawlyta, M.; Donten, M.; Parlinska-Wojtan, M. Preparation of Pt-skin PtRhNi Nanoframes Decorated with Small SnO2 Nanoparticles as an Efficient Catalyst for Ethanol Oxidation Reaction. ACS Appl. Mater. Interfaces 2019, 11, 22352–22363. [Google Scholar] [CrossRef]
- Lin, M.-L.; Lo, M.-Y.; Mou, C.-Y. PtRuP nanoparticles supported on mesoporous carbon thin film as highly active anode materials for direct methanol fuel cell. Catal. Today 2011, 160, 109–115. [Google Scholar] [CrossRef]
- Wang, F.; Xue, H.; Tian, Z.; Xing, W.; Feng, L. Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction. J. Power Sources 2018, 375, 37–42. [Google Scholar] [CrossRef]
- Chang, J.; Feng, L.; Jiang, K.; Xue, H.; Cai, W.-B.; Liu, C.; Xing, W. Pt–CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells. J. Mater. Chem. A 2016, 4, 18607–18613. [Google Scholar] [CrossRef]
- Stern, L.-A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351. [Google Scholar] [CrossRef]
- Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M.B.; Zhang, J.; Marinkovic, N.S.; Liu, P.; Frenkel, A.I.; Adzic, R.R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Tang, M.; Wu, X.; Luo, S.; Chen, W.; Song, X.; Quan, Z. SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. J. Mater. Chem. A 2019, 7, 27377–27382. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Xu, M.; Wan, C.; Liu, H.; Li, M.; Huang, Z.; Duan, X.; Pan, X.; Huang, Y. PtCuNi Tetrahedra Catalysts with Tailored Surfaces for Efficient Alcohol Oxidation. Nano Lett. 2019, 19, 5431–5436. [Google Scholar] [CrossRef]
- Mao, J.; Chen, W.; He, D.; Wan, J.; Pei, J.; Dong, J.; Wang, Y.; An, P.; Jin, Z.; Xing, W. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068. [Google Scholar] [CrossRef] [Green Version]
- Shakibi Nia, N.; Guillén-Villafuerte, O.; Griesser, C.; Manning, G.; Kunze-Liebhäuser, J.; Árevalo, C.; Pastor, E.; Garcia, G. W2C-supported PtAuSn–a catalyst with the earliest ethanol oxidation onset potential and the highest ethanol conversion efficiency to CO2 known to date. ACS Catal. 2020, 10, 1113–1122. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Z.; Yu, J.; Jaroniec, M. Enhanced formaldehyde oxidation on CeO2/AlOOH-supported Pt catalyst at room temperature. Appl. Catal. B Environ. 2016, 199, 458–465. [Google Scholar] [CrossRef]
- Paulo, M.J.; Venancio, R.H.D.; Freitas, R.G.; Pereira, E.C.; Tavares, A.C. Investigation of the electrocatalytic activity for ethanol oxidation of Pt nanoparticles modified with small amount (≤5 wt%) of CeO2. J. Electroanal. Chem. 2019, 840, 367–375. [Google Scholar] [CrossRef]
- Lee, K.-S.; Park, I.-S.; Cho, Y.-H.; Jung, D.-S.; Jung, N.; Park, H.-Y.; Sung, Y.-E. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 2008, 258, 143–152. [Google Scholar] [CrossRef]
- Flórez-Montaño, J.; García, G.; Guillén-Villafuerte, O.; Rodríguez, J.L.; Planes, G.A.; Pastor, E. Mechanism of ethanol electrooxidation on mesoporous Pt electrode in acidic medium studied by a novel electrochemical mass spectrometry set-up. Electrochim. Acta 2016, 209, 121–131. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X.; Fang, L.; You, X.; Wong, K.; Cao, S.; Xiao, C.; Cai, S.; Huang, Y.; Zhang, X. MoS2 nanoflower supported Pt nanoparticle as an efficient electrocatalyst for ethanol oxidation reaction. Int. J. Hydrogen Energy 2019, 44, 16411–16423. [Google Scholar] [CrossRef]
- Eshghi, A.; Sadati Behbahani, E.; Kheirmand, M.; Ghaedi, M. Pd, Pd–Ni and Pd–Ni–Fe nanoparticles anchored on MnO2/Vulcan as efficient ethanol electro-oxidation anode catalysts. Int. J. Hydrogen Energy 2019, 44, 28194–28205. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Hazra, A.; Chatterjee, S.; Sen, P.; Laha, S.; Basumallick, I. Expanded graphite as an electrode material for an alcohol fuel cell. J. Power Sources 2004, 136, 208–210. [Google Scholar] [CrossRef]
