Catalytic Applications of Clay Minerals and Hydrotalcites
1. Introduction
2. Cationic Clays
3. Anionic Clays
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaccari, A. Preparation and catalytic properties of cationic and anionic clays. Catal. Today 1998, 41, 53–71. [Google Scholar] [CrossRef]
- Vaccari, A. Clays and catalysis: A promising future. Appl. Clay Sci. 1999, 14, 161–198. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and Mineralogy of Clay Minerals; Elsevier: Amsterdam, The Netherlands, 2006; pp. 19–86. [Google Scholar]
- Hensen, E.J.M.; Poduval, D.G.; Lighart, D.A.J.; van Veen, J.A.R.; Rigutto, M.S. Quantification of strong Brønsted acid sites in aluminosilicates. J. Phys. Chem. C 2010, 114, 8363–8374. [Google Scholar] [CrossRef]
- Sanchís, R.; Cecilia, J.A.; Soriano, M.D.; Vázquez, M.I.; Dejoz, A.; López-Nieto, J.M.; Rodríguez-Castellón, E.; Solsona, B. Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chem. Eng. J. 2018, 334, 1159–1168. [Google Scholar] [CrossRef]
- Soma, Y.; Soma, M.; Harada, I. The reaction of aromatic molecules in the interlayer of transition-metal ion-exchanged montmorillonite studied by resonance Raman spectroscopy. J. Phys. Chem. 1984, 88, 3034–3038. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Michot, L.J. Determination of surface areas and textural properties of clay minerals. Develop. Clay Sci. 2018, 9, 23–47. [Google Scholar]
- Osthaus, B.B. Chemical determination of tetrahedral ions in nontronite and montmorillonite. Clays Clay Miner. 1953, 2, 404–417. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Pardo, L.; Pozo, M.; Bellido, E.; Franco, F. Microwave-assisted acid activation of clays composed of 2:1 clay minerals: A comparative study. Minerals 2018, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Varna, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron 2002, 58, 1235–1255. [Google Scholar] [CrossRef]
- Abeysinghe, S.; Unruh, D.K.; Forbes, T.Z. Crystallization of Keggin-type polyaluminum species by supramolecular interactions with disulfonate anions. Cryst. Growth Des. 2012, 12, 2044–2051. [Google Scholar] [CrossRef]
- Gil, A.; Gandía, L.M.; Vicente, M.A. Recent advances in the synthesis and catalytic applications of pillared clays. Catal Rev. 2000, 42, 145–212. [Google Scholar] [CrossRef]
- Galarneau, A.; Barodawalla, A.; Pinnavaia, T. Porous clay heterostructures formed by gallery-templated synthesis. Nature 1995, 374, 529–531. [Google Scholar] [CrossRef]
- Cecilia, J.A.; García-Sancho, C.; Vilarrasa-García, E.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E. Synthesis, characterization, uses and applications of porous clays heterostructures: A review. Chem. Rec. 2018, 18, 1–21. [Google Scholar]
- Chmielarz, L.; Piwowarska, Z.; Kustrowski, P.; Wegrzyn, A.; Gil, B.; Kowalczyk, A.; Dudek, B.; Dziembaj, R.; Michalik, M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Appl. Clay Sci. 2011, 53, 164–173. [Google Scholar] [CrossRef]
- Cecilia, J.A.; García-Sancho, C.; Franco, F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Micropor. Mesopor. Mater. 2013, 176, 95–102. [Google Scholar] [CrossRef]
- Xu, Z.P.; Zhang, J.; Adebajo, M.O.; Zhang, H.; Zhou, C. Catalytic applications of layered double hydroxides and derivatives. Appl. Clay Sci. 2011, 53, 139–150. [Google Scholar] [CrossRef]
- Cavani, F.; Trofiró, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecilia, J.A.; Jiménez-Gómez, C.P. Catalytic Applications of Clay Minerals and Hydrotalcites. Catalysts 2021, 11, 68. https://doi.org/10.3390/catal11010068
Cecilia JA, Jiménez-Gómez CP. Catalytic Applications of Clay Minerals and Hydrotalcites. Catalysts. 2021; 11(1):68. https://doi.org/10.3390/catal11010068
Chicago/Turabian StyleCecilia, Juan Antonio, and Carmen Pilar Jiménez-Gómez. 2021. "Catalytic Applications of Clay Minerals and Hydrotalcites" Catalysts 11, no. 1: 68. https://doi.org/10.3390/catal11010068
APA StyleCecilia, J. A., & Jiménez-Gómez, C. P. (2021). Catalytic Applications of Clay Minerals and Hydrotalcites. Catalysts, 11(1), 68. https://doi.org/10.3390/catal11010068