Effect of Pretreatment Methods on Enzymatic Kinetics of Ungelatinized Cassava Flour Hydrolysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of Pretreatment Method on Hydrolysis Yield
2.2. Kinetics of Enzyme Adsorption
2.3. Hydrolysis Kinetics Modelling
3. Materials and Methods
3.1. Substrate and Enzymes
3.2. Biochemical Analysis and Hydrolysis Yield
3.3. Particle Size Determination
3.4. Scanning Electron Microscopy (SEM)
3.5. Determination of Enzyme Adsorption and Kinetics Constants
3.6. Enzymatic Assay
3.7. Hydrolysis Kinetics Modelling
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cinelli, B.A.; Castilho, L.R.; Freire, D.M.G.; Castro, A.M. A brief review on the emerging technology of ethanol production by cold hydrolysis of raw starch. Fuel 2015, 150, 721–729. [Google Scholar] [CrossRef]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol Can Contribute to Energy and Environmental Goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.H.; Wong, D.W.S.; Lee, C.C.; Wagschal, K.; Smith, M.R.; Orts, W.J. Native or Raw Starch Digestion: A Key Step in Energy Efficient Biorefining of Grain. J. Agric. Food Chem. 2006, 54, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Uthumporn, U.; Zaidul, I.S.M.; Karim, A.A. Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food Bioprod. Process. 2010, 88, 47–54. [Google Scholar] [CrossRef]
- Li, J.; Vasanthan, T.; Bressler, D.C. Improved cold starch hydrolysis with urea addition and heat treatment at subgelatinization temperature. Carbohydr. Polym. 2012, 87, 1649–1656. [Google Scholar] [CrossRef]
- Shariffa, Y.N.; Karim, A.A.; Fazilah, A.; Zaidul, I.S.M. Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature. Food Hydrocolloids 2009, 23, 434–440. [Google Scholar] [CrossRef]
- Balcerek, M.; Pielech-Przybylska, K. Effect of simultaneous saccharification and fermentation conditions of native triticale starch on the dynamics and efficiency of process and composition of the distillates obtained. J. Chem. Technol. Biotechnol. 2013, 88, 615–622. [Google Scholar] [CrossRef]
- Montalbo-Lomboy, M.; Khanal, S.K.; van Leeuwen, J.; Raj Raman, D.; Grewell, D. Simultaneous saccharification and fermentation and economic evaluation of ultrasonic and jet cooking pretreatment of corn slurry. Biotechnol. Progress 2011, 27, 1561–1569. [Google Scholar] [CrossRef]
- Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y.; Tan, T. Challenges and opportunities in improving the production of bio-ethanol. Prog. Energy Combust. Sci. 2015, 47, 60–88. [Google Scholar] [CrossRef]
- Puligundla, P.; Smogrovicova, D.; Mok, C.; Obulam, V.S.R. A review of recent advances in high gravity ethanol fermentation. Renew. Energy 2019, 133, 1366–1379. [Google Scholar] [CrossRef]
- Li, Z.; Cai, L.; Gu, Z.; Shi, Y.-C. Effects of Granule Swelling on Starch Saccharification by Granular Starch Hydrolyzing Enzyme. J. Agric. Food Chem. 2014, 62, 8114–8119. [Google Scholar] [CrossRef] [PubMed]
- Poonsrisawat, A.; Wanlapatit, S.; Paemanee, A.; Eurwilaichitr, L.; Piyachomkwan, K.; Champreda, V. Viscosity reduction of cassava for very high gravity ethanol fermentation using cell wall degrading enzymes from Aspergillus aculeatus. Process Biochem. 2014, 49, 1950–1957. [Google Scholar] [CrossRef]
- Sriroth, K.; Chollakup, R.; Chotineeranat, S.; Piyachomkwan, K.; Oates, C.G. Processing of cassava waste for improved biomass utilization. Bioresour. Technol. 2000, 71, 63–69. [Google Scholar] [CrossRef]
- Juszczak, L.; Fortuna, T.; Krok, F. Non-contact Atomic Force Microscopy of Starch Granules Surface. Part, I. Potato and Tapioca Starches. Starch Stärke 2003, 55, 1–7. [Google Scholar] [CrossRef]
- Vidal, B.C.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Kinetics of Granular Starch Hydrolysis in Corn Dry-Grind Process. Starch Stärke 2009, 61, 448–456. [Google Scholar] [CrossRef]
