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Abstract: Susceptibility of soybean phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) and its phosphono analogue (R)-2,3-dipalmitoyloxypropylphosphonocholine (DPPnC) to-
wards selected lipases and phospholipases was compared. The ethanolysis of substrates at sn-1

position was carried out by lipase from Mucor miehei (Lipozyme®) and lipase B from Candida antarctica

(Novozym 435) in 95% ethanol at 30 °C, and the hydrolysis with Lecitase™ Ultra was carried out

in hexane/water at 50 °C. Hydrolysis at sn-2 position was carried out in isooctane/Tris-HCl/ AOT

system at 40 °C using phospholipase A; (PLA;) from porcine pancreas and PLA; from bovine pan-
creas or 25 °C using PLA; from bee venom. Hydrolysis in the polar part of the studied compounds

was carried out at 30 °C in acetate buffer/ethyl acetate system using phospholipase D (PLD) from

Streptococcus sp. and PLD from white cabbage or in Tris-HCI buffer /methylene chloride system at

35 °C using PLD from Streptomyces chromofuscus. The results showed that the presence of C-P bond

between glycerol and phosphoric acid residue in DPPnC increases the rate of enzymatic hydrolysis

or ethanolysis of ester bonds at the sn-1 and sn-2 position and decreases the rate of hydrolysis in

the polar head of the molecule. The most significant changes in the reaction rates were observed for

reaction with PLD from Streptococcus sp. and PLD from Streptomyces chromofuscus that hydrolyzed

DPPnC approximately two times slower than DPPC and soybean PC. The lower susceptibility of

DPPnC towards enzymatic hydrolysis by phospholipases D gives hope for the possibility of using

DPPnC-like phosphonolipids as the carriers of bioactive molecules that, instead of choline, can be

bounded with diacylpropylphosphonic acids (DPPnA).

Keywords: phosphonolipids; phospholipids; enzymatic hydrolysis; lipases; phospholipases

1. Introduction

Phosphonolipids (PnLs) are one of the most interesting groups of lipids. In nature,
phosphonolipids can be found in many species of microorganisms, marine organisms [1-3]
and hen’s egg [4]. They are components of the cell membrane that ensure its stability.
Phosphonolipids facilitate the movement of DNA [5], and some of them are inhibitors of
enzymes [6,7].

Natural phosphonolipids possess the C-P bond on the polar (choline) side of the
molecule. For this reason, the first syntheses and the biological studies were carried out on
phosphonolipids, which are esters of 2-aminoethylphosphonic acid with diacylglycerol or
with N-acylsphingosine [8-10]. At the beginning of the 21st century, Prestwich research
group synthesized some phosphonolipids with C-P bond on hydrophobic (glycerol) side.
They obtained a wide variety of phosphono analoges of 2-lysophosphatidic acid [11-13],
which showed activity as long-lived receptor-specific agonists and antagonists for LPA
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receptors. As inhibitors of the lysophospholipase D activity, they can be useful in therapy
of cancer disease [14,15].

A few years ago, we also reported the synthesis of a series of phosphonolipids with
C-P bond on a glycerol side. They contained different fatty acid residues and choline in
their structure [16]. We have been planning to compare their biological activity, mainly
cytotoxic, with the activity of corresponding phosphatydylcholines. In our research plans,
there is also a use of phosphonolipids as drug carriers. Before starting these studies, it is
necessary to check their susceptibility towards hydrolytic enzymes involved in the first
step of lipid metabolism, namely lipases and phospholipases.

Lipases and phospholipases are environmentally friendly biocatalysts that catalyze
the hydrolysis of ester bonds of triacylglycerols and phospholipids, respectively. Besides
hydrolytic activity, lipases also catalyze esterification and transesterification reaction [17].
Phospholipases also show esterification and transphosphatidylation activity [18]. Moreover,
these biocatalysts have broad substrate specificity, high enantioselectivity and stability in
organic solvents and at extreme temperatures and pH [19]. They are commonly used in
the synthesis of structured lipids with different physical and/or nutritional properties [20].
Thus, lipases and phospholipases have found application in fine chemistry, pharmacy,
agriculture, food industry and cosmetics [21,22].

Here, for the first time, we present the results of comparable studies on the hydrolysis
(or ethanolysis) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and its phosphono
analogue (R)-2,3-dipalmitoyloxypropylphosphonocholine (DPPnC) catalyzed by selected
lipases and phospholipases.

2. Results and Discussion

In order to compare the susceptibility of phosphonolipids and phospholipids to the
selected hydrolytic enzymes, the same absolute configurations of model substrates, namely
DPPC and its phosphono analogue DPPnC, is required. As DPPC was synthesized from
sn-glycero-3-phosphocholine (GPC), with a retention typical for natural phospholipids “R”
configuration at C-2, in the first step of our research we needed to synthesize (R)-enantiomer
of DPPnC.

