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Abstract: The conversion of solid waste into energy through combustion is sustainable and economi-
cal. This study aims to comprehensively evaluate and quantify the co-combustion characteristics,
synergistic catalysis, and gaseous pollutant emission patterns of sewage sludge (SS) and coal gasi-
fication fine slag residual carbon (RC) as well as their blends through thermogravimetry coupled
with mass spectrometry (TG-MS). The results showed that the co-combustion of SS and RC can not
only improve the ignition and burnout property but also maintain the combustion stability and
comprehensive combustion performance at a better level. The kinetic analysis results showed that a
first-order chemical reaction and three-dimensional diffusion are the reaction mechanisms during
the co-combustion of SS and RC. The synergistic catalysis between SS and RC can well explain the
changes in activation energy and reaction mechanism. Furthermore, the blending ratio of SS is
recommended to be maintained at 40% because of the lowest activation energy (Ea = 81.6 kJ/mol)
and the strongest synergistic effect (Xi = 0.36). The emission of gaseous pollutants is corresponding
to the primary combustion stages of SS, RC, and their blends. In co-combustion, the NH3, HCN,
NOx, and SO2 emissions gradually rise with the increase of SS proportion in the blends due to the
high content of organic compounds in SS.

Keywords: sewage sludge; coal gasification fine slag; co-combustion; kinetics; synergistic catalysis

1. Introduction

Sewage sludge is the by-product of urban sewage treatment plants [1]. In China, about
30 million tons of sewage sludge (80% moisture content) is produced every year, and this
is still growing [2]. Sewage sludge is considered to be a kind of solid waste, which contains
numerous pollutants, such as bacteria, viruses, dioxins, and heavy metals. [3,4]. Therefore,
a simple landfill or dumping of sewage sludge will occupy precious land resources and
bring potential harm to the ecological environment [5,6]. However, sludge incineration can
not only destroy bacteria, viruses, and toxic organic matter to minimize environmental
pollution but also recover the energy in sewage sludge [7].

Sewage sludge has the characteristics of high volatile content, high ash content, and
low calorific value, which has an adverse effect on the combustion of sewage sludge,
and therefore the combustion efficiency and stability of sewage sludge are poor. The
co-combustion of sludge and other solid fuels is a feasible solution that can effectively
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improve the combustion performance [8]. To date, there have been many research reports
regarding the co-combustion of sludge and other solid fuels by thermogravimetric analysis
(TG) [9–13]. Zhao et al. [9] investigated the co-combustion characteristics of low-rank coal
semicoke and oil sludge by the TG-FTIR method. They found that the blending of oil
sludge on low-rank coal semicoke could effectively improve the ignition, burnout, and
comprehensive combustion performance of blends.

Wang et al. [10] studied the co-combustion characteristics and kinetics of sewage
sludge and wheat straw by thermogravimetric analysis. The results showed that blending
wheat straw in sewage sludge improved the combustion performance due to the strong
synergetic interaction. Chai et al. [11] found that adding waste tea into textile dyeing
sludge led to higher reactivity, and the average apparent activation energy reached its
minimum with 40% waste tea. The co-combustion of sludge and other solid fuels in a
suitable burner to produce energy is a widely used disposal method.

Coal gasification is one of the core technologies for the clean and efficient utilization of
coal, as well as the synthesis of coal-based chemicals and liquid fuels [14,15]. Gasification
fine slag is the industrial solid waste from the gasification process [16]. With the rapid
development of entrained-flow gasification technology, millions of tons of gasification fine
slag are produced in China each year [17,18]. Due to the incomplete gasification reaction of
feed coal with oxygen and water vapor in the entrained-flow gasifier, approximately 20%
of the residual carbon is retained in gasification fine slag [19].

The residue carbon in the gasification fine slag can be enriched by physical methods
and reused as carbon-based fuel. In recent work, Guo et al. [17] enriched the residue carbon
in the coal gasification fine slag through the froth flotation method. The fixed carbon
content at the dry basis of the obtained residue carbon reached 44.42%, and the higher
heating value was 17.70 MJ/kg. Similarly, Guo et al. [20] also recycled residual carbon
from gasification fine slag, and then it was added into bio-oil to prepare the residual carbon
bio-oil slurry fuel.

