Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimal Conditions for TMP-TiO2 Synthesis
2.2. Fourier-Transform Infrared (FTIR) and XPS Analysis
2.3. XRD Analysis
2.4. BET Analysis
2.5. SEM and TEM Investigations
2.6. UV-Vis Diffuse Reflectance Spectra
2.7. SPS Analysis
2.8. Photocatalytic Efficiency
2.9. Relationship between Physicochemical Properties and Photocatalytic Activity of TMP-TiO2 Nanocomposites
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of Trimesoyl Chloride-Melamine Copolymer (TMP)
3.3. Preparation of TMP-TiO2 Nanocomposites
3.4. Photocatalytic Activity Tests
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riedel, T.P.; DeMarini, D.M.; Zavala, J.; Warren, S.H.; Corse, E.W.; Offenberg, J.H.; Kleindienst, T.E.; Lewandowski, M. Mutagenic atmospheres resulting from the photooxidation of aromatic hydrocarbon and NOx mixtures. Atmos. Environ. 2018, 178, 164–172. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Env. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, Y.; Chai, X.; Xu, L.; Zhang, L.; Ning, P.; Huang, J.; Tian, S. Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung. J. Hazard. Mater. 2019, 369, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ye, X.; Huang, H.; Hu, P.; Zhang, L.; Leung, D.Y. Photocatalytic oxidation of gaseous benzene under 185 nm UV irradiation. Int. J. Photoenergy 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Chen, B.; Wang, B.; Sun, Y.; Wang, X.; Fu, M.; Wu, J.; Chen, L.; Tan, Y.; Ye, D. Plasma-Assisted Surface Interactions of Pt/CeO2 Catalyst for Enhanced Toluene Catalytic Oxidation. Catalysts 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Estrellan, C.R.; Salim, C.; Hinode, H. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide. J. Hazard. Mater. 2010, 179, 79–83. [Google Scholar] [CrossRef]
- Dosa, M.; Piumetti, M.; Bensaid, S.; Andana, T.; Galletti, C.; Fino, D.; Russo, N. Photocatalytic Abatement of Volatile Organic Compounds by TiO2 Nanoparticles Doped with Either Phosphorous or Zirconium. Materials 2019, 12, 2121. [Google Scholar] [CrossRef] [Green Version]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Sun, C.; Ping, H.; Pan, G.; Miao, Y.; Li, Z. Study on preparation and visible-light activity of Ag–TiO2 supported by artificial zeolite. Res. Chem. Intermed. 2018, 44, 2607–2620. [Google Scholar] [CrossRef]
- Lei, P.; Wang, F.; Zhang, S.; Ding, Y.; Zhao, J.; Yang, M. Conjugation-grafted-TiO2 nanohybrid for high photocatalytic efficiency under visible light. Acs Appl. Mater. Interfaces 2014, 6, 2370–2376. [Google Scholar] [CrossRef]
- Jansson, I.; Kobayashi, K.; Hori, H.; Sánchez, B.; Ohtani, B.; Suárez, S. Decahedral anatase titania particles immobilized on zeolitic materials for photocatalytic degradation of VOC. Catal. Today 2017, 287, 22–29. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Lei, P.; Wang, F.; Gao, X.; Ding, Y.; Zhang, S.; Zhao, J.; Liu, S.; Yang, M. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J. Hazard. Mater. 2012, 227, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Mari, B.; Sharma, S.; Kumari, V.; Maken, S.; Kumari, K.; Kumar, N. Non-metal modified TiO2: A step towards visible light photocatalysis. J. Mater. Sci. Mater. Electron. 2019, 30, 3186–3207. [Google Scholar] [CrossRef]