2.1. Synthesis of (R)-2,3-Dipalmitoyloxypropylphosphonocholine (DPPnC, 4)

Synthesis of (R)-DPPnC (4) is shown in Scheme 1. The key step of this procedure was regio-
and enantioselective hydrolysis of racemic diethyl 2,3-dipalmitoyloxypropylphosphonate (1),
which was obtained as described in our previous paper [16]. The reaction was catalyzed
by phospholipase A, from porcine pancreas in isooctane/Tris-HCl system (pH = 8.5)
in the presence of AOT and Ca?* ions. In these conditions, diethyl (R)-2-hydroxy-3-
palmitoyloxypropylphosphonate (2) was obtained at 22% yield.

Enantiomeric excesses of (R)-2-hydroxyphosphonate 2 and unreacted (S)-substrate
1 were determined by HPLC with application of chiral column (Figure 1). This analysis
indicated 19% ee of unreacted (S)-diethyl 2,3-dipalmitoyloxypropylphosphonate ((S)-1)
(Figure 1C) and 87% ee of the desired product of hydrolysis (2), which was analyzed after
its esterification with palmitic acid to (R)-diethyl 2,3-dipalmitoyloxypropylphosphonate 1
(Figure 1B). Absolute configuration “R” of 2-hydroxyphosphonate 2 obtained after phos-
pholipase Aj-catalyzed hydrolysis of rac-1 was confirmed by comparison of optical ro-
tation of known [23] (R)-diol 3 ([oc]%)S = —12.2 (c 4.1, EtOH)) with the optical rotation
of diol 3 ([oc]%j0 = —8.7 (c 0.4, EtOH)) obtained as the product of hydrolysis of (R)-2-
hydroxyphosphonate 2 with KOH in MeOH (Scheme 1).
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Figure 1. Chromatograms from chiral HPLC analysis of racemic diethyl 2,3-dipalmitoyloxypropylphosphonate (1) (A) and
the products of PLA,-catalyzed hydrolysis of racemic phosphonate 1: (R)-hydroxyphosphonate 2 (analyzed after derivatiza-
tion to (R)-phosphonate 1) (B) and unreacted (S)-phosphonate (1) (C).

Enantiomerically enriched (R)-2-hydroxyphosphonate 2 was the starting material
in the four-step synthesis of target phosphonolipid, (R)-DPPnC (4). In the first step,
hydroxy group at C-2 in (R)-2-hydroxyphosphonate 2 was esterified with palmitic acid
via Steglich method to afford (R)-diethyl 2,3-dipalmitoyloxypropylphosphonate 1 in 94%
yield. (R)-Phosphonate 1 was sillylated using TMSB, followed by methanolysis to afford
(R)-phosphonic acid, which, in the form of pirydinium salt, was subjected to the reaction
with choline tosylate to produce (R)-DPPnC (4). The total yield of synthesis of 4 from (R)-
phosphonate 1 was 51%. The described synthetic pathway, established earlier for racemic
2,3-diacyloxypropylphosphonocholines [16], ensured the retention of R configuration for
final phosphonolipid 4.
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2.2. Enzymatic Reactions of Soybean PC, DPPC and DPPnC with Selected Lipases and
Phospholipases

To test the susceptibility of synthesized phosphonolipid to the hydrolytic enzymes, in
each experiment we compared the results of DPPnC hydrolysis with its phospholipid coun-
terpart as well as with natural soybean PC. The detailed results are given in Tables S1-S3,
and the progress of reactions is presented in Figures 2—4. For each enzyme treatment, the
control experiment without the addition of enzyme was carried out to check the stability of
substrates in the reaction conditions.

Lecitase® Ultra
100

5
€
E)
c
S
® 60
g H soybean PC
§ 40 mDPPC
o
o
8 20 m DPPnC
©
2 o
a 0 0.5 1 2 4 6 8 24 48

Time [h]
. Novozym 435
5
S 100
®
~ 80
S
g 60 W soybean PC
c
S 40 m DPPC
o
E, 20 m DPPnC
o I
_% 0 _'I'___l S
Z 0.5 1 2 4 6 8 24 48

Time [h]

Lipozyme®

5 100
€
X 80
5
EG 60 W soybean PC
g 40 m DPPC
C
§ 20 ii m DPPnC
©
E O i P wi—
Ke)
3 0.5 1 2 4 6 8 24 48

Time [h]

Figure 2. Enzymatic reactions of DPPnC, DPPC and soybean PC in sn-1 position. Results are presented as means + stan-
dard deviation.
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Figure 3. Enzymatic hydrolysis of DPPnC, DPPC and soybean PC by phospholipases A;. Results are presented as
means £ standard deviation.

