Solution Combustion Synthesis of Fe₂O₃-Based Catalyst for Ammonia Synthesis

Binxiang Cai, Huazhang Liu and Wenfeng Han *

Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China; cbxloveqjh@163.com (B.C.); cuihua@zjut.edu.cn (H.L.)

* Correspondence: <u>hanwf@zjut.edu.cn</u>; Tel.: +86-571-8832-0063

Catalyst	Fe content/g	Glycine content/g	glycine/Fe ratio
SCS1.7	43.40	14.46	1.7
SCS2.5		21.70	2.5
SCS3.3		28.93	3.3
SCS5		43.40	5.0
SCS8.3		72.30	8.3
SCS11.7		101.22	11.7

Table S1. Nomenclature of catalysts.

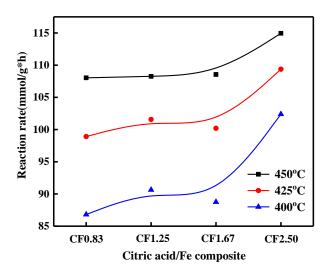


Figure S1. Reaction rate of ammonia synthesis over citric acid/Fe composite catalysts prepared by SCS at a reaction condition. All the catalysts were reduced by temperature programmed reduction

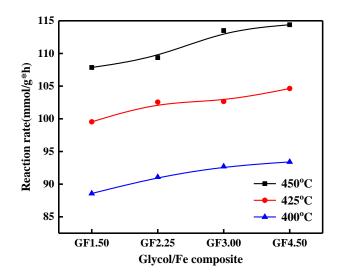


Figure S2. Reaction rate of ammonia synthesis over glycol/Fe composite catalysts prepared by SCS at a reaction condition. All the catalysts were reduced by temperature programmed reduction.

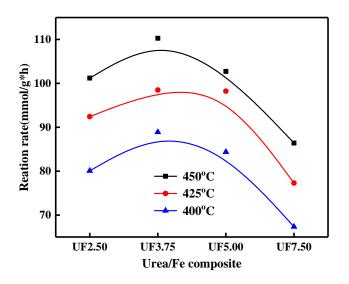


Figure S3. Reaction rate of ammonia synthesis over urea/Fe composite catalysts prepared by SCS at a reaction condition. All the catalysts were reduced by temperature programmed reduction.