A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Powder synthesis
3.2. Cell preparation
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shao, Z.; Haile, S.M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431, 170–173. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Hu, X.; Sun, L.; Ling, Y. High Performance Proton Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+x Cathode. Electron. Mater. Lett. 2018, 14, 147–153. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Dong, Y.; Mao, S.S.; Cheng, M. A High-Performance, Nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode for Solid-Oxide Fuel Cells. Adv. Energy Mater. 2011, 1, 343–346. [Google Scholar] [CrossRef]
- Kim, J.; Choi, S.; Jun, A.; Jeong, H.Y.; Shin, J.; Kim, G. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ. ChemSusChem 2014, 7, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Dong, X.; Xiao, G.; Zhao, F.; Chen, F. A Novel Electrode Material for Symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Ding, H.; Dong, Y.; Wang, S.; Zhang, X.; Fang, D.; Meng, G. Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ –BaZr0.1Ce0.7Y0.2O3-δ composite cathode. J. Power Sources 2009, 186, 58–61. [Google Scholar] [CrossRef]
- Kan, W.H.; Samson, A.J.; Thangadurai, V. Trends in electrode development for next generation solid oxide fuel cells. J. Mater. Chem. A 2016, 4, 17913–17932. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.; Li, J.; Jia, L.; Chi, B.; Pu, J.; Li, J.; Chen, F. LaCoO3-δ coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells. Electrochim. Acta 2019, 319, 981–989. [Google Scholar] [CrossRef]
- Li, M.; Zhao, M.; Li, F.; Zhou, W.; Peterson, V.K.; Xu, X.; Shao, Z.; Gentle, I.; Zhu, Z. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 2017, 8, 13990. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Fronzi, M.; Wang, X.; Bi, L.; Traversa, E. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 2019, 7, 20624–20632. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Zhang, W.; Wei, Z.; Guan, K.; Meng, J.; Meng, F.; Meng, J.; Liu, X. Enhancing catalysis activity of La0.6Sr0.4Co0.8Fe0.2O3-δ cathode for solid oxide fuel cell by a facile and efficient impregnation process. Int. J. Hydrogen Energy 2019, 44, 13757–13767. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, H. Porous Gd-doped ceria barrier layer on solid oxide fuel cell with Sm0.5Sr0.5CoO3−δ Cathodes. Ceram. Int. 2013, 39, 2037–2043. [Google Scholar] [CrossRef]
- Tarancón, A.; Burriel, M.; Santiso, J.; Skinner, S.J.; Kilner, J.A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 2010, 20, 3799–3813. [Google Scholar] [CrossRef]
- Wei, K.; Li, N.; Wu, Y.; Song, W.; Wang, X.; Guo, L.; Khan, M.; Wang, S.; Zhou, F.; Ling, Y. Characterization and optimization of highly active and Ba-deficient BaCo0.4Fe0.4Zr0.1Y0.1O3-δ-based cathode materials for protonic ceramics fuel cells. Ceram. Int. 2019, 45, 18583–18591. [Google Scholar] [CrossRef]
- Zhou, W.; Ran, R.; Shao, Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review. J. Power Sources 2009, 192, 231–246. [Google Scholar] [CrossRef]
- Wei, B.; Lv, Z.; Huang, X.; Miao, J.; Sha, X.; Xin, X.; Su, W. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3≤x≤0.7). J. Eur. Ceram. Soc. 2006, 26, 2827–2832. [Google Scholar] [CrossRef]
- Chen, Z.; Ran, R.; Zhou, W.; Shao, Z.; Liu, S. Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y=0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochim. Acta 2007, 52, 7343–7351. [Google Scholar] [CrossRef]
- Liu, B.; Jia, L.; Ouyang, R.; Li, J. Preparation and Electrochemical Properties of La0.8Sr0.2MnO3-σ Coated Ba0.5Sr0.5Co0.8Fe0.2O3-σ Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. J. Ceram. 2019, 40, 99–102. (In Chinese) [Google Scholar]
- Liu, B.; Zhang, Y.; Zhang, L. Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cell. Int. J. Hydrogen Energy 2009, 34, 1008–1014. [Google Scholar] [CrossRef]
- Zhang, X.; Motuzas, J.; Liu, S.; da Costa, J.C.D. Zinc-doped BSCF perovskite membranes for oxygen separation. Sep. Purif. Technol. 2017, 189, 399–404. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, G.; Liu, Z.; Chu, Z.; Jin, W.; Xu, N. Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mater. 2016, 28, 3511–3515. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Smart, S.; Liu, S.; da Costa, J.C.D. High performance perovskite hollow fibres for oxygen separation. J. Membr. Sci. 2011, 368, 64–68. [Google Scholar] [CrossRef]
- Qiu, P.; Wang, A.; Li, J.; Li, Z.; Jia, L.; Chi, B.; Pu, J.; Li, J. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3-coated Ba0.5Sr0.5Co0.8Fe0.2O3 cathode for intermediate temperature solid oxide fuel cells. J. Power Sources 2016, 327, 408–413. [Google Scholar] [CrossRef]
- Gasparyan, H.; Claridge, J.B.; Rosseinsky, M.J. Oxygen permeation and stability of Mo-substituted BSCF membranes. J. Mater. Chem. A 2015, 3, 65–18272. [Google Scholar] [CrossRef]
