A smart heterogeneous catalyst for efficient, chemo- and stereoselective hydrogenation of 3-hexyn-1-ol

Stefano Paganelli ^{1,*}, Alessio Angi ¹, Nicolò Pajer¹ and Oreste Piccolo ^{2,*}

Detailed results obtained during the course of this study.

Table 1. Hydrogenation of (I) catalysed by Cat 1. Preliminary investigation.								
Run	(I) Conv.	(Z)-(II)	(E)-(II)	(III)	{(Z)-(II)/			
{t (min)}	(%) ^a	(%) ^a	(%) ^a	(%) ^a	$[(Z)-(II) + (E)-(II)]\}$ (%)			
1 {10}	6	6	-	-	>99			
1 {30}	29	27	1	1	96.4			
1 {60}	64	59	3	2	95.2			
1 {90}	>99	64	19.4	15.6	76.7			

Substrate (I) = 138.4 mg (1.41 mmol); (I)/Pd (mol) = 500; $pH_2 = 0.1$ MPa; Solvent = i-propanol (10 mL); T = 25°C. ^aArea% determined by gc analysis.

Table 2. Hydrogenation of (I) catalysed by a commercial catalyst.^a

		, 0			5
Run	(I) Conv.	(Z)-(II)	(E)-(II)	(III)	{(Z)-(II)/
{t (min)}	(%) ^b	(%) ^b	(%) ^b	(%) ^b	$[(Z)-(II) + (E)-(II)]\}$ (%)
1 {120}	5.4	5.4	-	-	>99
1 {150}	11.3	11.3	-	-	>99
1 {180}	15.1	15.1	-	-	>99
1 {210}	20.7	19.5	0.8	0.4	96.1
1°	>99	-	-	>99	-

Substrate (I) = 138.4 mg (1.41 mmol); (I)/Pd (mol) = 500; pH₂ = 0.1 MPa; Solvent = i-propanol (10 mL); T = 25°C. ^a BASF (catalyst code 543136) 0.6% Pd/C; ^b Area% determined by gc analysis. ^c Control after 24h

Table 3. Hydrogenation of (I) catalysed by Cat 1, in presence of additives.

		2					
Run	Additive	(I)Conv.	(Z) - (\mathbf{II})	(E)-(II)	(III)	{(Z)-(II)/	
{t (min)}		(%) ^a	(%) ^a	(%) ^a	(%) ^a	$[(Z)-(II) + (E)-(II)]\}$ (%)	
1 {120}	NH4Cl/CH3COONa·3H2Ob	6.6	6.6	-	-	>99	
1 {150}	NH4Cl/CH3COONa·3H2Ob	38.1	36.9	1.2	-	96.9	
1 {180}	NH4Cl/CH3COONa·3H2Ob	89.3	86.5	2.6	-	97.1	
1 {210}	NH4Cl/CH3COONa·3H2Ob	>99	93.1	5.2	1.7	94.7	
2 {90}	NH ₄ Cl ^c	45.5	40.3	3	2.2	93.1	
2 {120}	NH4Clc	67.9	60	4.3	3.6	93.3	
2 {150}	NH4Clc	88.7	76.3	7.1	5.3	91.5	
2 {180}	NH4Clc	>99	78.2	12.6	9.2	86.1	
3 {30}	CH ₃ COONa·3H ₂ O ^d	13.6	13.6	-	-	>99	
3 {60}	CH3COONa·3H2Od	60.1	60.1	-	-	>99	
3 {90}	CH ₃ COONa·3H ₂ O ^d	>99	86.8	9.7	3.5	89.9	
3 {120}	CH3COONa·3H2Od	>99	66.4	19.7	13.9	77.1	

Substrate (I) = 138.4 mg (1.41 mmol); (I)/Pd (mol) = 500; pH₂ = 0.1 MPa; Solvent =i-propanol (10 mL); T = 25°C. ^aArea% determined by gc analysis. ^b 75 mg of NH₄Cl and 192 mg of CH₃COONa·3H₂O; ^c75 mg of NH₄Cl; ^d 192 mg of CH₃COONa·3H₂O