- Nitayavardhana, S.; Rakshit, S.K.; Grewell, D.; van Leeuwen, J.; Khanal, S.K. Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production. Biotechnol. Bioeng. 2008, 101, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Quemada, D. Modélisation Rhéologique Structurelle. In Dispersions Concentrées et Fluides Complexes; Tec & Doc Lavoisier: Paris, France, 2006. [Google Scholar]
- Warren, F.J.; Royall, P.G.; Gaisford, S.; Butterworth, P.J.; Ellis, P.R. Binding interactions of α-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydr. Polym. 2011, 86, 1038–1047. [Google Scholar] [CrossRef]
- Gaouar, O.; Aymard, C.; Zakhia, N.; Rios, G.M. Kinetic Studies on the Hydrolysis of Soluble and Cassava Starches by Maltogenase. Starch Stärke 1997, 49, 231–237. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Sopade, P.A. Modeling Starch Digestograms: Computational Characteristics of Kinetic Models for in vitro Starch Digestion in Food Research. Compr. Rev. Food. Sci. Food Saf. 2018, 17, 1422–1445. [Google Scholar] [CrossRef] [Green Version]
- Waliszweski, K.N.; Alvarado, M.G.; Medina, J.D.L.C. Kinetics of enzymic hydrolysis of cassava flour starch —Optimization and modelling. Int. J. Food Sci. Technol. 1992, 27, 465–472. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford Method for Protein Quantitation. In Basic Protein and Peptide Protocols; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1994; pp. 9–15. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bommarius, A.S.; Katona, A.; Cheben, S.E.; Patel, A.S.; Ragauskas, A.J.; Knudson, K.; Pu, Y. Cellulase kinetics as a function of cellulose pretreatment. Metab. Eng. 2008, 10, 370–381. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, S.; Lin, L.; Zhao, L.; Liu, A.; Wei, C. Properties of new starches from tubers of Arisaema elephas, yunnanense and erubescens. Food Hydrocolloids 2016, 61, 183–190. [Google Scholar] [CrossRef]
- Guo, K.; Lin, L.; Fan, X.; Zhang, L.; Wei, C. Comparison of structural and functional properties of starches from five fruit kernels. Food Chem. 2018, 257, 75–82. [Google Scholar] [CrossRef] [PubMed]
Pretreatment Method | 30 °C | 40 °C | 45 °C | 50 °C | Microwave | Viscozyme L | |
---|---|---|---|---|---|---|---|
Yield (%) | 10% starch | 59.3 ± 1.2 a | 61.6 ± 1.0 a | 65.7 ± 1.0 b | 79.0 ± 1.9 c | 67.4 ± 1.3 b | 76.1 ± 2.3 c |
20% starch | 58.6 ± 0.9 | - | - | 78.6 ± 3.6 | - | - | |
30% starch | 47.8 ± 2.3 | - | - | 57.3 ± 1.3 | - | - |
Pretreatment Method | Emax | r2 (/) | |
---|---|---|---|
30 °C | 0.0085 ± 0.0004 | 85.49 ± 13.55 | 0.9889 |
40 °C | 0.0098 ± 0.0024 | 82.55 ± 23.12 | 0.9044 |
50 °C | 0.0419 ± 0.0014 | 50.04 ± 11.29 | 0.9691 |
Pretreatment Method | Initial Starch Concentration | A (g.L−1) | B (min) | r2 (/) |
---|---|---|---|---|
30 °C | 10% | 79.4 | 17.3 | 0.9514 |
20% | 180.0 | 18.9 | 0.9930 | |
30% | 238.1 | 13.5 | 0.9891 | |
40 °C | 10% | 80.6 | 15.8 | 0.9544 |
45 °C | 10% | 85.5 | 13.9 | 0.9619 |
50 °C | 10% | 107.5 | 18.4 | 0.9537 |
20% | 212.8 | 19.8 | 0.9939 | |
30% | 285.7 | 14.8 | 0.9899 | |
Microwave | 10% | 99.0 | 19.5 | 0.9628 |
Viscozyme L | 10% | 102.0 | 17.3 | 0.9538 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.C.; Chu-ky, S.; Luong, H.N.; Nguyen, H.V. Effect of Pretreatment Methods on Enzymatic Kinetics of Ungelatinized Cassava Flour Hydrolysis. Catalysts 2020, 10, 760. https://doi.org/10.3390/catal10070760
Nguyen TC, Chu-ky S, Luong HN, Nguyen HV. Effect of Pretreatment Methods on Enzymatic Kinetics of Ungelatinized Cassava Flour Hydrolysis. Catalysts. 2020; 10(7):760. https://doi.org/10.3390/catal10070760
Chicago/Turabian StyleNguyen, Tien Cuong, Son Chu-ky, Hong Nga Luong, and Hai Van Nguyen. 2020. "Effect of Pretreatment Methods on Enzymatic Kinetics of Ungelatinized Cassava Flour Hydrolysis" Catalysts 10, no. 7: 760. https://doi.org/10.3390/catal10070760
APA StyleNguyen, T. C., Chu-ky, S., Luong, H. N., & Nguyen, H. V. (2020). Effect of Pretreatment Methods on Enzymatic Kinetics of Ungelatinized Cassava Flour Hydrolysis. Catalysts, 10(7), 760. https://doi.org/10.3390/catal10070760