It has been proven that the enriched residual carbon with low volatile content and
high fixed carbon content has combustion properties comparable to low-quality coal, which
is opposite to the fuel characteristics of sewage sludge [21]. Thus, the co-combustion of
sewage sludge and gasification fine slag residual carbon may be a complementary and
effective way to counteract the negative characteristic of individual fuel [11]. Many studies
have illustrated that this promotion effect during the co-combustion process is due to the
synergistic catalysis between the two fuels [10,17,22].

The alkali metal compounds in the fuel are regarded as combustion catalysts [11]. The
research results of Wang et al. [22] showed that the alkali substances in biomass ash can
promote the combustion of solid carbon in coal. In addition, Huang et al. [23] found that
the addition of Na2CO3 had a significant catalytic effect on the co-combustion of sewage
sludge and water hyacinth. It is important to understand the promoting effect of synergistic
catalysis on the co-combustion process of fuels.

The co-combustion process may produce a variety of gaseous pollutants due to the
high volatile content of the sludge [2]. Lin et al. [24] found that blending paper sludge with
oil-palm solid wastes can reduce pollutant gas emissions (SO2, NO, and CO2) during the
co-combustion process. Cai et al. [11] also demonstrated that the co-combustions of textile
dyeing sludge and waste tea reduced SO2 emission through thermogravimetric coupled
with mass spectrometry (TG-MS) analysis. It is essential to quantify the release of gaseous
pollutants in the co-combustion process of sewage sludge and gasification fine slag residual
carbon, which can provide important inspiration for the control of pollutants in industrial
burner in the future [25–27].

The co-combustion of sewage sludge and residual carbon has great potential in the
aspects of resource utilization of solid waste and application as a supplementary fuel for
power generation. Unfortunately, there is no literature on the co-combustion performance
of sewage sludge and gasification fine slag residual carbon until now. Therefore, it is
necessary to evaluate the combustion behavior and gaseous pollutant emissions during



Catalysts 2021, 11, 1142 3 of 14

the co-combustion of sewage sludge and gasification fine slag residual carbon to provide
a theoretical basis and useful guidance for industrial-scale application of these two solid-
waste resources.

In this work, the co-combustion characteristic, synergistic catalysis, and gaseous
pollutant emission patterns between sewage sludge (SS) and gasification fine slag residual
carbon (RC) and their blends were comprehensively assessed using the TG-MS technique.
The results could provide a vital reference for the synergetic utilization of SS and RC.

2. Results and Discussion
2.1. Combustion Behavior of SS, RC, and Their Blends

It can be seen from Figure 1a that SS, RC, and their blends display quite different
weight loss curves. The weight loss curves of the blends are sandwiched between those of
SS and RC, which is consistent with the results of other researchers [28,29]. In addition, the
DTG curves suggest that there is only one distinct peak of reaction rate observed during
the combustion of individual SS and RC and the dominating combustion stages of SS and
RC are in the ranges of 200–610 ◦C and 500–600 ◦C, respectively. However, two primary
stages were observed in the combustion of the SS/RC blends. The first stage is attributed
to the combustion of the volatile matters and char from SS with a typical peak range of
200–500 ◦C. The combustion of RC and the remaining SS char mainly occurs in the second
stage (500–610 ◦C).
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The parameters in Table 1 can be used to evaluate the combustion performance. The Ti
of SS (221.47 ◦C) is much lower than that of RC (538.36 ◦C), which is due to the high volatile
content of SS. A large number of volatile components in SS are released and burned at
relatively low temperatures (Stage 1). The reason for the low volatile content of RC is that it
has undergone a high-temperature gasification process exceeding 1200 ◦C, which results in
the worse ignition property of RC. However, the Is and Ic of RC were observed to be higher
than that of SS, indicating a higher combustion stability and comprehensive combustion
performance of RC. It can be concluded that the co-combustion of SS and RC may have
complementary advantages to counteract the negative characteristics of individual fuel.

