Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review
Abstract
:1. Introduction
2. Dopants and Additives
2.1. Doping
2.1.1. Self-Doping
2.1.2. Metal and Non-Metal Doping
2.1.3. Co-Doping
2.2. Additives
2.2.1. Surfactants
2.2.2. Carbonaceous Materials
2.2.3. Clay
2.2.4. Silica
2.2.5. Zeolite
3. Conclusions and Future Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
1,2-DCE | 1,2-dichloroethane |
4NCB | 1-chloro-4-nitrobenzene |
AC | Activated carbon |
BET | Brunauer, Emmett, and Teller |
CDs | Carbon dots |
CLS | Calcium lignosulfonate |
CNT | Carbon nanotube |
CQDs | Carbon quantum dots |
CTAB | Cetyltrimethylammonium bromide |
DEA | Diethanolamine |
FESEM | Field emission scanning electron microscopy |
HRSEM | High-resolution scanning electron microscopy |
HRTEM | High-resolution transmission electron microscopy |
HTAB | Hexadecyltrimethylammonium bromide |
MMT | Montmorillonite |
Pd | Pore size |
PEG | Polyethylene glycol |
Pv | Pore volume |
rGO | Reduced graphene oxide |
SBET | Specific BET surface area |
SDBS | Sodium dodecylbenzenesulfonate |
SDS | Sodium dodecyl sulfate |
SEM | Scanning electron microscopy |
TC | Tetracycline hydrochloride |
TEM | Transmission electron microscopy |
UV | Ultraviolet |
ZIF-8 | Zeolitic imidazolate framework |
References
- Ameta, R.; Solanki, M.S.; Benjamin, S.; Ameta, S.C. Chapter 6—Photocatalysis. In Advanced Oxidation Processes for Waste Water Treatment; Ameta, S.C., Ameta, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 135–175. [Google Scholar]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.M.; Abdel-Ghany, A.E.; Abuzeid, H.M.; El-Tawil, R.S.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J. Alloy. Compd. 2018, 737, 758–766. [Google Scholar] [CrossRef]
- Li, L.; Xu, M.; Chen, Z.; Zhou, X.; Zhang, Q.; Zhu, H.; Wu, C.; Zhang, K. High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties. Electrochim. Acta 2015, 174, 446–455. [Google Scholar] [CrossRef]
- Gosavi, P.V.; Biniwale, R.B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem. Phys. 2010, 119, 324–329. [Google Scholar] [CrossRef]
- Khaledi, A.G.; Afshar, S.; Jahromi, H.S. Improving ZnAl2O4 structure by using chelating agents. Mater. Chem. Phys. 2012, 135, 855–862. [Google Scholar] [CrossRef]
- Tabesh, S.; Davar, F.; Loghman-Estarki, M.R. The effects of chelating agent type on the morphology and phase evolutions of alumina nanostructures. Ceram. Int. 2017, 43, 10247–10252. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrog. Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Jamzad, Z. Thymus and Satureja of Iran; Research Institute of Forests and Rangelands Press: Tehran, Iran, 2009. [Google Scholar]
- Umezawa, N.; Ye, J. Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO2. Phys. Chem. Chem. Phys. 2012, 14, 5924–5934. [Google Scholar] [CrossRef]
- Hong, S.P.; Kim, S.; Kim, N.; Yoon, J.; Kim, C. A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications. Korean J. Chem. Eng. 2019, 36, 1753–1766. [Google Scholar] [CrossRef]
- Mishra, S.; Yogi, P.; Saxena, S.K.; Jayabalan, J.; Behera, P.; Sagdeo, P.R.; Kumar, R. Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. J. Mater. Chem. C 2017, 5, 9611–9618. [Google Scholar] [CrossRef]
- Grimes, C.A.; Mor, G.K. TiO2 Nanotube Arrays-Synthesis, Properties, and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Salari, M.; Aboutalebi, S.H.; Konstantinov, K.; Liu, H.K. A highly ordered titania nanotube array as a supercapacitor electrode. Phys. Chem. Chem. Phys. 2011, 13, 5038–5041. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Zhang, S.; Dai, W.; Li, G.; Zhang, D. In situ synthesis of Ti3+ self-doped mesoporous TiO2 as a durable photocatalyst for environmental remediation. Chin. J. Catal. 2015, 36, 2095–2102. [Google Scholar] [CrossRef]
- Collazzo, G.C.; Jahn, S.L.; Carreño, N.L.V.; Foletto, E.L. Temperature and reaction time effects on the structural properties of titanium dioxide nanopowders obtained via the hydrothermal method. Braz. J. Chem. Eng. 2011, 28, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Xing, M.; Zhang, J. A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl. Catal. B 2014, 160–161, 240–246. [Google Scholar] [CrossRef]
