α,*β*-Alkynone Accelerated PPM Level Pd-Catalyzed Sonogashira Coupling Reaction

Meng Guo¹, Zhen Wei¹, Jianming Yang², Zunyuan Xie^{* 1} and Weiqiang Zhang ^{1,*}

- ¹ Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- ² Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
- * Correspondence: zyxie123@snnu.edu.cn, zwq@snnu.edu.cn

Table of Contents

1. Optimization of Reaction Conditions	2S		
2. ¹ H and ¹³ C-NMR Spectra for Ligands	2S		
3. Spectroscopic Data for Sonogashira Cross-Coupling Products	11S		
4. 1H- and 13C-NMR Spectra for Sonogashira Cross-Coupling Products			

1. Optimization of Reaction Conditions

Table S1 Trace-Pd catalyzed Sonogashira coupling reaction ^{ab}

M	e0 +	-	[Pd], Base, L ₂ Solvent, 24h		
Entry ^a	PdCl2 (ppm)	Base (eq.)	Solvent	T (°C)	Yields (%) ^b
1	0.1	K ₂ CO ₃	EtOH	80	N.D
2	2	K ₂ CO ₃	EtOH	80	8
3	5	K ₂ CO ₃	EtOH	80	32
4	10	K ₂ CO ₃	EtOH	80	31
5	5	Cs_2CO_3	EtOH	80	trace
6	5	Na ₂ CO ₃	EtOH	80	N.D
7	5	Na ₂ OAc	EtOH	80	N.D
8	5	NaOH	EtOH	80	N.D
9	5	КОН	EtOH	80	N.D
10	5	Et ₃ N	EtOH	80	trace
11	5	K ₂ CO ₃	EtOH	90	59
12	5	K ₂ CO ₃	EtOH	95	60
13	5	K ₂ CO ₃	MeCN	90	N.D
14	5	K ₂ CO ₃	DMF	90	N.D
15	5	K ₂ CO ₃	DMSO	90	N.D
16	5	K ₂ CO ₃	Water	90	trace
17	5	K ₂ CO ₃	Water/ EtOH(v/v=1/1)	90	trace
18	5	K ₂ CO ₃	MeOH	90	trace
19	5	K ₂ CO ₃	IPA	90	trace
20	5	K ₂ CO ₃	<i>t</i> -Butanol	90	N.D
21	5	K ₂ CO ₃	EG	90	20

^a Reaction conditions: 4-Iodoanisole (0.5 mmol), Phenylacetylene (0.6 mmol), L₂ (5 mol%), 24h, under air.
^b Determined by ¹H NMR.

2. ¹H and ¹³C-NMR Spectra for Ligands

3-(4-chlorophenyl)-1-phenylprop-2-yn-1-one 1H-NMR

3-(4-chlorophenyl)-1-phenylprop-2-yn-1-one ¹³C-NMR

3-(4-chlorophenyl)-1-(4-nitrophenyl)prop-2-yn-1-one 1H-NMR

3-(4-chlorophenyl)-1-(4-nitrophenyl)prop-2-yn-1-one ¹³C-NMR

1,3-bis(4-methoxyphenyl)prop-2-yn-1-one 1H-NMR

1,3-bis(4-methoxyphenyl)prop-2-yn-1-one ¹³C-NMR

176.74	164.34 161.58	135.00 131.86 130.44	114.40 113.84 112.10	93.46	86.81	55.59 55.44
1	1.1	2777	$\leq 1 > 1$			\checkmark

1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one 1H-NMR

1,3-diphenylprop-2-yn-1-one 1H-NMR

1,3-diphenylprop-2-yn-1-one ¹³C-NMR

3-(4-methoxyphenyl)-1-phenylprop-2-yn-1-one 1H-NMR

3-(4-chlorophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one 1H-NMR

3-(4-chlorophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one ¹³C-NMR

1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one 1H-NMR

1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one ¹³C-NMR

1-(4-chlorophenyl)-3-phenylprop-2-yn-1-one 1H-NMR

1-(4-chlorophenyl)-3-phenylprop-2-yn-1-one ¹³C-NMR

3. Spectroscopic Data for Sonogashira Cross-Coupling Products

1,2-diphenylethyne

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.55 (m, 4H), 7.36 (m, 6H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 133.05, 129.78, 129.69, 124.73, 90.81.

