Effect of Ethanol on the Morphology and Textual Properties of ZSM-5 Zeolite
Abstract
:1. Introduction
2. Results and Discussion
2.1. ZSM-5 Zeolite Synthesized after Evaporating Ethanol for Different Periods
2.2. Effect of Ethanol Content on ZSM-5 Zeolite Morphology
2.3. Effect of Other Factors on the Morphology of ZSM-5
2.3.1. Effect of Alcohol Molecules
2.3.2. Effect of Heating on Morphology during Ethanol Evaporation
2.4. Possible Mechanism for the Influence of Alcohol on the Morphology of Zeolite
3. Experimental
3.1. Materials
3.2. Synthesis of ZSM-5 Zeolite
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blay, V.; Louis, B.; Miravalles, R.; Yokoi, T.; Peccatiello, K.A.; Clough, M.; Yilmaz, B. Engineering Zeolites for Catalytic Cracking to Light Olefins. ACS Catal. 2017, 7, 6542–6566. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, H.; Zhang, Q.; Yan, W. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane. J. Solid State Chem. 2017, 251, 7–13. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, H.; Yan, W. Catalytic cracking of n-hexane to light alkene over ZSM-5 zeolite: Influence of hierarchical porosity and acid property. Mol. Catal. 2018, 448, 91–99. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, H.; Yan, W. Effect of alkali metal cations modification on the acid/basic properties and catalytic activity of ZSM-5 in cracking of supercritical n-dodecane. Fuel 2019, 243, 155–161. [Google Scholar] [CrossRef]
- Standl, S.; Hinrichsen, O. Kinetic modeling of catalytic olefin cracking and methanol-to-olefins (MTO) over zeolites: A review. Catalysts 2018, 8, 626. [Google Scholar] [CrossRef] [Green Version]
- Yuan, E.; Wu, G.; Dai, W.; Guan, N.; Li, L. One-pot construction of Fe/ZSM-5 zeolites for the selective catalytic reduction of nitrogen oxides by ammonia. Catal. Sci. Technol. 2017, 7, 3036–3044. [Google Scholar] [CrossRef]
- Li, D.; Yao, J.; Sun, H.; Liu, B.; van Agtmaal, S.; Feng, C. Recycling of phenol from aqueous solutions by pervaporation with ZSM-5/PDMS/PVDF hollow fiber composite membrane. Appl. Surf. Sci. 2018, 427, 288–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, F.; Shen, Z.; Lynch, R.; Al-Tabbaa, A. Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: Batch and column studies. J. Hazard. Mater. 2018, 347, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Briao, G.V.; Jahn, S.L.; Foletto, E.L.; Dotto, G.L. Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template. J. Colloid Interface Sci. 2017, 508, 313–322. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, H.; Yan, W. Strategies to enhance the catalytic performance of ZSM-5 zeolite in hydrocarbon cracking: A review. Catalysts 2017, 7, 367. [Google Scholar] [CrossRef] [Green Version]
- Mintova, S.; Gilson, J.P.; Valtchev, V. Advances in nanosized zeolites. Nanoscale 2013, 5, 6693–6703. [Google Scholar] [CrossRef] [PubMed]
- Konno, H.; Tago, T.; Nakasaka, Y.; Ohnaka, R.; Nishimura, J.I.; Masuda, T. Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha. Micropor. Mesopor. Mat. 2013, 175, 25–33. [Google Scholar] [CrossRef]
- Nakasaka, Y.; Okamura, T.; Konno, H.; Tago, T.; Masuda, T. Crystal size of MFI-type zeolites for catalytic cracking of n-hexane under reaction-control conditions. Micropor. Mesopor. Mat. 2013, 182, 244–249. [Google Scholar] [CrossRef]