- Rajesh, D.; Neel, P.I.; Pandurangan, A.; Mahendiran, C. Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium. Appl. Surf. Sci. 2018, 442, 787–796. [Google Scholar] [CrossRef]
- Zhuang, Z.; Chen, W. Ultra-low loading of Pd5 nanoclusters on carbon nanotubes as bifunctional electrocatalysts for the oxygen reduction reaction and the ethanol oxidation reaction. J. Colloid Interface Sci. 2019, 538, 699–708. [Google Scholar] [CrossRef]
- Cazetta, A.L.; Zhang, T.; Silva, T.L.; Almeida, V.C.; Asefa, T. Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Appl. Catal. B Environ. 2018, 225, 30–39. [Google Scholar] [CrossRef]
- Wan, W.; Wang, Q.; Zhang, L.; Liang, H.-W.; Chen, P.; Yu, S.-H. N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: An excellent oxygen reduction electrocatalyst for zinc–air batteries. J. Mater. Chem. A 2016, 4, 8602–8609. [Google Scholar] [CrossRef]
- Yu, K.; Lin, Y.; Fan, J.; Li, Q.; Shi, P.; Xu, Q.; Min, Y. Ternary N, S, and P-Doped Hollow Carbon Spheres Derived from Polyphosphazene as Pd Supports for Ethanol Oxidation Reaction. Catalysts 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, L.; Yang, C.; Chen, J.; Wang, Z.; Bao, L.; Wu, F.; Shen, P. Graphitized carbon nanocages/palladium nanoparticles: Sustainable preparation and electrocatalytic performances towards ethanol oxidation reaction. Int. J. Hydrogen Energy 2019, 44, 6172–6181. [Google Scholar] [CrossRef]
- Lv, H.; Mu, S. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 2014, 6, 5063–5074. [Google Scholar] [CrossRef]
- Al-Youbi, A.O.; Gómez de la Fuente, J.L.; Pérez-Alonso, F.J.; Obaid, A.Y.; Fierro, J.L.G.; Peña, M.A.; Abdel Salam, M.; Rojas, S. Effects of multiwalled carbon nanotube morphology on the synthesis and electrocatalytic performance of Pt supported by multiwalled carbon nanotubes. Appl. Catal. B Environ. 2014, 150–151, 21–29. [Google Scholar] [CrossRef]
- Deng, H.; Li, Q.; Liu, J.; Wang, F. Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline. Carbon 2017, 112, 219–229. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Zou, H.; Yu, Z.; Li, S.; Sun, J.; Chen, S.; Jin, J.; Ma, J. Palladium nanoparticles anchored on three-dimensional nitrogen-doped carbon nanotubes as a robust electrocatalyst for ethanol oxidation. ACS Sustain. Chem. Eng. 2018, 6, 7918–7923. [Google Scholar] [CrossRef]
- Ning, L.; Liu, X.; Deng, M.; Huang, Z.; Zhu, A.; Zhang, Q.; Liu, Q. Palladium-based nanocatalysts anchored on CNT with high activity and durability for ethanol electro-oxidation. Electrochim. Acta 2019, 297, 206–214. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282. [Google Scholar] [CrossRef]
- Dong, L.; Gari, R.R.S.; Li, Z.; Craig, M.M.; Hou, S. Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48, 781–787. [Google Scholar] [CrossRef]
- Tan, J.L.; De Jesus, A.M.; Chua, S.L.; Sanetuntikul, J.; Shanmugam, S.; Tongol, B.J.V.; Kim, H. Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell. Appl. Catal. A Gen. 2017, 531, 29–35. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, K.; Fan, J.; Lin, Y.; Min, Y.; Xu, Q.; Cai, W.-B. Manganese Dioxide Coated Graphene Nanoribbons Supported Palladium Nanoparticles as an Efficient Catalyst for Ethanol Electrooxidation in Alkaline Media. Electrochim. Acta 2016, 203, 91–98. [Google Scholar] [CrossRef]