2.2.1. Reactions at sn-1 Position

In the first set of experiments, enzymes selective towards sn-1 position of natural
phospholipids were used: lipase from Mucor miehei (Lipozyme®) [24], lipase B from Candida
antarctica (Novozym 435) [25] and Lecitase™ Ultra, chimeric enzyme produced by the
fusion of the genes of the lipase from Thermomyces lanuginosus and the phospholipase A;
from Fusarium oxysporum [26]. The alcoholysis of substrates catalyzed by Lipozyme® and
Novozym 435 was carried out in 95% ethanol [27], and the hydrolysis with Lecitase™
Ultra was carried out in hexane (Scheme 2) [28].
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Figure 4. Enzymatic hydrolysis of DPPnC, DPPC and soybean PC by phospholipases D. Results are presented as means =+
standard deviation.
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Scheme 2. Hydrolysis of DPPnC, DPPC and soybean PC catalyzed by Lecitase™Ultra and ethanolysis catalyzed by lipases.
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The results showed (Figure 2) that in the reaction with Lecitase® Ultra, faster hy-
drolysis was observed for DPPnC compared to DPPC and natural soybean PC. It was
particularly noticeable in the first 4 h of reaction when the degree of hydrolysis was 44%
for DPPnC, 24% for DPPC and 19% for soybean PC.

In the next hours, the hydrolysis rate of the (R)-phosphonolipid significantly decreased,
and after 24 h, the contents of DPPnC and DPPC were comparable (41% vs. 45%), whereas
the content of soybean PC was only 18%. Extending the reaction time to 48 h, no significant
changes in the composition of the reaction mixtures were observed.

Ethanolysis of tested substrates catalyzed by immobilized lipases from M. miehei
and C. antarctica proceeded significantly faster and more efficiently. Phosphono analogue
of DPPC reacted faster than DPPC, but slower than natural soybean PC. In the case of
Novozym 435, after 6 h of reaction, the amount of DPPnC, DPPC and soybean PC were
16%, 42% and 5%, respectively, and after 48 h, almost complete ethanolysis of all substrates
was observed. Lipozyme® turned out to be the most effective biocatalyst under the reaction
conditions used. The course of reaction was similar to that observed for Novozym 435,
but the reaction rate was significantly higher in the first 6 h of process, resulting in 6% for
DPPnC, 18% for DPPC and only 1% for soybean PC. After 24 h, the degree of ethanolysis of
all substrates exceeded 98%. Higher rates of ethanolysis reaction observed for Lipozyme®
and Novozyme 435 can be explained by higher stability of immobilized lipases than the
free form of Lecitase® Ultra, which was used for the hydrolysis.

2.2.2. Hydrolysis Catalyzed by Phospholipases A,

The enzymatic hydrolysis involving phospholipases A, from porcine and bovine
pancreas were carried out based on the method described by Morgado et al. [29] adapted
and used in our laboratory [30,31]. Reaction with phospholipase A, from bee venom was
conducted based on the protocol proposed by Florin-Christensen et al. (Scheme 3) [32].
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DPPC: n=1, R,R, - C;5H3;
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Scheme 3. Hydrolysis of DPPnC, DPPC and soybean PC at sn-2 position.

Among the studied enzymes from the PLA; family, the fastest reaction rates and the
highest efficiency of hydrolysis in sn-2 position were observed for bovine PLA; followed
by porcine PLA; and the least active towards all substrates was bee venom PLA; (Figure 3).
After 48 h, almost complete conversion of substrates was observed in the case of reactions
with both pancreatic enzymes, whereas in the hydrolysis catalyzed by bee venom PLA,,
50-60% of substrates were still unreacted. In the bovine PLAj-catalyzed reactions and
bee venom PLA,-catalyzed reactions, soybean PC was hydrolyzed at the highest rate. In
the porcine PLA,-catalyzed reactions, during the first 4 h of the process, a higher level
of hydrolysis was observed for DPPnC (4). Afterwards, the reaction rate of soybean PC
increased to result in almost complete hydrolysis after 8 h whereas 17% of DPPnC and 25%
of DPPC were still observed in the reaction mixture.

As in the case of the hydrolysis in sn-1 position, hydrolysis of DPPnC in the sn-2
position was faster than hydrolysis of DPPC. The highest differences between reaction rates
of DPPC and DPPnC were observed for the hydrolysis catalyzed by PLA; from porcine
pancreas. In this case, after 4 h, there was still 73% of the unreacted DPPC, whereas the
amount of unreacted DPPnC was 30%. At the same time, 36% of DPPC and 27% of DPPnC
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were determined in the reaction with bovine PLA;, whereas in the reaction catalyzed by
bee venom, PLA» 91% of DPPC and 88% of DPPnC were detected.