- Mochizuki, H.; Yokoi, T.; Imai, H.; Watanabe, R.; Namba, S.; Kondo, J.N.; Tatsumi, T. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane. Micropor. Mesopor. Mat. 2011, 145, 165–171. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, B.; Yang, H.; Yan, W. Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane. Appl. Catal. A 2017, 533, 90–98. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, B.; Liang, H.; Hou, X.; Wang, L.; Zhang, X.; Liu, G. Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins. Appl. Catal. A 2019, 572, 24–33. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, H.; Wang, L.; Zhang, X.; Liu, G. Controllable fabrication and catalytic performance of nanosheet HZSM-5 films by vertical secondary growth. AIChE J. 2018, 64, 1923–1927. [Google Scholar] [CrossRef]
- Han, J.; Jiang, G.; Han, S.; Liu, J.; Zhang, Y.; Liu, Y.; Wang, R.; Zhao, Z.; Xu, C.; Wang, Y.; et al. The fabrication of Ga2O3/ZSM-5 hollow fibers for efficient catalytic conversion of n-butane into light olefins and aromatics. Catalysts 2016, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Liu, W.; Ding, S.; Zhang, Z.; Li, J.; Qiu, S. Mesoporous MFI zeolites with self-stacked morphology templated by cationic polymer. Chem. Commun. 2010, 46, 7418–7420. [Google Scholar] [CrossRef]
- Jin, L.; Xie, T.; Liu, S.; Li, Y.; Hu, H. Controllable synthesis of chainlike hierarchical ZSM-5 templated by sucrose and its catalytic performance. Catal. Commun. 2016, 75, 32–36. [Google Scholar] [CrossRef]
- Sadighi, S.; Masoudian Targhi, S.K. Preparation of Biofuel from Palm Oil Catalyzed by Ammonium Molybdate in Homogeneous Phase. Bull. Chem. React. Eng. Catal. 2017, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Sashkina, K.A.; Qi, Z.; Wu, W.; Ayupov, A.B.; Lysikov, A.I.; Parkhomchuk, E.V. The effect of H2O/SiO2 ratio in precursor solution on the crystal size and morphology of zeolite ZSM-5. Micropor. Mesopor. Mat. 2017, 244, 93–100. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, L.; Song, Y.; Shang, Y.; Zhai, Y.; Gong, Y. A comparative synthesis of ZSM-5 with ethanol or TPABr template: Distinction of Brønsted/Lewis acidity ratio and its impact on n-hexane cracking. Catal. Sci. Technol. 2018, 8, 1923–1935. [Google Scholar] [CrossRef]
- Liu, R.; Lin, S.; Shi, L.; Gao, H.; Lv, M.; Tan, K.; Wang, R. Morphology adjustment of ZSM-5 nanocrystal agglomerates and achievement of improved activity in LDPE catalytic cracking reaction. Micropor. Mesopor. Mat. 2019, 285, 120–128. [Google Scholar] [CrossRef]
- Sadeghpour, P.; Haghighi, M.; Shekari, P. Facile moderate-temperature hydrothermal design of nanocrystalline coffin-shaped ZSM-5 catalyst for transformation of CH3OH to C2H4/C3H6. Particul. Sci. Technol. 2019, 37, 1–14. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, Z.; Zhang, H.; Zhang, Y.; Tang, Y. Facile fabrication and morphology regulation of crossed mfi zeolite with improved performance on LDPE cracking. Ind. Eng. Chem. Res. 2019, 58, 13174–13181. [Google Scholar] [CrossRef]
- Chen, X.; Yan, W.; Shen, W.; Yu, J.; Cao, X.; Xu, R. Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis. Micropor. Mesopor. Mat. 2007, 104, 296–304. [Google Scholar] [CrossRef]
- Chen, X.; Yan, W.; Cao, X.; Xu, R. Quantitative correlation between morphology of silicalite-1 crystals and dielectric constants of solvents. Micropor. Mesopor. Mat. 2010, 131, 45–50. [Google Scholar] [CrossRef]
- Jin, H.; Jiang, N.; Park, S.E. Nanoarchitectured synthesis of TS-1 depending on microwave power. J. Phys. Chem. Solids 2008, 69, 1136–1138. [Google Scholar] [CrossRef]