- Alfi, N.; Yazdan-Abad, M.Z.; Rezvani, A.; Noroozifar, M.; Khorasani-Motlagh, M. Three-dimensional Pd-Cd nanonetwork decorated on reduced graphene oxide by a galvanic method as a novel electrocatalyst for ethanol oxidation in alkaline media. J. Power Sources 2018, 396, 742–748. [Google Scholar] [CrossRef]
- Jia, X.; Guan, Q.; Chen, Y.; Wang, Y.; Zhao, Q.; Li, J. Poly (triazine imide) (PTI) and graphene hybrids supported PtSn catalysts for enhanced electrocatalytic oxidation of ethanol. Appl. Surf. Sci. 2019, 492, 879–885. [Google Scholar] [CrossRef]
- Sun, S.; Halseid, M.C.; Heinen, M.; Jusys, Z.; Behm, R.J. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study. J. Power Sources 2009, 190, 2–13. [Google Scholar] [CrossRef]
- Engl, T.; Gubler, L.; Schmidt, T.J. Fuel electrode carbon corrosion in high temperature polymer electrolyte fuel cells-crucial or irrelevant? Energy Technol. 2016, 4, 65–74. [Google Scholar] [CrossRef]
- Han, S.H.; Liu, H.M.; Chen, P.; Jiang, J.X.; Chen, Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 2018, 8, 1801326. [Google Scholar] [CrossRef]
- Ferreira, H.S.; Ferreira, H.S.; Gliech, M.; Bergmann, A.; Beermann, V.; Rangel, M.d.C.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Synthesis of Ni-SiO2/C Supported Platinum Catalysts for Improved Electrochemical Activity Towards Ethanol Oxidation. J. Nanosci. Nanotechnol. 2019, 19, 4590–4598. [Google Scholar] [CrossRef]
- Tackett, B.M.; Sheng, W.; Chen, J.G. Opportunities and Challenges in Utilizing Metal-Modified Transition Metal Carbides as Low-Cost Electrocatalysts. Joule 2017, 1, 253–263. [Google Scholar] [CrossRef] [Green Version]
- García, G.; Guillén-Villafuerte, O.; Rodríguez, J.L.; Arévalo, M.C.; Pastor, E. Electrocatalysis on metal carbide materials. Int. J. Hydrogen Energy 2016, 41, 19664–19673. [Google Scholar] [CrossRef]
- Zhao, F.-M.; Wu, S.-Z.; Chen, Z.-Y.; Chu, Y.-Q.; Shi, M.-Q. Alkali-induced self-assembly Pd/Ni-Mo2C nanocatalyst for ethanol electro-oxidation. J. Fuel Chem. Technol. 2019, 47, 574–581. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Fu, G.; Chen, Y.; Sun, D.; Lee, J.-M.; Tang, Y. Porous PdRh nanobowls: Facile synthesis and activity for alkaline ethanol oxidation. Nanoscale 2019, 11, 2974–2980. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; He, X.; Chen, R.; Liu, Q.; Liu, J.; Yu, J.; Li, J.; Zhang, H.; Dong, H.; Zhang, M. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chem. Eng. J. 2018, 352, 29–38. [Google Scholar] [CrossRef]
- Pi, M.; Wang, X.; Zhang, D.; Wang, S.; Chen, S. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution. Front. Chem. Sci. Eng. 2018, 12, 425–432. [Google Scholar] [CrossRef]
- Wang, A.-L.; He, X.-J.; Lu, X.-F.; Xu, H.; Tong, Y.-X.; Li, G.-R. Palladium–Cobalt Nanotube Arrays Supported on Carbon Fiber Cloth as High-Performance Flexible Electrocatalysts for Ethanol Oxidation. Angew. Chem. Int. Ed. 2015, 54, 3669–3673. [Google Scholar] [CrossRef]
- Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H. Low-Voltage Electrolytic Hydrogen Production Derived from Efficient Water and Ethanol Oxidation on Fluorine-Modified FeOOH Anode. ACS Catal. 2018, 8, 526–530. [Google Scholar] [CrossRef]
- Barakat, N.A.; Abdelkareem, M.A.; Kim, H.Y. Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst. Appl. Catal. A Gen. 2013, 455, 193–198. [Google Scholar] [CrossRef]
- Barakat, N.A.; Motlak, M.; Elzatahry, A.A.; Khalil, K.A.; Abdelghani, E.A. NixCo1−x alloy nanoparticle-doped carbon nanofibers as effective non-precious catalyst for ethanol oxidation. Int. J. Hydrogen Energy 2014, 39, 305–316. [Google Scholar] [CrossRef]
- Hatamie, A.; Rezvani, E.; Rasouli, A.S.; Simchi, A. Electrocatalytic Oxidation of Ethanol on Flexible Three-dimensional Interconnected Nickel/Gold Composite Foams in Alkaline Media. Electroanalysis 2019, 31, 504–511. [Google Scholar] [CrossRef]