With the increase of SS proportion in blends, the Ti decreases from 228.32 to 223.01 ◦C,
and the Tm1 decreases from 311.71 to 304.49 ◦C, which means that the ignition property
is improved and combustion is advanced. The combustion of volatile components in SS
during Stage 1 can provide heat for the combustion of RC in Stage 2 and contributes to
the ignition of RC [22]. Thus, the addition of SS could weaken the adverse effects of low
volatile matter in RC on combustion. The Tb of blends is also decreased with the increase of
SS proportion in blends, which is mainly due to the catalysis of alkali and alkaline metals
in the SS ash [10].
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Table 1. Combustion performances of SS, RC, and their blends.

Samples SS RC 20SS80RC 40SS60RC 60SS40RC 80SS20RC

Ti (◦C) 221.47 538.36 228.32 226.18 224.59 223.01

Stage 1 Tm1 (◦C) 302.08 \ 311.71 309.31 306.89 304.49
Rm1 (%/min) 3.85 \ 0.73 1.49 2.13 2.89

Stage 2 Tm2 (◦C) \ 566.69 565.78 570.38 574.05 582.86
Rm2 (%/min) \ 14.55 13.07 11.77 5.75 2.62

Tb (◦C) 584.23 621.09 628.48 623.32 618.71 613.44
Ra (%/min) 1.71 7.78 1.96 1.93 1.76 1.70

Is × 104 (%·min−1·◦C−2) 0.48 3.27 1.43 1.31 0.65 0.33
Ic × 107 (%2·min−2·◦C−3) 2.30 6.29 7.82 7.13 3.24 1.61

The addition of SS can improve the ignition and burnout properties of RC. It is worth
noting that both Is and Ic decrease slowly with the increase of SS proportion in blends,
and then they begin to drop sharply when the proportion of SS in the blends is greater
than 40%. Nonetheless, when the proportion of SS in the blends is maintained below 40%,
the combustion stability is still greatly improved compared with that of individual SS.
The results of Parshetti et al. [30] indicated that values of Ic (×107) greater than 2 can be
considered as having good combustion performance.

In this work, the Ic (×107) is higher than 2 when the proportion of SS in the blends is
lower than 60%, which means that the mixing ratio of SS and RC should be controlled to
meet the above requirement. Overall, the obvious complementary advantages are observed
during the co-combustion of SS and RC. The co-combustion of SS and RC can not only
improve the ignition and burnout property but also maintain the combustion stability and
comprehensive combustion performance at a better level.

2.2. Kinetic Analysis

According to the results in Section 2.1, the co-combustion process of SS and RC at
different blending proportions is mainly divided into two stages. Therefore, in order to
obtain the kinetic parameters and reaction mechanisms more accurately, the two stages were
analyzed separately. The kinetic parameters and models of the samples with the highest
correlation coefficient are presented in Table 2. For the individual combustion of both SS and
RC, the reaction mechanism follows the first-order chemical reaction model (O1).

Table 2. Kinetic parameters of SS, RC, and their blends.

Samples
Stage 1 Stage 2

Ea (kJ/mol) Model R2 Ea (kJ/mol) Model R2

SS 19.01 First-order chemical
reaction (O1) 0.9812 / / /

RC / / / 105.68 O1 0.9789
20SS80RC 33.68 O1 0.9714 55.24 O1 0.9844
40SS60RC 30.21 O1 0.9691 51.39 O1 0.9573

60SS40RC 35.82 O1 0.9828 65.15 Three-dimensional
Diffusion (D3) 0.9806

80SS20RC 39.57 O1 0.9803 70.02 Three-dimensional
Diffusion (D4) 0.9660

However, the Ea of RC was much higher than that of SS, which is due to the high-
temperature gasification process in the gasifier that reduces the reactivity of carbon particles
in RC [17]. The O1 model was also found to be the most effective mechanism for Stage 1
of the co-combustion of SS and RC. The Ea in Stage 1 decreases first and then increases
with the increase of the proportion of SS in blends, while the lowest Ea (30.21 kJ/mol) was
observed when the blending ratio of SS is 40%.
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Different from Stage 1, the most effective mechanisms for Stage 2 changed from O1
to three-dimensional diffusion with the increase of the SS proportion in blends, which
indicates that the transfer process of the reaction gas into the fuel solid particles has a
great influence on Stage 2 of co-combustion when the blending ratio of SS exceeds 40%.
Moreover, the increase of the SS ratio is not always beneficial to the reduction of the
activation energy of the co-combustion of SS and RC. The lowest Ea (51.39 kJ/mol) in
Stage 2 is also observed when the blending ratio of SS is 40%.