Enantioselective hydrolysis of diethyl 2,3-dipalmitoyloxypropylphosphonate (1) by PLA,
from porcine pancreas was applied in these studies to synthesize (R)-DPPnC (Scheme 1).
As enzymatic hydrolysis is a convenient method for the resolution of racemic o and
B-hydroxyphosphonate esters [33-36], the hydrolytic activity of phospholipase A, to-
wards DPPnC may be also used for the kinetic resolution of racemic forms of this type
of phosphonolipids.

2.2.3. Hydrolysis Catalyzed by Phospholipases D

Hydrolysis of the ester bond linking the choline with the residue of phosphatidic
acid (in DPPC and soybean PC) and phosphonic acid (in DPPnC) (Scheme 4) was carried
out using three phospholipases D according to the modified protocols described in the
literature for individual enzymes. For the experiments with PLD from Streptococcus sp. and
PLD from white cabbage, acetate buffer (pH = 5.6)/ethyl acetate system were applied [37],
hydrolysis catalyzed by PLD from Streptomyces chromofuscus was carried out in Tris-HCI
buffer (pH = 8.0)/methylene chloride system [38].

o [o]
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R2 o o) CHs R2 o o + HO—CH>—CH3 N\ CH3

[ / PLD | CHs
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o CH3 o

PC: n=1, Ry,R, - mixtures of fatty acid residues
DPPC: n=1, Ry,R, - C;Hz;
DPPNC: n=0, R,R, - C;sH3;

Scheme 4. Hydrolytic cleavage of choline from DPPnC, DPPC and soybean PC.

In the case of PLD-catalyzed reactions, the effect of the presence of C-P bond instead
of C-O in the linkage between glycerol and phosphoric acid was the most significant.
Regardless of the enzyme used, the efficiency of hydrolysis and the reaction rate were
clearly lower for DPPnC than for DPPC and natural PC. After 48 h, the conversion of
DPPnC was only 19% and 20% in the reactions catalyzed by PLD from Streptococcus sp. and
PLD from white cabbage, respectively, and was only slightly higher (23%) for the reaction
with PLD from S. chromofuscus (Figure 4)

In the reaction catalyzed by PLD from Streptococcus sp., soybean PC was hydrolyzed
with highest rate, followed by DPPC and DPPnC. After 4 h of reaction, 36% of soybean
PC, 39% of DPPC and 84% of DPPnC were determined, and the composition of reaction
mixtures did not change significantly until 48 h. During hydrolysis mediated by PLD from
S. chromofuscus, in the first 2 h, the highest reaction rate was observed for DPPC, but after
that time, the most efficiently hydrolyzed substrate was soybean PC. As a result, after
48 h, approximately 32% of both phospholipids were observed. The highest progress of
DPPnC hydrolysis was noticed after the first 4 h of reaction (82% of the substrate in the
reaction mixture), whereas for the next 44 h, it decreased to only a small extent (77% after
48 h). The lowest hydrolysis rates and the lowest differences between the hydrolysis of
substrates were observed for reactions with PLD from white cabbage. In this case, DPPC
and soybean PC were hydrolyzed with comparable reaction rates. Hydrolysis of DPPnC
stopped after 8 h and 80% of unreacted substrate was observed in reaction mixtures until
48 h of the process.

To the best of our knowledge, the enzymatic hydrolysis of phosphonolipids with a C-P
bond on a glycerol side have not been studied so far. Enzymatic degradation of phosphonic
acid analogues of 1,2-dimirystoyl-sn-glycero-3-phosphocholine and 1,2-dimirystoyl-sn-
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glycero-phosphoethanolamine, possessing the C-P bond on the polar side of the molecule,
was investigated by Baer and Stanacev [39]. They found that phospholipase C from Clostrid-
ium welchii hydrolyzes dimirystoyl L-glyceryl-(2-trimethylammoniumethyl)phosphonate
with formation of 1,2-dimirystoyl-sn-glycerol, but under the same experimental condi-
tions (26 °C, Tris-HC] with mixture diethyl ether/ethanol 98:2, v/v, calcium chloride), this
enzyme does not react with dimirystoyl L-glyceryl-(2-aminoethyl)phosphonate.