- Hossain, M.A.; Elias, M.; Sarker, D.R.; Diba, Z.R.; Mithun, J.M.; Azad, M.A.K.; Siddiquey, I.A.; Rahman, M.M.; Uddin, J.; Uddin, M.N. Synthesis of Fe- or Ag-doped TiO2 –MWCNT nanocomposite thin films and their visible-light-induced catalysis of dye degradation and antibacterial activity. Res. Chem. Intermed. 2018, 44, 2667–2683. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. J. Hazard. Mater. 2008, 152, 48–55. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Luo, Q.; Li, X.; Duan, Y.; An, J. Characterization and photocatalytic activity of poly (3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light. J. Hazard. Mater. 2009, 169, 546–550. [Google Scholar] [CrossRef]
- Nsib, M.F.; Maayoufi, A.; Moussa, N.; Tarhouni, N.; Massouri, A.; Houas, A.; Chevalier, Y. TiO2 modified by salicylic acid as a photocatalyst for the degradation of monochlorobenzene via Pickering emulsion way. J. Photochem. Photobiol. A Chem. 2013, 251, 10–17. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Q.; Lin, S.; Cao, W. One-step synthesis of nanocrystalline N-doped TiO2 powders and their photocatalytic activity under visible light irradiation. Res. Chem. Intermed. 2013, 39, 1655–1664. [Google Scholar] [CrossRef]
- Kang, C.; Xiao, K.; Yao, Z.; Wang, Y.; Huang, D.; Zhu, L.; Liu, F.; Tian, T. Hydrothermal synthesis of graphene-ZnTiO3 nanocomposites with enhanced photocatalytic activities. Res. Chem. Intermed. 2018, 44, 6621–6636. [Google Scholar] [CrossRef]
- Cipagauta-Díaz, S.; Estrella-González, A.; Gómez, R. Heterojunction formation on InVO4/N-TiO2 with enhanced visible light photocatalytic activity for reduction of 4-NP. Mater. Sci. Semicond. Process. 2019, 89, 201–211. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Yang, Y.H. Exploring the Photodegradation of Bisphenol A in a Sunlight/Immobilized N-TiO2 System. Pol. J. Environ. Stud. 2014, 23, 379–384. [Google Scholar]
- Cheng, J.; Chen, J.; Lin, W.; Liu, Y.; Kong, Y. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 2015, 332, 573–580. [Google Scholar] [CrossRef]
- Li, G.; Wang, F.; Liu, P.; Chen, Z.; Lei, P.; Xu, Z.; Li, Z.; Ding, Y.; Zhang, S.; Yang, M. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere 2018, 197, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Li, J.; Cai, Y.-F. Fabrication of C, N-codoped TiO2 nanotube photocatalysts with visible light response. Acta Phys. Chim. Sin. 2008, 24, 1283–1286. [Google Scholar]
- Loncarevic, D.; Milicevic, B.; Nedeljkovic, J.M.; Ahrenkiel, S.P. Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives. Microporous Mesoporous Mater. 2015, 217, 184–189. [Google Scholar]
- Vijayan, B.K.; Dimitrijevic, N.M.; Finkelstein-Shapiro, D.; Wu, J.; Gray, K.A. Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites. Acs Catal. 2012, 2, 223–229. [Google Scholar] [CrossRef]
- Khalyavka, T.A.; Shcherban, N.D.; Shymanovska, V.V.; Manuilov, E.V.; Shcherbakov, S.N. Cerium-doped mesoporous BaTiO3/TiO2 nanocomposites: Structural, optical and photocatalytic properties. Res. Chem. Intermed. 2019, 45, 4029–4042. [Google Scholar] [CrossRef]
- Surynek, M.; Spanhel, L.; Lapcik, L.; Mrazek, J. Tuning the photocatalytic properties of sol–gel-derived single, coupled, and alloyed ZnO–TiO2 nanoparticles. Res. Chem. Intermed. 2019, 45, 4193–4204. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 2000, 104, 3481–3487. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Y.; Wen, Y.; Du, L.; Zeng, W.; Shi, Y.; Zhang, F.; Zhu, G.; Xu, X.; Wang, Y. Highly dispersive {001} facets-exposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst. J. Mater. Chem. 2012, 22, 7484–7491. [Google Scholar] [CrossRef]