1-methyl-4-(phenylethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.55-7.53 (m, 2H), 7.45 (d, 2H), 7.35 (d, 3H), 7.17 (d, 2H), 2.38 (s, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 139.82, 132.99, 132.94, 130.56, 129.75, 129.51, 124.93, 121.64, 91.00, 90.16, 22.94.

1-ethyl-4-(phenylethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.65-7.57 (m, 2H), 7.52 (d, 2H), 7.38 (d, 3H), 7.23 (d, 2H), 2.71 (q, 2H), 1.30 (t, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 146.16, 133.10, 133.05,129.81, 129.56, 129.42, 125.02, 121.95, 91.13, 90.25, 30.33, 16.83.

1-bromo-4-(phenylethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.52 (dd, 2.9 Hz, 2H), 7.48 (d, 2H), 7.39 (d, 2H), 7.37-7.33 (m, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 133.03, 132.52, 131.63, 131.61, 129.21, 128.52, 128.45, 128.41, 122.95, 121.83, 90.53, 88.32.

1-(phenylethynyl)-4-(trifluoromethyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.67-7.62 (q, 4H), 7.59-7.56 (m, 2H), 7.40-7.39 (m, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 134.66, 131.75, 128.89, 128.78, 128.48, 124.74, 124.34, 122.68, 90.98, 87.85.

1-(phenylethynyl)-2-(trifluoromethyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.64 (t, 2H), 7.58-7.51 (m, 2H), 7.46 (t, 1H), 7.37 (d, 1H), 7.35-7.30 (m, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 133.76, 131.75, 131.43, 128.87, 128.46, 127.96, 125.95, 125.90, 125.86, 122.82, 122.37, 121.65, 95.03, 85.45.

1-methoxy-3-(phenylethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ7.60-7.53 (m, 2H), 7.42-7.35 (m, 3H), 7.32-7.25 (m, 2H), 7.16 (d, 1H), 7.09 (s, 1H), 6.92 (dd, 2.3 Hz, 1H), 3.85 (s, 3H). ¹³C NMR spectrum (400 MHz, CDCl₃) δ 160.84, 133.06, 130.83, 129.77, 129.72, 125.69, 125.66, 117.77, 116.38, 90.79, 90.59, 56.73.

1,2-bis(4-methoxyphenyl)ethyne

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.46 (d, 4H), 6.87 (d, 4H), 3.82 (s, 6H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 159.41, 132.89, 124.40, 115.74, 113.98, 87.97, 55.29.

1-methoxy-4-(p-tolylethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.48-7.46 (d, 2H), 7.43-7.41 (d, 2H), 7.16-7.14 (d, 2H), 6.89-6.87 (d, 2H), 3.83 (s, 3H), 2.37 (s, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 159.51, 138.03, 132.99, 131.36, 129.10, 120.53, 115.62, 113.99, 88.68, 88.22, 55.30, 21.49.

1-((4-methoxyphenyl)ethynyl)-3-methylbenzene

1H-NMR spectrum (400 MHz, CDCl3) & 7.53-7.51 (d, 2H), 7.40-7.37 (d, 2H), 7.27-7.26 (m, 1H),

7.18-7.16 (d, 1H), 3.85 (s, 3H), 2.40 (s, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 159.58, 137.97, 133.04, 132.05, 128.85, 128.53, 128.22, 123.41, 115.52, 114.00, 89.03, 88.25, 55.30, 21.25.

1-ethyl-4-((4-methoxyphenyl)ethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.48-7.43 (m, 4H), 7.19-7.17 (d, 2H), 6.98-6.87 (d, 2H), 3.83 (s, 3H), 2.69-2.64 (q, 2H), 1.27-1.23 (t, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 159.50, 148.96, 144.34, 132.99, 131.44, 127.89, 120.77, 115.65, 113.98, 88.66, 88.24, 55.30, 28.82, 15.36.