3. Materials and Methods
3.1. Solvents and Reagents

Organic solvents (analytical grade) were purchased from Avantor Performance Materi-
als (Gliwice, Poland). Solvents used for liquid chromatography (purity > 99%) were obtained
from Merck (Darmstadt, Germany). sn-Glycero-3-phosphocholine (GPC, purity > 99%) was
purchased from Bachem (Bubendorf, Switzerland), 4-(N,N-dimethylamino)pyridine (DMAP,
purity > 99%), N,N’-dicyclohexylcarbodiimide (DCC, purity 99%), palmitic acid (purity
> 98%), dibutyltin(IV) oxide (DBTO, purity 98%), triethylamine (TEA, purity > 99.5%),
dioctyl sulfosuccinate sodium salt (AOT, purity > 97%), pyridine (purity 99.8%), Trizma®
hydrochloride (purity > 99%), Trizma®base (purity > 99.9%) and Dowex® 50W X8 hydro-
gen form were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Dowex® 50WX8 (pyridinium form) resin was prepared by washing DOWEX 50W X8
(H* form) with 50% aqueous pyridine overnight. After this time, resin was washed with
water, 50% aqueous MeOH, MeOH and then mixture CHCl3:MeOH:pyridine:H,O (3:3:1:1,
v/v/v/v)[40].

3.2. Buffers

Tris-HCl buffer (0.1 M) with Ca* ions was prepared by dissolving Trizma® hydrochlo-
ride (0.123 g), Trizma®base (0.513 g) and CaCl, x 2H,0 (55.12 g) in distilled water (400 mL),
adjusting pH at 40 °C to 8.0 or 8.5 and adding water to the final volume of 500 mL.

Acetic buffer (pH = 5.6, 0.1 M) with Ca?* ions was prepared by dissolving glacial
acetic acid (28.6 mL) and CaCl, x 2H,0O (5.88 g) in distilled water (400 mL), adjusting pH
to 5.6 and adding water to the final volume of 500 mL.

3.3. Enzymes

Lecitase® Ultra (10,000 U/mL) was a gift from A/S (Bagsvaerd, Denmark). Lipase B
from Candida antarctica (Novozym 435) immobilized on acrylic resin (>5,000 U/g), lipase
from Mucor miehei (Lipozyme®) immobilized on macroporous ion exchange resin (>30 U/g),
phospholipase A, (PLAj) from porcine pancreas (10,000 U/mL), phospholipase A, (PLA))
from bovine pancreas (20 U/mL), phospholipase A (PLA;) from bee venom (Apis mellifera)
(600-2400 U/mg), lyophilized phospholipase D (PLD) from Streptococcus sp., (type VII,
>150 U/mg), phospholipase D (PLD) from Streptomyces chromofuscus (>50,000 U/mL) and
lyophilized phospholipase D (PLD) from white cabbage (>100 U/mL) were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

3.4. Enzyme Solutions

Solutions of PLA; from bee venom and PLD from Streptomyces chromofuscus were
obtained by dissolving 1 mg or 0.1 mg of commercial enzyme, respectively, in 1 mL of the
mixture of 0.1 M Tris-HCl buffer (pH = 8.5 in the case of PLA; or pH = 8.0 in the case of
PLD) and glycerol (90:10, v/v) containing 0.1% of Triton X-100 (w/v).

Solutions of PLD from Streptococcus sp. and PLD from white cabbage were obtained
by dissolving 0.1 mg or 1 mg of commercial enzyme, respectively, in 1 mL of the mixture
of 0.1 M acetate buffer (pH = 5.6) and glycerol (90:10, v/v) containing 0.1% of Triton
X-100 (w/v).
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3.5. Substrates and Products of Enzymatic Hydrolysis

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was synthesized according to
the standard procedure presented by Smuga et al. [38]. The details of synthesis are given
in Supplementary Materials.

Phosphatidylcholine from soybean (soybean PC, purity 98%) was purchased from
Lipoid AG (Steinhausen, Switzerland).

(R)-2,3-Dipalmitoyloxypropylphosphonocholine (DPPnC) was synthesized as de-
scribed in Sections 3.7 and 3.8.

1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (1-palmitoyl LPC) and 1-hydroxy-
2-palmitoyl-sn-glycero-3-phosphocholine (2-palmitoyl LPC) were prepared according to
the procedures described earlier by Kietbowicz et al. [30]. The details of synthesis are given
in Supplementary Materials.

Phosphatidic acid monosodium salt (PA-Na, purity >98% TLC) was purchased from
Sigma-Aldrich (St. Louis, MO, USA).

3.6. Analytical Methods

Thin-layer chromatography (TLC) analyses were carried out on silica gel-coated alu-
minium plates (DC-Alufolien Kieselgel 60 F254) purchased from Merck. The compounds
were detected using the 0.05% primuline solution (acetone:water, 8:2, v/v) and ultraviolet
(UV) lamp (A = 365 nm) or using 1% Ce(SO4)2, 2% H3[P(M03010)4] in 10% HySO4 solution
and gentle heating. Compounds were purified by column chromatography on silica gel
(Kieselgel 60, 0.040-0.063 mm, 230-400 mesh, Merck) with various solvent systems.