Table 4. Hydrogenation of (I) catalysed by Cat 1 in CPME and in i-propanol

	, 0			5			1
Run	Solvent	Т	(I) Conv.	(Z)-(II)	(E)-(II)	(III)	{(Z)-(II)/
{t (min)}			(%) ^a	(%) ^a	(%) ^a	(%) ^a	$[(Z)-(II) + (E)-(II)]\}$ (%)
1 {210}	CPME	25°C	>99	85.4	13.6	1	86.3
2 {150}	i-PrOH	60°C	94.3	89.9	3.4	1	96.4
2 {180}	i-PrOH	60°C	>99	76	18.5	5.5	80.4

Substrate (I) = 138.4 mg (1.41 mmol); (I)/Pd (mol) = 2000; $pH_2 = 0.1$ MPa; Solvent = 10 mL. ^aArea% determined by gc analysis.

Table 5. Hydrogenation of (I) catalysed by Cat 1*.

Run	(I)/Pd	(I) Conv.	(Z)-(II)	(E)-(II)	(III)	{(Z)-(II)/	
{t (min)}	(mol)	(%) ^a	(%) ^a	(%) ^a	(%) ^a	$[(Z)-(II) + (E)-(II)]\}$ (%)	
1 {60}	2000	>99	86.3	13.7	-	86.3	
2 {120}	6000	73.2	71.3	1.9	-	97.4	
2 {150}	6000	>99	92.4	7.6	-	92.4	
3 {120}	6000	77.2	74.8	2.4	-	96.9	
4 {120}	6000ь	56.4	56.4	-	-	>99	
5 {120}	6000ь	46.1	44.7	1.4	-	97.0	
6 {210}	10000	79.1	79.1	-	-	>99	

Substrate (I) = 332.1 mg (3.38 mmol); pH₂ = 0.1 MPa; Solvent = i-propanol (10 mL); T = 60°C. ^aArea% determined by gc analysis. ^b Recycling the catalyst of the previous run

Table 6. Hydrogenation of (I) catalysed by Cat 2.

Run	(I) Conv.	(Z)-(II)	(E)-(II)	(III)	{(Z)-(II)/
{t (min)}	(%) ^a	(%) ^a	(%) ^a	(%) ^a	$[(Z)-(II) + (E)-(II)]\}$ (%)
1 {120}	37.9	37.9	-	-	>99
1 {150}	40.8	40.8	-	-	>99
1 {180}	57.0	57.0	-	-	>99
1 {210}	66.9	65.0	1.9	-	97.2

Substrate (I) = 172.7mg (1.76 mmol); (I)/ Cu,Pd (mol) = 500; $pH_2 = 0.1$ MPa; Solvent = i-propanol (10 mL); T = 40°C. ^aArea% determined by gc analysis.

SEM images of 0.25% Pd/Al₂O₃ (Cat 1 and Cat*1) prepared during the course of this study.

Figure 1. SEM of Cat1 0.25%Pd/Al₂O₃ (1000 magnifications)

Figure 2. SEM of Cat1 0.25%Pd/Al₂O₃ (1000 magnifications)

10:51 H L D9.2 x10k 10 um

Figure 3. SEM of Cat1 0.25%Pd/Al₂O₃ (1000 magnifications)

Figure 4. SEM of Cat1* 0.25%Pd/Al₂O₃ (100000 magnifications)

Figure 5. SEM of Cat1* 0.25%Pd/Al₂O₃ (250000 magnifications)

The preparation of these two catalysts differs only in the order of addition of alumina: in the case of Cat 1, it was introduced as a solid into the reaction mixture containing the colloidal reduced metal in cyclopentyl methyl ether (CPME) while, for Cat 1*, the reaction mixture containing the colloidal reduced metal was added to a suspension of alumina in CPME. As it is possible to see, in the Cat 1* sample the average metal particle sizes are significantly smaller (<<100 nm) if compared with those of Cat 1 (where bigger metal particles up to 200nm are present) and a better distribution occurs.