2.3. Synergistic Catalytic Effect Analysis

It can be seen from Figure 2a that the experimental curves of four samples are located
behind the calculated curves at first and then they are ahead of the calculated curves. The
difference between the experimental and calculated curves indicates that SS and RC have
interaction in the co-combustion process. Variations of the interaction between SS and RC
are illustrated more clearly in Figure 2b. For all the blending ratios, the antagonism effect
is predominant in Stage 1. This may be attributed to the volatile content of RC being much
lower than that of SS, and correspondingly its release temperature is higher than that of SS.
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The heat released from the combustion of volatile components in SS was rapidly lost
to RC particles, which reduces the reaction rate of SS and hinders the release of volatile
components in SS [22,31]. In addition, the particle size of RC is fine, and it may cover the
surface of SS particles in blends, which could also obstruct the release of volatile compounds
in SS and result in a reduction of the volatile releasing rate of SS [32]. In short, the antagonism
effect caused by RC is due to the heat and mass transfer limitations in Stage 1.

Moreover, the activation energies of Stage 1 (33.68–39.57 kJ/mol) in the co-combustion
of SS and RC are always higher than 19.01 kJ/mol (E of the individual SS combustion),
which further confirms that the antagonistic effect is dominant in the first stage. Stage 2 in
co-combustion mainly includes the combustion of RC and some residual SS char. There is a
significant synergistic effect when the blending ratio of SS is less than 40% in Stage 2. Such
a synergistic effect could be attributed to the catalysis of alkali metals in the SS ash, which
has been confirmed by many researchers [22,33–36]. In addition, the content of alkali metal
in SS ash (K2O + Na2O, 12.92 wt.%) is more than twice that of RC ash (5.09 wt.%), which
provides the basis for the catalytic combustion of Stage 2.

SS was demineralized to further prove the catalytic effect of alkali metals in SS during
the co-combustion process. Briefly, the dried SS was mixed with the dilute hydrochloric acid
solution (5 wt.%) at the solid–liquid ratio (g:mL) of 1:10 and stirred at room temperature
for 2 h. Then, the demineralized SS (named DSS) was thoroughly washed with deionized
water.
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Finally, the SS was dried at 105 ◦C for 24 h in an oven. The DSS was thoroughly
mixed with RC at the ratios of 40 wt.% (40DSS60RC), then the TGA experiment was carried
out on 40DSS60RC according to the experimental methods described in Section 3.2. The
DTG results and kinetic parameters of 40DSS60RC are provided in Figure S1 and Table S3,
respectively. It can be seen from Figure S1 that the Rm of 40DSS60RC is reduced in two
combustion stages compared with 40SS60RC, which suggests that the removal of alkali
metals from SS leads to a decrease in the reaction rate of co-combustion. Furthermore, when
the alkali metals are removed from SS, the Ea of 40DSS60RC in Stage 2 of co-combustion is
significantly raised. In summary, the catalytic of alkali metals from SS can be confirmed
based on the above results.

The alkali metals in the form of alkali metal salts and alkali metal oxides have an
important influence on the oxygen transfer during the combustion process. The alkaline
ions in the SS ash can react with the oxygen-containing alkali on the carbon surface of RC
to form intricate chemical components [37]. In addition, the capacity of alkali metal salts
and alkali metal oxides to absorb oxygen is relatively high [23]. The activated oxygen spills
will be liberated and then react with the residual carbon in RC at a lower temperature once
oxygen is absorbed by the above catalytic substances [38].