High-Performance Liquid Chromatography (HPLC) was carried out on an Ultimate
3000 Dionex chromatograph (Olten, Switzerland) quipped with a DGP-3600A dual-pump
fluid control module, TCC-3200 thermostat column compartment and WPS-3000 auto-
sampler. CoronaTM Charged Aerosol Detector (CAD) from ESA Biosciences (Chelmsford,
MA, USA) was used with the following parameters: acquisition range 100 pA, digital filter
set to none, N pressure 35 psi. The system and data acquisition were carried out using
the Chromeleon 6.80 software (Dionex Corporation, Olten, Switzerland). Detailed analysis
conditions for particular compounds are given in Supplementary Materials.

Gas chromatography (GC) was carried out on an Agilent 6890N (Agilent, Santa Clara,
CA, USA) apparatus equipped with an autosampler and flame ionization detector (FID)
with hydrogen as a carrier gas. The system and data acquisition were carried out using GC
ChemStation Version A.10.02. Detailed analysis conditions for compound 3 are given in
Supplementary Materials.

Nuclear magnetic resonance (‘HNMR, 13C NMR, 3'P NMR) spectra were recorded
on a Bruker Avance II 600 MHz (Rheinstetten, Germany) for CDCl; or CDCl3:CD3;OD (2:1,
v/v) solutions. Chemical shifts were referenced to the signals of residual solvent (6H = 7.26,
dC =77.00) or to the internal standard of 0.0552 M triphenylphosphate (5P = -17.02).

3.7. Enantioselective Hydrolysis of rac Diethyl 2,3-Dipalmitoyloxypropylphosphonate (1)

Mixture of AOT (0.028 g, 0.63 umol) in 2 mL of isooctane was stirred at 40 °C for
30 min. Then, 160 pL of 0.1 M Tris-HCI (pH = 8.5) containing CaCl, (126 pmol) and
phospholipase A, (PLA;) from porcine pancreas (168 pL, 1675 U) was added. In parallel,
racemic phosphonate 1 (0.25 g, 0.36 mmol) in 2 mL of isooctane was heated at 40 °C
with intensive stirring (750 rpm) for 30 min. The reaction was started by the addition of
phosphonate 1 solution to the mixture of AOT and PLA;. After 48 h, the enzyme was
separated by filtration through Celite® 545, followed by washing the bed with methanol.
Crude product was purified by column chromatography (hexane/ethyl acetate, 1:1). Its
physical and spectral data are given below.

(R)- Diethyl 2-hydroxy-3-palmitoyloxypropylphosphonate (2)

Yield 22%, white powder, TLC: R¢ = 0.22 (hexane/ ethyl acetate, 1:2); HPLC: R¢ = 7.51 min,
[« = +1.6 (c = 2.9, hexane), ee 87%; 'H NMR (600 MHz, CDCl;: CD;0D, 2:1) &: 0.85 (t,
J =7.0 Hz, 3H, CH;3-16"), 1.20-1.31 (m, 24H, CH-4'-CH,-15), 1.31 (t,] =7.1 Hz, 6H, 2 x -
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OCH,CH3), 1.56-1.67 (m, 2H, CH,-3’), 1.99 and 2.05 (two m, 2H, CH,-1), 2.35 (t, ] = 7.6 Hz,
2H, CH,-2"), 3.35 (s, 1H, -OH), 4.00-4.27 (m, 7H, 2 x OCH,CH3;, CH,-3, H-2); 13C NMR
(151 MHz, CDCl3: CD3;0D, 2:1) 6: 13.24 (C-16"), 15.46 (d, Jc.p = 6.2 Hz, 2 x -OCH,CHy3),
22.08 and 28.55-31.35 (C-4'~C-15" and C-1), 24.30 (C-3"), 33.48 (C-2"), 61.58 (d, Jc.p = 6.6 Hz,
one of -OCH,CHj3), 61.85 (d, Jc.p = 6.4 Hz, one of -OCH,CH3), 63.92 (d, Jc.p = 3.1 Hz,
C-3),67.29 (d, Jc.p = 14.3 Hz, C-2); 173.78 (C-1’); 3'P NMR (243 MHz, CDCl;: CD;0D, 2:1)
5:29.38.