- Cano-Casanova, L.; Amorós-Pérez, A.; Ouzzine, M.; Lillo-Ródenas, M.A.; Román-Martínez, M.C. One step hydrothermal synthesis of TiO2 with variable HCl concentration: Detailed characterization and photocatalytic activity in propene oxidation. Appl. Catal. B Environ. 2018, 220, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Piao, L.; Zhao, L.; Ju, S.; Yan, Z.; He, T.; Zhou, C.; Wang, W. Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chem. Commun. 2010, 46, 1664–1666. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Zhijiao, W.; Yongliang, L.; Hongtao, G.; Lingyu, P.; ZHANG, T.; Lixia, D. Controllable synthesis and photocatalytic activity of anatase TiO2 single crystals with exposed {110} facets. Chin. J. Catal. 2012, 33, 1743–1753. [Google Scholar]
- Cheng, Y.; Xue, G.; Zhang, X.; Su, J.; Wang, L. Synthesis of a TiO2–Cu2O composite catalyst with enhanced visible light photocatalytic activity for gas-phase toluene. New J. Chem. 2018, 42, 9252–9259. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, C.; Lei, H.; Huo, J. Visible light photocatalytic activity of aromatic polyamide dendrimer/TiO2 composites functionalized with spirolactam-based molecular switch. J. Colloid Interface Sci. 2013, 406, 178–185. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351. [Google Scholar] [CrossRef]
- Liu, G.; Liu, L.; Song, J.; Liang, J.; Luo, Q.; Wang, D. Visible light photocatalytic activity of TiO2 nanoparticles hybridized by conjugated derivative of polybutadiene. Superlattices Microstruct. 2014, 69, 164–174. [Google Scholar] [CrossRef]
- Zhu, J.-F.; Zhang, G.-H.; Dong, W.-X.; Ma, S.-S. Catalytic Synthesis of PVC Thermal Stabilizer N, N′, N″-1, 3, 5-Triazine-2, 4, 6-Triyltris-Benzamide. J. Chem. Eng. Chin. Univ. 2012, 26, 1082–1085. [Google Scholar] [CrossRef]
- Peng, Z.; Haag, B.A.; Knochel, P. Preparation of 2-Magnesiated 1, 3, 5-Triazines via an Iodine—Magnesium Exchange. Org. Lett. 2010, 12, 5398–5401. [Google Scholar] [CrossRef]
- Gordetsov, A.; Zimina, S.; Saprykina, S.; Loginova, L.; Piskunov, A.; Ur’yash, V.; Moseeva, E. Reaction of N,N′-bis(trimethylsilyl)dicyandiamide with bis(η5-cyclopentadienylvanadium) dichloride. Russ. J. Gen. Chem. 2011, 81, 658–662. [Google Scholar] [CrossRef]
- Abbasi, S.; Hasanpour, M.; Ekrami-Kakhki, M.S. Removal efficiency optimization of organic pollutant (Methylene blue) with modified multi-walled carbon nanotubes using design of experiments (DOE). J. Mater. Sci. Mater. Electron. 2017, 28, 9900–9910. [Google Scholar] [CrossRef]
- Mais, L.; Vacca, A.; Mascia, M.; Usai, E.M.; Tronci, S.; Palmas, S. Experimental study on the optimisation of azo-dyes removal by photo-electrochemical oxidation with TiO2 nanotubes. Chemosphere 2020, 248, 125938. [Google Scholar] [CrossRef]
- Vacca, A.; Mais, L.; Mascia, M.; Usai, E.M.; Palmas, S. Design of Experiment for the Optimization of Pesticide Removal from Wastewater by Photo-Electrochemical Oxidation with TiO2 Nanotubes. Catalysts 2020, 10, 512. [Google Scholar] [CrossRef]
- Yamen, A.; Amer, H.; Jenny, S.; Detlef, W.B. Co-catalyst-free photocatalytic hydrogen evolution on TiO2: Synthesis of optimized photocatalyst through statistical material science. Appl. Catal. B Environ. 2018, 238, 422–433. [Google Scholar] [CrossRef]
Source | Df | Adj SS | Adj MS | F-Value | P-Value | |
---|---|---|---|---|---|---|
Model | 8 | 1806.20 | 225.776 | 100.28 | 0.000 | Significant |