According to previous studies [2,23,37,38], the schematic diagram of the catalytic
mechanism of alkali metals in the SS ash is presented in Figure 3. These catalysts accelerate
the supply of oxygen to the carbon surface, and the surface of these catalysts can also
provide reaction sites for the combustion of RC. This is supported by the research of
Wang et al. [10]. As the proportion of SS in blends increases, Stage 1 of the co-combustion
process shows obvious synergy, and the activation energy decreases, which strongly proves
the catalysis of the alkali metal in the SS ash to the combustion process.
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However, when the blending ratio of SS is more than 40%, the synergistic effect turns
into an antagonistic effect, and the most effective mechanisms change to three-dimensional
diffusion in Stage 2. This may be due to the excessive SS ash covering the RC particles,
which hinders the transport of oxygen and weakens the catalytic effect of the catalytic
substances in the SS ash. In summary, the blending ratio of SS is recommended to be
maintained at 40% because of the lowest total activation energy (Ea = 81.6 kJ/mol) and the
strongest synergistic catalysis (Xi = 10.36). The heat value of 40SS60RC is 14.865 MJ/kg
(ad), which meets the requirements of heat value in waste-heat utilization [28].

2.4. Gaseous Pollutant Emissions

It is essential to clarify the release patterns of gaseous pollutants in the co-combustion
process of SC and RC, which is of great significance to environmental protection and
pollutant control. The emission patterns of the typical gaseous pollutants are presented in
Figure 4. Normalized total gas emissions are presented in Figure 5, which were obtained
from the integral areas of corresponding gas emission curves in Figure 4. Due to the low
volatile content of RC, the primary occurrence mode of nitrogen is char-N. Therefore, the
N-containing substances are prone to emission at relatively high temperatures.
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It can be observed from Figure 4 that the emission peaks of NH3, HCN, NO, and NO2
are concentrated in the range of 500–600 ◦C during the combustion of individual RC, which
almost coincides with the peak position of DTG curves of RC. On the contrary, there are
complex N-containing substances, such as proteins, amino acids, and heterocyclic nitrogen
in SS, which means that the main occurrence mode of N is volatile-N, and they tend to be
released at relatively low temperatures [9]. The NO emission curve of SS displays multiple
release peaks, of which the first emission peak is attributed to the decomposition of volatiles,
and the second peak is due to the char combustion with N-containing substances [11].
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From Figure 5, the normalized total gas emissions of NH3 and HCN during com-
bustion are higher than that of both individual SS and RC at some blending ratios (e.g.,
60SS40RC and 80SS20RC). This may be due to the Ca-containing substances in SS ash
from Stage 1 of co-combustion catalyzing the conversion of char-N in RC to NH3 and
HCN [39]. HCN and NH3 are considered precursors to the formation of NOx during the
combustion, and thus the normalized total gas emissions of NOx during the combustion
process increase with the increase of the SS proportion in blends [40].

Figure 4d shows the emission patterns of CO2 during the combustion process. The
emission peak of CO2 is concentrated in the range of 500–600 ◦C during the combustion
of individual RC, which is due to the combustion of fixed carbon in RC. Inversely, the
emission peak of SS is attributed to the decomposition and combustion of the organic
compounds in SS at relatively low temperatures. From Figure 5, the normalized total gas
emission of CO2 is much higher than other gas; therefore, it is the main gas product during
combustion.

The difference in CO2 emissions of SS and RC is attributed to the level of fixed carbon
content, and a higher fixed carbon content suggests higher total CO2 emission, which could
well explain why the total CO2 emission drops with the increase of the SS proportion in
blends [41]. More importantly, the temperature corresponding to the two emission peaks
of different blends is reduced, which suggests that the combustion is advanced and further
confirms that there is a synergistic catalytic effect during the co-combustion of SS and RC.
In addition, it can be observed from Figure 4f that there is almost no release of SO2 during
the entire combustion process of RC, which indicates that stable inorganic sulfur is the
main occurrence mode of sulfur in RC, and this inorganic sulfur is retained in the ash after
combustion [42].

The emission peak of SO2 is around 260 ◦C during the combustion of individual SS,
which illustrates that the sulfur in SS mainly occurs in the form of organic sulfur [11]. Thus,
the pattern of sulfur emission during co-combustion of SS and RC is dominated by SS. As
the mixing ratio of SS increases, the normalized total SO2 emissions of blends rise due to
the increase of sulfur content. The above results suggest that the emissions of NH3, HCN,
NO, and CO2 are higher than SS and RC combustion alone in some mixed proportions.