- Fang, S.M.; Yoo, C.-Y.; Bouwmeester, H.J.M. Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3 − δ membranes. Solid State Ionics 2011, 195, 1–6. [Google Scholar] [CrossRef]
- Wang, F.; Nakamura, T.; Yashiro, K.; Mizusaki, J.; Amezawa, K. Effect of Nb doping on the chemical stability of BSCF-based solid solutions. Solid State Ionics 2014, 262, 719–723. [Google Scholar] [CrossRef] [Green Version]
- Ravkina, O.; Klande, T.; Feldhoff, A. Investigation of Zr-doped BSCF perovskite membrane for oxygen separation in the intermediate temperature range. J. Solid State Chem. 2013, 201, 101–106. [Google Scholar] [CrossRef]
- Chen, X.; Liu, H.; Wei, Y.; Caro, J.; Wang, H. A novel zincum-doped perovskite-type ceramic membrane for oxygen separation. J. Alloy. Compd. 2009, 484, 386–389. [Google Scholar] [CrossRef]
- Almar, L.; Störmer, H.; Meffert, M.; Szász, J.; Wankmüller, F.; Gerthsen, D.; Ivers-Tiffée, E. Improved Phase Stability and CO2 Poisoning Robustness of Y-Doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ SOFC Cathodes at Intermediate Temperatures. ACS Appl. Energy Mater. 2018, 1, 1316–1327. [Google Scholar] [CrossRef]
- Meffert, M.; Unger, L.-S.; Störmer, H.; Sigloch, F.; Wagner, S.F.; Ivers-Tiffée, E.; Gerthsen, D. The effect of B-site Y substitution on cubic phase stabilization in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ. J. Am. Ceram. Soc. 2019, 102, 4929–4942. [Google Scholar] [CrossRef]
- Wang, H.; Tablet, C.; Feldhoff, A.; Caro, J. A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3−δ. Adv. Mater. 2005, 17, 1785–1788. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, Z.; Zhou, W.; Gu, H.; Shao, Z.; Liu, S. Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane. J. Membr. Sci. 2007, 291, 148–156. [Google Scholar] [CrossRef]
- Shiiba, H.; Bishop, C.L.; Rushton, M.J.D.; Nakayama, M.; Nogami, M.; Kilner, J.A.; Grimes, R.W. Effect of A-site cation disorder on oxygen diffusion in perovskite-type Ba0.5Sr0.5Co1-xFexO2.5. J. Mater. Chem. A 2013, 1, 10345–10352. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Tang, L. X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cells. Int. J. Hydrogen Energy 2009, 34, 435–439. [Google Scholar] [CrossRef]
- Cui, X.; O’Hayre, R.; Pylypenko, S.; Zhang, L.; Zeng, L.; Zhang, X.; Hua, Z.; Chen, H.; Shi, J. Fabrication of a mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as a low-cost and efficient catalyst for oxygen reduction. Dalton Trans. 2017, 46, 13903–13911. [Google Scholar] [CrossRef]
- Ungera, L.-S.; Niedrig, C.; Wagner, S.F.; Menesklou, W.; Baumann, S.; Meulenberg, W.A.; Ivers-Tiffée, E. Yttrium doping of Ba0.5Sr0.5Co0.8Fe0.2O3-δ part I: Influence on oxygen permeation, electrical properties, reductive stability, and lattice parameters. J. Eur. Ceram. Soc. 2018, 38, 2378–2387. [Google Scholar] [CrossRef]
- Wei, B.; Lü, Z.; Li, S.; Liu, Y.; Liu, K.; Su, W. Thermal and Electrical Properties of New Cathode Material Ba0.5Sr0.5Co0.8Fe0.2O3 − δ for Solid Oxide Fuel Cells. Electrochem. Solid-State Lett. 2005, 8, A428–A431. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20 (Version 4.1); US Department of Commerce: Washington, DC, USA, 2012. [CrossRef]
- Kao, W.-X.; Lee, M.-C.; Lin, T.-N.; Wang, C.-H.; Chang, Y.-C. Fabrication and characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3 − δ-Gadolinia-doped ceria cathode for an anode-supported solid-oxide fuel cell. J. Power Sources 2010, 195, 2220–2223. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Liu, M. High performance intermediate temperature solid oxide fuel cells with Ba0.5Sr0.5Co0.8Fe0.1Nb0.1O3-δ as cathode. Ceram. Int. 2016, 42, 19397–19401. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, M.; Yan, A.; Hou, Z.; Dong, Y.; Chong, Y.; Cheng, M.; Yang, W. Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for IT-SOFCs with a GDC interlayer. J. Power Sources 2006, 160, 57–64. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, C.; Xiong, B.; Han, M.; Chen, F. BaCo0.7Fe0.2Nb0.1O3−δ as cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 2011, 196, 9164–9168. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Zhang, X.; Wang, W.; Zhang, D.; Jiang, Y.; Zhou, X.; Lin, B. A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs. Catalysts 2020, 10, 235. https://doi.org/10.3390/catal10020235
Zeng Q, Zhang X, Wang W, Zhang D, Jiang Y, Zhou X, Lin B. A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs. Catalysts. 2020; 10(2):235. https://doi.org/10.3390/catal10020235
Chicago/Turabian StyleZeng, Qiannan, Xiaozhen Zhang, Wei Wang, Dandan Zhang, Yuhua Jiang, Xiaojian Zhou, and Bin Lin. 2020. "A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs" Catalysts 10, no. 2: 235. https://doi.org/10.3390/catal10020235
APA StyleZeng, Q., Zhang, X., Wang, W., Zhang, D., Jiang, Y., Zhou, X., & Lin, B. (2020). A Zn-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite Cathode with Enhanced ORR Catalytic Activity for SOFCs. Catalysts, 10(2), 235. https://doi.org/10.3390/catal10020235