1-butyl-4-((4-methoxyphenyl)ethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.46 (d, 2H), 7.42 (d, 2H), 7.15 (d, 2H), 6.87 (d, 2H), 3.83 (s, 3H), 2.67-2.57 (m, 2H), 1.59 (dd, 2H), 1.36 (dd, 2H), 0.93 (t, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 159.49, 143.04, 132.98, 131.35, 128.43, 120.71, 115.66, 113.97, 88.65, 88.24, 55.3, 35.58, 33.41, 22.31, 13.93.

1-chloro-3-((4-methoxyphenyl)ethynyl)benzene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.50-7.48 (d, 2H), 7.42-7.40 (m, 1H), 7.31-7.28 (m, 2H), 6.92-6.90 (d, 2H), 3.85 (s, 3H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 159.90, 134.15, 133.18, 131.29, 129.55, 129.53, 128.15, 125.39, 114.86, 114.09, 90.67, 86.75, 55.32.

1-(phenylethynyl)naphthalene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 8.52 (m, 1H), 7.91-7.83 (m, 3H), 7.71-7.58 (m, 4H), 7.50-7.43 (m, 4H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 133.35, 133.30, 131.75, 130.45, 128.85, 128.52, 128.47, 128.40, 126.86, 126.51, 126.30, 125.36, 123.49, 120.98, 94.42, 87.65.

2-(phenylethynyl)thiophene

¹H-NMR spectrum (400 MHz, CDCl₃) δ 7.56-7.52 (m, 2H), 7.38-7.30 (m, 5H), 7.04-7.02 (m, 2H). ¹³C-NMR spectrum (400 MHz, CDCl₃) δ 133.24, 131.79, 130.58, 127.67, 127.46, 127.37, 121.91, 120.77, 89.29, 87.21.

1,2-diphenylethyne ¹³C-NMR

05 69	73	-	~ 5 C
ຕ່ອ	*	<u>∞</u> .	- 4 -
12 12	12	90	8/ 8/
1 1		Ť	S

1-methyl-4-(phenylethynyl)benzene ¹³C-NMR

1-ethyl-4-(phenylethynyl)benzene 1H-NMR

1-ethyl-4-(phenylethynyl)benzene ¹³C-NMR

1-bromo-4-(phenylethynyl)benzene 1H-NMR

1-bromo-4-(phenylethynyl)benzene ¹³C-NMR

1-(phenylethynyl)-4-(trifluoromethyl)benzene 1H-NMR

1-(phenylethynyl)-4-(trifluoromethyl)benzene ¹³C-NMR

1-(phenylethynyl)-2-(trifluoromethyl)benzene 1H-NMR

1-(phenylethynyl)-2-(trifluoromethyl)benzene ¹³C-NMR

1-methoxy-3-(phenylethynyl)benzene 1H-NMR

1-methoxy-3-(phenylethynyl)benzene ¹³C-NMR

1,2-bis(4-methoxyphenyl)ethyne 1H-NMR

^{1,2-}bis(4-methoxyphenyl)ethyne ¹³C-NMR

1-methoxy-4-(p-tolylethynyl)benzene ¹H-NMR

1-methoxy-4-(p-tolylethynyl)benzene ¹³C-NMR

1-((4-methoxyphenyl)ethynyl)-3-methylbenzene 1H-NMR

1-((4-methoxyphenyl)ethynyl)-3-methylbenzene ¹³C-NMR

1-ethyl-4-((4-methoxyphenyl)ethynyl)benzene 1H-NMR

1-ethyl-4-((4-methoxyphenyl)ethynyl)benzene ¹³C-NMR

1-butyl-4-((4-methoxyphenyl)ethynyl)benzene 1H-NMR

1-butyl-4-((4-methoxyphenyl)ethynyl)benzene ¹³C-NMR

1-chloro-3-((4-methoxyphenyl)ethynyl)benzene 1H-NMR

1-chloro-3-((4-methoxyphenyl)ethynyl)benzene ¹³C-NMR

1-(phenylethynyl)naphthalene ¹H-NMR

1-(phenylethynyl)naphthalene ¹³C-NMR

2-(phenylethynyl)thiophene ¹H-NMR

²⁻⁽phenylethynyl)thiophene ¹³C-NMR