- Aoki, K.; Mann, S. Polyelectrolyte-mediated synthesis and self-assembly of silicalite nanocrystals into linear chain superstructures. J. Mater. Chem. 2005, 15, 111. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.; Yan, W. Effect of ethanol on the crystallinity and acid sites of MFI zeolite nanosheets. RSC Adv. 2014, 4, 56938–56944. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, L.J.; Li, J.S.; Yang, Y.C.; Sun, X.Y. Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template. Mater. Lett. 2005, 59, 3427–3430. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Fouad, O.A.; Ismail, A.A.; Ibrahim, I.A. Influence of crystallization times on the synthesis of nanosized ZSM-5. Mater. Lett. 2005, 59, 3441–3444. [Google Scholar] [CrossRef]
- Mostafa, M.M.M.; Rao, K.N.; Harun, H.S.; Basahel, S.N.; El-Maksod, I.H.A. Synthesis and characterization of partially crystalline nanosized ZSM-5 zeolites. Ceram. Int. 2013, 39, 683–689. [Google Scholar] [CrossRef]
- Lanzafame, P.; Barbera, K.; Perathoner, S.; Centi, G.; Aloise, A.; Migliori, M.; Macario, A.; Nagy, J.B.; Giordano, G. The role of acid sites induced by defects in the etherification of HMF on Silicalite-1 catalysts. J. Catal. 2015, 330, 558–568. [Google Scholar] [CrossRef]
- Chiang, H.; Bhan, A. Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal. 2010, 271, 251–261. [Google Scholar] [CrossRef]
- Wang, C.H.; Bai, P.; Siepmann, J.I.; Clark, A.E. Deconstructing Hydrogen-Bond Networks in Confined Nanoporous Materials: Implications for Alcohol–Water Separation. J. Phys. Chem. C 2014, 118, 19723–19732. [Google Scholar] [CrossRef]
- Arletti, R.; Fois, E.; Gigli, L.; Vezzalini, G.; Quartieri, S.; Tabacchi, G. Irreversible Conversion of a Water-Ethanol Solution into an Organized Two-Dimensional Network of Alternating Supramolecular Units in a Hydrophobic Zeolite under Pressure. Angew. Chem. Int. Edit. 2017, 56, 2105–2109. [Google Scholar] [CrossRef]
- Quan, Y.; Li, S.; Wang, S.; Li, Z.; Dong, M.; Qin, Z.; Chen, G.; Wei, Z.; Fan, W.; Wang, J. Synthesis of Chainlike ZSM-5 Zeolites: Determination of Synthesis Parameters, Mechanism of Chainlike Morphology Formation, and Their Performance in Selective Adsorption of Xylene Isomers. ACS Appl. Mater. Inter. 2017, 9, 14899–14910. [Google Scholar] [CrossRef]
- Uguina, M.A.; Lucas, A.D.; Ruiz, F.; Serrano, D.P. Synthesis of ZSM-5 from Ethanol-Containing Systems. Influence of the Gel Composition. Ind. Eng. Chem. Res. 1995, 24, 451–456. [Google Scholar] [CrossRef]
Sample | Rca /% | SBETb /m2·g−1 | Vtotalc /cm3·g−1 | Vmicrod /cm3·g−1 | Vmesoe /cm3·g−1 | Pf /nm |
---|---|---|---|---|---|---|
ZSM5-0 | 89.47 | 370.74 | 0.63 | 0.17 | 0.46 | 3.40 |
ZSM5-1 | 91.12 | 341.22 | 0.51 | 0.17 | 0.34 | 2.98 |
ZSM5-2 | 95.12 | 333.10 | 0.48 | 0.16 | 0.32 | 2.90 |
ZSM5-4 | 96.86 | 316.48 | 0.38 | 0.15 | 0.23 | 2.41 |
ZSM5-5 | 98.27 | 306.28 | 0.26 | 0.14 | 0.12 | 1.67 |
ZSM5-6 | 99.05 | 303.05 | 0.25 | 0.15 | 0.10 | 1.66 |
ZSM5-7 | 99.97 | 289.92 | 0.26 | 0.14 | 0.12 | 1.80 |
ZSM5-8 | 100.00 | 262.06 | 0.24 | 0.12 | 0.12 | 1.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, Y. Effect of Ethanol on the Morphology and Textual Properties of ZSM-5 Zeolite. Catalysts 2020, 10, 198. https://doi.org/10.3390/catal10020198
Liu X, Sun Y. Effect of Ethanol on the Morphology and Textual Properties of ZSM-5 Zeolite. Catalysts. 2020; 10(2):198. https://doi.org/10.3390/catal10020198
Chicago/Turabian StyleLiu, Xiuru, and Yiqing Sun. 2020. "Effect of Ethanol on the Morphology and Textual Properties of ZSM-5 Zeolite" Catalysts 10, no. 2: 198. https://doi.org/10.3390/catal10020198
APA StyleLiu, X., & Sun, Y. (2020). Effect of Ethanol on the Morphology and Textual Properties of ZSM-5 Zeolite. Catalysts, 10(2), 198. https://doi.org/10.3390/catal10020198