Several studies also found that the addition of other fuels to sludge has a negative
impact on the release of pollutant gases [11,29,43]. However, although the co-combustion
of SS and RC does not appear to have any obvious advantages in the reduction of gas
pollutants, the results of this study strongly confirmed the synergistic and complementary
advantages of co-combustion of SS and RC. Moreover, at the recommended mixing ratio
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in this work (40SS60RC), the emissions of NH3, NO, NO2, and SO2 were all lower than
those of SS and RC combustion alone. In summary, the co-combustion of SS and RC is a
feasible way to convert solid waste into energy. The application of the TG-MS results to a
large-scale furnace will be the focus of the following work.

3. Experimental Methods
3.1. Materials

The sewage sludge was collected from a municipal sewage treatment plant in Xuzhou
City, Jiangsu Province, China. The coal gasification fine slag samples were obtained from
a commercial four-nozzle entrained bed gasifier located in Ningxia Coal Industry Group
Co., Ltd. of China. In this study, we attempted to enrich the residual carbon (RC) in the
gasification fine slag through simple physical screening based on our previous research
results [20]. The coal gasification fine slag was divided into four size fractions of 0–38 µm,
38–75 µm, 75–115 µm, and >115 µm by the wet sieving method according to Chinese
standard GB/T477-2008. All the samples were dried at 105 ◦C for 24 h in an oven and then
grounded and sieved to below 75 µm. Then, the prepared samples were sealed in a plastic
bag and stored in a desiccator.

The proximate and ultimate analyses of different samples were tested according to
the China National Standards GB/T 212-2008 and GB/T 476-2008. A higher heating value
(HHV) was measured according to the China National Standards GB/T 213-2008. The ash
chemical compositions of samples were determined according to the standard procedures
of ASTM D4326-2013 and ASTM D3174-12 [44]. The proximate analyses and HHVs of the
samples are presented in Table 3.

Table 3. The proximate analyses and HHV of different size fractions of CGFS.

Sample
Proximate Analysis (wt.%) HHV (ad,

MJ/kg)
Percentage of Sieved

Fractions (wt.%)Mad Ad Vd FCd *

SS 7.93 50.85 45.74 3.41 10.79 \
CGFS 5.47 78.89 4.28 16.83 6.72 \

>115 µm 7.20 48.15 5.29 46.56 17.97 15.97
75–115 µm 0.95 88.46 2.79 8.75 4.02 9.35
38–75 µm 1.27 76.45 3.94 19.61 8.83 26.97
0–38 µm 1.38 87.11 4.68 8.21 3.84 47.89

M: moisture content; A: ash content; V: volatile content; FC: fixed carbon content; ad: air-dry basis; d: dry basis; *: by difference.

As shown in Table 3, the fraction of >115 µm had a fixed carbon content (dry basis)
at 46.56%, and the HHV reached 17.97 MJ/kg, which is comparable to the fuel proper-
ties of residue carbon recovered by Guo et al. through the froth flotation method [17].
Industrial-scale classification of gasification fine slag can be used to achieve high-frequency
vibrating screens and hydrocyclones in the future [45]. The RC obtained by classifica-
tion was thoroughly blended with SS at the ratios of 20, 40, 60, and 80 wt.% and named
20SS80RC, 40SS60RC, 60SS40RCC, and 20RC80SS, respectively. The ultimate analyses and
ash chemical compositions of SS and RC are provided in Table 4.

3.2. TG-MS Analysis

The (co-)combustion characteristics and gaseous pollutant emissions were detected by
a TG-MS analyzer (Rigaku, Thermo plus EVO/Thermo Mass Photo, Tokyo, Japan). The
air atmosphere of the combustion was simulated by mixing 21% O2 with 79% He (99.99%
purity gas), and the gas flow was 300 mL/min to avoid the potential interference of the
air atmosphere on the detection of discharged gaseous pollutants. In each experiment, the
sample (10 ± 0.5 mg) was evenly placed in a corundum crucible, and then it was heated up
from room temperature to 900 ◦C at the heating rates of 15 ◦C/min with a gas flow rate of
300 mL/min.
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Table 4. The ultimate analyses and ash chemical compositions of the samples.