- Soliman, A.B.; Abdel-Samad, H.S.; Rehim, S.S.A.; Ahmed, M.A.; Hassan, H.H. High performance nano-Ni/graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells. J. Power Sources 2016, 325, 653–663. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Arab, A.; Asghari, A. Surfactant-Assisted Electrodeposition of Nickel Nanostructures and Their Electrocatalytic Activities Toward Oxidation of Sodium Borohydride, Ethanol, and Methanol. Chem. Sel. 2019, 4, 4487–4495. [Google Scholar] [CrossRef]
- Vyas, A.N.; Desai, M.A.; Phase, D.M.; Saratale, R.G.; Ambekar, J.D.; Kale, B.B.; Pathan, H.M.; Sartale, S.D. Nickel nanoparticles grown by successive ionic layer adsorption and reaction method for ethanol electrooxidation and electrochemical quartz crystal microbalance study. New J. Chem. 2019, 43, 2955–2965. [Google Scholar] [CrossRef]
- Tammam, R.H.; Touny, A.; Abdesalam, M.E.; Saleh, M. Mesoporous NiPh/carbon fibers nanocomposite for enhanced electrocatalytic oxidation of ethanol. J. Electroanal. Chem. 2018, 823, 128–136. [Google Scholar] [CrossRef]
- Sharma, P.; Radhakrishnan, S.; Khil, M.-S.; Kim, H.-Y.; Kim, B.-S. Simple room temperature synthesis of porous nickel phosphate foams for electrocatalytic ethanol oxidation. J. Electroanal. Chem. 2018, 808, 236–244. [Google Scholar] [CrossRef]
- Nakamura, A.; Takahashi, H.; Takeguchi, T.; Yamanaka, T.; Wang, Q.; Uchimoto, Y.; Ueda, W.J.E.T. Performance of Fe-Co-Ni/C Anode Catalyst on Direct Ethanol Fuel Cell. ECS Trans. 2011, 41, 2205–2209. [Google Scholar]
- Mohamed, I.M.A.; Motlak, M.; Obaid, M.; Alsoufi, M.S.; Bawazeer, T.M.; Mohamed, A.F.; Barakat, N.A.M. Co/Cr-Decorated Carbon Nanofibers as Novel and Efficacious Electrocatalyst for Ethanol Oxidation in Alkaline Medium. J. Nanosci. Nanotechnol. 2017, 17, 1280–1286. [Google Scholar] [CrossRef]
- Chaitree, W.; Kalu, E.E. Co-Ni-Mo as a Non-Noble Metal Electrocatalyst for Ethanol Electro-Oxidation. J. Electrochem. Soc. 2019, 166, H392–H403. [Google Scholar] [CrossRef]
- Tolba, G.M.K.; Barakat, N.A.M.; Bastaweesy, A.M.; Ashour, E.A.; Abdelmoez, W.; El-Newehy, M.H.; Al-Deyab, S.S.; Kim, H.Y. Hierarchical TiO2/ZnO Nanostructure as Novel Non-precious Electrocatalyst for Ethanol Electrooxidation. J. Mater. Sci. Technol. 2015, 31, 97–105. [Google Scholar] [CrossRef]
- Zhan, J.; Cai, M.; Zhang, C.; Wang, C. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media. Electrochim. Acta 2015, 154, 70–76. [Google Scholar] [CrossRef]
- Jayaseelan, S.S.; Ko, T.-H.; Radhakrishnan, S.; Yang, C.-M.; Kim, H.-Y.; Kim, B.-S. Novel MWCNT interconnected NiCo2O4 aerogels prepared by a supercritical CO2 drying method for ethanol electrooxidation in alkaline media. Int. J. Hydrogen Energy 2016, 41, 13504–13512. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wan, X.; Cheng, X.; Cheng, K.; Dai, Z.; Liu, Z. Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catalysts 2020, 10, 166. https://doi.org/10.3390/catal10020166
Zheng Y, Wan X, Cheng X, Cheng K, Dai Z, Liu Z. Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catalysts. 2020; 10(2):166. https://doi.org/10.3390/catal10020166
Chicago/Turabian StyleZheng, Yun, Xiaojuan Wan, Xin Cheng, Kun Cheng, Zhengfei Dai, and Zhihong Liu. 2020. "Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells" Catalysts 10, no. 2: 166. https://doi.org/10.3390/catal10020166
APA StyleZheng, Y., Wan, X., Cheng, X., Cheng, K., Dai, Z., & Liu, Z. (2020). Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catalysts, 10(2), 166. https://doi.org/10.3390/catal10020166