3.8. Synthesis of (R)-Diethyl 2,3-Dihydroxypropylphosphonate (3)

(R)-Diethyl 2-hydroxy-3-palmitoyloxypropylphosphonate (2) (85 mg, 0.19 mmol) in
3.5 mL of 0.5 M NaOH methanolic solution and 0.35 mL of water was heated under reflux
for 1.5 h. Then, the mixture was acidified with 0.1 M HCI to pH = 4, and methanol was
evaporated in vacuo. The concentrated mixture was washed with 5 mL of hexane, and the
product was extracted with ethyl acetate (3 x 5 mL). Pooled organic layers were dried with
anhydrous MgSQy, filtered and the solvent was evaporated. Pure product was isolated
by column chromatography (CHCl3/MeOH, 15:1) to afford pure phosphonate 3 with the
following data:

Yield 34% (13.7 mg), colourless liquid, R¢ = 0.18 (CHCl3: MeOH, 15:1), GC: Rt = 6.29 min;
[oc]%o = —8.7 (c = 0.4, EtOH), ee 87%, (lit. [23] [zx]%)S = —12.2 (c = 4.1, EtOH, for enantiomeri-
cally pure (R)-3). Spectroscopic data were in accordance with literature [16].

3.9. Synthesis of (R)-Diethyl 2,3-Dipalmitoyloxypropylphosphonate [(R)-1)]

N,N’-dicyclohexylcarbodiimide (DCC, 289 mg, 1.40 mmol) was dissolved in dry
CH)Cl, (2 mL) and added to a mixture of phosphonate (R)-2 (400 mg, 0.89 mmol), 4-
(dimethylamino)pyridine (DMAP) (81.4 mg, 0.67 mmol) and palmitic acid (341.9 mg,
1.33 mmol) in dry CHCl; (7 mL). The suspension was stirred at room temperature under
nitrogen for 48 h. After this time, the precipitate was removed by filtration, while the
crude reaction mixture was dissolved in CHCl3:MeOH:H,O (5:4:1, v/v/v), followed by the
addition of Dowex 50 WX 8 ion exchange resin in H+ form to remove DMAP. After 30 min
of gentle stirring, the resin was removed by filtration and the solvent was evaporated under
reduced pressure. The crude product (R)-1 was purified by column chromatography (silica
gel, hexane: ethyl acetate, 2:1). Its physical data are given below:

Yield 94% (576 mg), white powder, R¢ = 0.35 (hexane: ethyl acetate, 2:1, v/v), HPLC:
Rt =9.90 min, [oc]%) = —0.58 (c = 0.5, hexane), ee 87%, spectroscopic data were in accordance
with literature report [16].

3.10. Synthesis of (R)-2,3-Dipalmitoyloxypropylphosphonocholine (DPPnC, 4)

To dry (R)-diethyl 2,3-dipalmitoyloxypropylphosphonate [(R)-1)] (550 mg, 0.80 mmol)
dissolved in dry CH,Cl, (3.15 mL), trimethylsilane bromide (1.05 mL, 8.0 mmol) was added
under nitrogen with continuous stirring. The reaction mixture was stirred for 4 h and con-
centrated by evaporating the solvent under reduced pressure. Aqueous MeOH (95%, 20 mL)
was added to the residue and stirred at room temperature for 1 h. After re-evaporation
under reduced pressure, the residue was dissolved in 1 mL of CHCl3:MeOH:H,O mix-
ture (5:4:1, v/v/v) and eluted through a column containing 5 mL of Dowex 50 WX 8 ion
exchange resin in proton form (H*). After evaporation of the solvent, the residue was
suspended in 5 mL of CHCl3:MeOH:pyridine:H,O mixture (3:3:1:1, v/v/v/v), applied to
a column filled with ion exchange resin containing Dowex®50WX8 salt pyridinium and
eluted with 10 mL of CHCl3:MeOH:pyridine:H,O mixture. The solvents were then evapo-
rated several times under reduced pressure using alternately Folch solvent (CHCI;:MeOH,
2:1, v/v) and anhydrous benzene. The residue was dissolved under nitrogen in 25 mL
of dried pyridine; then, 384 mg (1.41 mmol) of choline tosylate and 290 mg (1.40 mmol)
of DCC were added. After 24 h of reaction, 142 mg (0.69 mmol) of DCC were added,
and stirring was continued for another 24 h. After this time, the solvent was evaporated
under reduced pressure, and the crude product was purified by column chromatography
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(silica gel, CHCl3:MeOH:H;0, 65:25:3, v/v/v) to give pure DPPnC (4) with the following
physical data:

Yield 51% (293 mg), white powder, R¢ = 0.41 (CHCl;:MeOH:H,O, 65:25:2), HPLC:
R¢ = 11.16 min, [«]% = + 8.1 (c = 0.4, CHCl3), ee 87%, spectroscopic data were in accordance
with literature report [16].