Samples SS RC

Ultimate Analyses (daf, wt.%)
C 53.39 95.01
H 7.16 2.10

O * 27.39 0.79
N 6.00 0.17
S 6.06 1.93

Ash Chemical Compositions (wt.%)
K2O 4.89 1.12

Na2O 8.03 3.97
SiO2 16.85 39.17

Al2O3 7.34 19.56
Fe2O3 13.04 9.58
CaO 18.51 13.44
MgO 8.38 5.18
TiO2 0.56 0.92

MnO2 0.29 0.17
daf: dry ash-free basis; *: diff.

Before the start of each experiment, blank experiments (without samples in the corun-
dum crucible) were conducted to obtain baselines to calibrate the errors of the instrument.
The detection range of MS was a mass-to-ion ratio (m/z) of 1–150, and the scanning interval
was 1 s. The main gaseous pollutants of NH3 (m/z = 17), HCN (m/z = 27), NO (m/z = 30),
CO2 (m/z = 44), NO2 (m/z = 46), and SO2 (m/z = 64) were quantitatively analyzed [11,43].
All the experiments were carried out three times to ensure consistency and repeatability.
The experimental error was kept within ±2%, and the ultimate results were ascertained as
the average of the three parallel results.

3.3. Combustion Performance Parameters

In order to further understand the combustion performance of samples, the TG-DTG
method was employed to determine the ignition temperature (Ti) and burnout temperature
(Tb) [31,46]. The maximum reaction rate (Rm) and its corresponding temperature (Tm), as
well as the average reaction rate (Ra), were determined from the thermogravimetry (TG)
and derivative thermogravimetry (DTG) curves.

In addition, the combustion stability index (Is) is a measure of the stability of the
combustion pathways, which can be used to obtain the degree of combustion stability of
fuel based on non-isothermal TGA data [28]. The comprehensive combustion characteristic
index (Ic) included the ease of ignition, the reaction rate, and the burnout temperature and
is considered as a comprehensive combustion parameter to evaluate the combustibility
of fuels [47]. A larger value of Is and Ic indicates better combustibility and combustion
stability of the samples. The relevant equations are as follows [28,48]:

Is =
Rm

Ti × (Tb − Ti)
(1)

Ic =
Rm × Ra

T2
i × Tb

(2)

3.4. Kinetics Model

Kinetics analysis has important guiding significance for industrial-scale production
as it is the basis for scale-up and reactor design. The kinetic parameters were determined
based on the non-isothermal TGA data in this study. The activation energy (Ea), reaction
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mechanisms of SS, RC, and their blends during combustion were calculated using the
Coats-Redfern method [17,43], which is expressed as:

ln[g(α)/T2] = ln[AR(1− 2RT/Ea)/δEa]− Ea/RT (3)

α =
mi −mt

mi −m f
(4)

where α is the thermal conversion rate (%); and mi, mt, and mf are the initial mass (mg),
instantaneous mass at time t, and final mass after the reaction of samples, respectively.
g(α) is the integral form of the mechanism functions (as shown in Table S1) [17,46]. T, A, R,
Ea, and δ refer to the absolute temperature (K), pre-exponential factor (min−1), universal
gas constant (8.314 J/(K·mol)), activation energy (kJ/mol), and heating rate (K/min),
respectively. In addition, ln[AR(1− 2RT/Ea)/δEa] can be considered as constant for most
levels of Ea and T. Therefore, by substituting different g(α) into the above formula, and
then plotting ln[g(α)/T2] vs. 1/T, a fitting line with the highest correlation coefficient was
acquired. Ultimately, Ea can be obtained from the slope (−Ea/R) of the fitting line.