A | 1 | 113.17 | 113.165 | 50.26 | 0.000 | Significant |
B | 1 | 144.33 | 144.330 | 64.10 | 0.000 | Significant |
C | 1 | 369.53 | 369.532 | 164.13 | 0.000 | Significant |
D | 1 | 581.89 | 581.892 | 258.45 | 0.000 | Significant |
A × A | 1 | 83.70 | 83.701 | 37.18 | 0.000 | Significant |
B × B | 1 | 120.69 | 120.691 | 53.61 | 0.000 | Significant |
C × C | 1 | 469.94 | 469.935 | 208.72 | 0.000 | Significant |
D × D | 1 | 497.95 | 497.953 | 221.17 | 0.000 | Significant |
Error | 18 | 40.53 | 2.251 | - | - | - |
Total | 26 | 1846.73 | - | - | - | - |
S | R-sq | R-sq (adj) | R-sq(pred) | |||
1.50049 | 97.81% | 96.83% | 95.06% |
Coded Level | Hydrolysis Reaction Temperature (°C) | TMPs:TiO2 Precursor Ratio (-) | Hydrothermal Reaction Temperature (°C) | Hydrothermal Reaction Time (h) |
---|---|---|---|---|
−1 | 60 | 1:2 | 140 | 6 |
0 | 80 | 1:1 | 160 | 8 |
1 | 100 | 2:1 | 180 | 10 |
Run | Coded Levels | Real Values of Parameters | Response | |||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A (°C) | B (-) | C (°C) | D (h) | Removal Efficiency (RE/%) | Average S/N Ratio for RE | |
1 | −1 | −1 | −1 | −1 | 60 | 1:2 | 140 | 6 | 72.83 | 37.36466 |
2 | −1 | −1 | −1 | −1 | 60 | 1:2 | 140 | 6 | 77.50 | |
3 | −1 | −1 | −1 | −1 | 60 | 1:2 | 140 | 6 | 71.16 | |
4 | −1 | 0 | 0 | 0 | 60 | 1:1 | 160 | 8 | 86.50 | 38.84016 |
5 | −1 | 0 | 0 | 0 | 60 | 1:1 | 160 | 8 | 87.30 | |
6 | −1 | 0 | 0 | 0 | 60 | 1:1 | 160 | 8 | 88.70 | |
7 | −1 | 1 | 1 | 1 | 60 | 2:1 | 180 | 10 | 92.68 | 39.24549 |
8 | −1 | 1 | 1 | 1 | 60 | 2:1 | 180 | 10 | 90.23 | |
9 | −1 | 1 | 1 | 1 | 60 | 2:1 | 180 | 10 | 92.13 | |
10 | 0 | −1 | 0 | 1 | 80 | 1:2 | 160 | 10 | 82.73 | 38.24763 |
11 | 0 | −1 | 0 | 1 | 80 | 1:2 | 160 | 10 | 82.35 | |
12 | 0 | −1 | 0 | 1 | 80 | 1:2 | 160 | 10 | 80.11 | |
13 | 0 | 0 | 1 | −1 | 80 | 1:1 | 180 | 6 | 94.91 | 39.45424 |
14 | 0 | 0 | 1 | −1 | 80 | 1:1 | 180 | 6 | 92.38 | |
15 | 0 | 0 | 1 | −1 | 80 | 1:1 | 180 | 6 | 94.44 | |
16 | 0 | 1 | −1 | 0 | 80 | 2:1 | 140 | 8 | 95.41 | 39.68244 |
17 | 0 | 1 | −1 | 0 | 80 | 2:1 | 140 | 8 | 97.32 | |
18 | 0 | 1 | −1 | 0 | 80 | 2:1 | 140 | 8 | 96.50 | |
19 | 1 | −1 | 1 | 0 | 100 | 1:2 | 180 | 8 | 98.19 | 39.90305 |
20 | 1 | −1 | 1 | 0 | 100 | 1:2 | 180 | 8 | 98.77 | |
21 | 1 | −1 | 1 | 0 | 100 | 1:2 | 180 | 8 | 99.71 | |
22 | 1 | 0 | −1 | 1 | 100 | 1:1 | 140 | 10 | 91.14 | 39.19418 |
23 | 1 | 0 | −1 | 1 | 100 | 1:1 | 140 | 10 | 93.11 | |
24 | 1 | 0 | −1 | 1 | 100 | 1:1 | 140 | 10 | 92.17 | |
25 | 1 | 1 | 0 | −1 | 100 | 2:1 | 160 | 6 | 77.35 | 37.80283 |
26 | 1 | 1 | 0 | −1 | 100 | 2:1 | 160 | 6 | 78.26 | |
27 | 1 | 1 | 0 | −1 | 100 | 2:1 | 160 | 6 | 77.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, C.; Sun, J.; An, Z. Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation. Catalysts 2020, 10, 575. https://doi.org/10.3390/catal10050575
Zhang L, Wang C, Sun J, An Z. Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation. Catalysts. 2020; 10(5):575. https://doi.org/10.3390/catal10050575
Chicago/Turabian StyleZhang, Luqian, Chen Wang, Jing Sun, and Zhengkai An. 2020. "Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation" Catalysts 10, no. 5: 575. https://doi.org/10.3390/catal10050575
APA StyleZhang, L., Wang, C., Sun, J., & An, Z. (2020). Trimesoyl Chloride-Melamine Copolymer-TiO2 Nanocomposites as High-Performance Visible-Light Photocatalysts for Volatile Organic Compound Degradation. Catalysts, 10(5), 575. https://doi.org/10.3390/catal10050575