3.11. Enzymatic Hydrolysis of DPPC, DPPnC and Soybean PC

Reactions were carried out for 48 h in the heating block using 1.5 mL vials. After
several time intervals, 8 puL of reaction mixture were withdrawn, filtered through the
diatomaceous earth (CELITE® 545) and rinsed with methanol. The filtrates were transferred
to new vials and analyzed by HPLC. Experiments for particular substrates and enzymes
were performed in triplicates. For each experiment, a blank test (without enzyme) was
performed, confirming the stability of the substrates in the reaction medium throughout
the experiment.

3.11.1. Reactions Catalyzed by Lecitase® Ultra

Substrate (20 nmol) was dissolved in 0.6 mL of hexane followed by the addition 2.0 pL
(20 U) of Lecitase® Ultra and 15 uL of water. The reaction mixtures were stirred at 50 °C.

3.11.2. Reactions Catalyzed by Lipases

Substrate (20 nmol) was dissolved in 0.6 mL of 95% ethanol and 10 mg (20 U) of
Novozym 435 or 150 mg (4.5 U) of Lipozyme® were added, respectively. The reaction
mixtures were stirred at 30 °C.

3.11.3. Reactions Catalyzed by Phospholipases A,

Solutions of substrate (20 nmol) in 0.45 mL of isooctane and AOT (1.5 mg, 3 pmol) in
0.45 mL of isooctane were incubated in separate vials at 40 °C for 30 min. After that time,
9 uL of 0.1 M Tris-HCl buffer (pH = 8.5) containing 0.75 M CaCl,, 9 uL (91 U) of PLA; from
porcine pancreas and, finally, the substrate solution were added to the AOT solution. The
reaction mixtures were stirred at 40 °C.

A similar procedure was applied for reactions catalyzed by PLA; bovine pancreas
and PLA; from bee venom using 4.5 mg (90 U) or 0.1 mg (60 U), respectively. In the case of
PLA, from bee venom, the reaction mixtures were carried out at 25 °C.

3.11.4. Reactions Catalyzed by PLD from Streptomyces chromofuscus

Substrate (20 nmol) was dissolved in 0.3 mL of 200 mM Tris-HCl (pH = 8.0) with
80 mM CaCl,. After obtaining a homogeneous suspension, 0.3 mL of CH,Cl, and PLD
solution (20 uL, 10 U) were added. The reaction mixtures were stirred at 35 °C.

3.11.5. Reactions Catalyzed by PLD from Streptococcus sp. and PLD from White Cabbage

Substrate (20 nmol) was dissolved in 0.3 mL of 0.1 M acetate buffer (pH = 5.6) contain-
ing 80 mM CaCl,. After a homogeneous suspension was obtained, 0.3 mL of ethyl acetate
and 67.5 uL (10 U) of PLD from Streptococcus sp. solution or 100 pL (10 U) of PLD from
white cabbage solution were added. The reaction mixtures were stirred at 30 °C.

4. Conclusions

The results showed that the presence of C-P bond between glycerol and phosphoric
acid residue in DPPnC increases the rate of enzymatic hydrolysis or ethanolysis of ester
bonds at the sn-1 and sn-2 position. The opposite effect was observed in the PLD-catalyzed
hydrolysis of the ester bond between phosphonate acid and choline. The most significant
changes in the hydrolysis rates were observed for reaction with PLD from Streptococcus sp.
and PLD from S. chromofuscus. In these cases, DPPnC was hydrolyzed approximately two
times slower than DPPC and soybean PC.
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The evaluation of the susceptibility of model compound DPPnC towards selected
enzymes showed a potential possibility of using phosphonolipids as carriers of bioactive
molecules that, instead of choline, can be bounded with diacylpropylphosphonic acid
(DPPnA). A slow rate of hydrolysis of the ester linkage between phosphonic acid and
choline, caused by the presence of the C-P bond in the structure of DPPnC-like compounds,
may result in the prolonged release of the active molecule. It may result in reducing its
necessary dose and limit its toxicity, which gives perspective to designing a new class of
phosphonolipid prodrugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/1/129/s1. Conditions of HPLC analysis; 2. Conditions of GC analysis; 3. Synthesis of 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC); 4. Synthesis of 1-palmitoyl-2-hydroxy-sn-glycero-
3-phosphocholine (1-palmitoyl LPC) and 1-hydroxy-2-palmitoyl-sn-glycero-3-phosphocholine (2-
palmitoyl LPC); Table S1: Concentration of substrates during hydrolysis or ethanolysis of soybean
PC, DPPC and (R)-DPPnC in sn-1 position catalyzed by lipases and Lecitase® Ultra; Table S2:
Concentration of substrates during hydrolysis of soybean PC, DPPC and (R)-DPPnC in sn-2 position
by phospholipases A;; Table S3: Concentration of substrates during hydrolysis of soybean PC, DPPC
and (R)-DPPnC by phospholipases D.
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