3.5. Synergistic Catalytic Effect

The synergy between SS and RC has an important influence on the co-combustion
reaction. In order to verify the synergy between SS and RC in the co-combustion process,
the theoretical combustion conversion curves of the SS/RC blends and the interaction
index Xi were calculated by the following formulas [17,31]:

αt = β× αSS + (1− β)× αRC (5)

where, αt is the theoretical thermal conversion rate of blends with different proportions;
αSS and αRC are the individual thermal conversion rate of SS and RC; β is the proportion of
SS in the blends;

Xi = αe − αt (6)

where αe is the experimental thermal conversion rate of blends with different proportions.
The interaction index Xi > 0 indicates synergy, Xi < 0 indicates antagonism, and Xi = 0
indicates no interaction.

4. Conclusions

1. Blending SS with RC effectively avoids the negative characteristics of the individual
fuels. The co-combustion of SS and RC can not only improve the ignition and burnout
property but also maintain the combustion stability and comprehensive combustion
performance at a better level.

2. The first-order chemical reaction is the reaction mechanism for Stage 1 of the co-
combustion of SS and RC, while the most effective mechanisms for Stage 2 are
changed from first-order chemical reactions to three-dimensional diffusion with the
increase of the SS proportion in blends.

3. The synergistic catalysis effect was confirmed when the blending ratio of SS was less
than 40%, and the blending ratio of SS is recommended to be maintained at 40% due
to the lowest activation energy and the strongest synergistic effect.

4. The emissions of gaseous pollutants corresponded to the primary combustion stages
of SS, RC, and their blends. In co-combustion, the NH3, HCN, NOx, and SO2 emis-
sions gradually rose with the increase of SS proportion in blends due to the high
content of organic compounds in SS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11101142/s1, Table S1: Kinetic mechanism functions, Table S2: Kinetic parameters of
various samples at different combustion stage, Table S3: The kinetic parameters of 40SS60RC and
40DSS60RC, Figure S1: Comparison of the DTG results of 40SS60RC and 40DSS60RC.

https://www.mdpi.com/article/10.3390/catal11101142/s1
https://www.mdpi.com/article/10.3390/catal11101142/s1


Catalysts 2021, 11, 1142 12 of 14

Author Contributions: Data curation, Y.G., J.W. and B.D.; Formal analysis, Y.G.; Funding acquisition,
J.W. and Y.Z.; Investigation, W.J. and R.W.; Methodology, Y.G., F.G., G.Q. and B.D.; Project admin-
istration, J.W. and Y.Z.; Resources, W.J., G.Q. and R.W.; Software, F.G. and B.D.; Supervision, J.W.;
Writing—original draft, Y.G.; Writing—review & editing, J.W., F.G., Y.Z. and B.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the Natural Science Foundation of Shandong Province (No.
ZR2020KE044), the National Natural Science Foundation of China (No. 51974311), the National
Key Research and Development Program of China (No. 2019YFC1904302), and the Open Sharing
Fund for the Large-scale Instruments and Equipment of China University of Mining and Technology
(CUMT) (No. DYGX-2021-075).

Data Availability Statement: Data is contained within the article or Supplementary Material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiong, Q.; Wu, X.; Lv, H.; Liu, S.; Hou, H.; Wu, X. Influence of rice husk addition on phosphorus fractions and heavy metals risk

of biochar derived from sewage sludge. Chemosphere 2021, 280, 130566. [CrossRef]
2. Liu, J.; Huang, L.; Sun, G.; Chen, J.; Zhuang, S.; Chang, K.; Xie, W.; Kuo, J.; He, Y.; Sun, S. (Co-) combustion of additives, water

hyacinth and sewage sludge: Thermogravimetric, kinetic, gas and thermodynamic modeling analyses. Waste Manag. 2018, 81,
211–219. [CrossRef] [PubMed]

3. Naqvi, S.R.; Tariq, R.; Shahbaz, M.; Naqvi, M.; Amin, A.; Khan, Z.; Mackey, H.; Mckay, G.; Al-Ansari, T. Recent Developments on
Sewage Sludge Pyrolysis and its Kinetics: Resources Recovery, Thermogravimetric Platforms, and Innovative Prospects. Comput.
Chem. Eng. 2021, 150, 107325. [CrossRef]

4. Bulavchenko, O.A.; Saraev, A.A.; Kremneva, A.M.; Shashkov, M.V.; Zaikina, O.O.; Gulyaeva, Y.K.; Grachev, A.N.; Kikhtyanin, O.;
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