- Kim, C.; Lee, S.; Kim, S.; Yoon, J. Effect of annealing temperature on the capacitive and oxidant-generating properties of an electrochemically reduced TiO2 nanotube array. Electrochim. Acta 2016, 222, 1578–1584. [Google Scholar] [CrossRef]
- Zhang, X.; Du, L.; Wang, H.; Dong, X.; Zhang, X.; Ma, C.; Ma, H. Highly ordered mesoporous BiVO4: Controllable ordering degree and super photocatalytic ability under visible light. Microporous Mesoporous Mater. 2013, 173, 175–180. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.; Wang, Y.; Liu, L.; Guo, Y.; Guo, H. Morphology-controlled synthesis of Ti3+ self-doped yolk–shell structure titanium oxide with superior photocatalytic activity under visible light. J. Solid State Chem. 2014, 213, 98–103. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, F.; Zhu, L.; Wang, N.; Tang, H. Bi3+ self doped NaBiO3 nanosheets: Facile controlled synthesis and enhanced visible light photocatalytic activity. Appl. Catal. B 2015, 164, 151–158. [Google Scholar] [CrossRef]
- Dong, G.; Hou, J.; Wang, J.; Zhang, Y.; Chen, V.; Liu, J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J. Membr. Sci. 2016, 520, 860–868. [Google Scholar] [CrossRef]
- Wu, D.; Yue, S.; Wang, W.; An, T.; Li, G.; Ye, L.; Yip, H.Y.; Wong, P.K. Influence of photoinduced Bi-related self-doping on the photocatalytic activity of BiOBr nanosheets. Appl. Surf. Sci. 2017, 391, 516–524. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, G.; Yu, Q.; Yang, K.; Li, H. Nitrogen self-doped high specific surface area graphite carbon nitride for photocatalytic degradating of methylene blue. J. Nanopart. Res. 2019, 21, 224. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Yu, H.; Mo, D.; Wang, H.; Xiao, Z.; Zhou, C. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation. J. Colloid Interface Sci. 2019, 536, 17–29. [Google Scholar] [CrossRef]
- Vieira, G.B.; Scaratti, G.; Rodembusch, F.S.; De Amorim, S.M.; Peterson, M.; Puma, G.L.; Moreira, R.D.F.P.M. Tuning the photoactivity of TiO2 nanoarchitectures doped with cerium or neodymium and application to colour removal from wastewaters. Environ. Technol. 2021, 42, 1038–1052. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, B.; Yuan, R. Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation. Environ. Eng. Res. 2015, 20, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Mecha, A.C.; Onyango, M.S.; Ochieng, A.; Jamil, T.S.; Fourie, C.J.S.; Momba, M.N.B. UV and solar light photocatalytic removal of organic contaminants in municipal wastewater. Sep. Sci. Technol. 2016, 51, 1765–1778. [Google Scholar] [CrossRef]
- Sahoo, C.; Gupta, A.K. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light. J. Environ. Sci. Health A 2015, 50, 659–668. [Google Scholar] [CrossRef]
- Dutta, D.P.; Ramakrishnan, M.; Roy, M.; Kumar, A. Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. J. Photochem. Photobiol. A 2017, 335, 102–111. [Google Scholar] [CrossRef]
- Singh, J.; Rathi, A.; Rawat, M.; Kumar, V.; Kim, K.-H. The effect of manganese doping on structural, optical, and photocatalytic activity of zinc oxide nanoparticles. Compos. B Eng. 2019, 166, 361–370. [Google Scholar] [CrossRef]
- Venkataswamy, P.; Jampaiah, D.; Kandjani, A.E.; Sabri, Y.M.; Reddy, B.M.; Vithal, M. Transition (Mn, Fe) and rare earth (La, Pr) metal doped ceria solid solutions for high performance photocatalysis: Effect of metal doping on catalytic activity. Res. Chem. Intermed. 2018, 44, 2523–2543. [Google Scholar] [CrossRef]
- Tekin, G.; Ersöz, G.; Atalay, S. Visible light assisted Fenton oxidation of tartrazine using metal doped bismuth oxyhalides as novel photocatalysts. J. Environ. Manag. 2018, 228, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Reyes, M.; Camposeco-Solis, R.; Ruiz, F.; Rodríguez-González, V.; Moctezuma, E. Promotional effect of metal doping on nanostructured TiO2 during the photocatalytic degradation of 4-chlorophenol and naproxen sodium as pollutants. Mater. Sci. Semicond. Process. 2019, 100, 130–139. [Google Scholar] [CrossRef]
- Mohd Yatim, A.A.; Ismail, N.A.; Hamid, M.R.Y.; Mohd Adnan, M.A.; Phoon, B.L.; Johan, M.R.; Lee, K.M. Vanadium and nitrogen co-doped titanium dioxide (TiO2) with enhanced photocatalytic performance: Potential in wastewater treatment. J. Nanosci. Nanotechnol. 2020, 20, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Chou, S.-H.; Chu, H. A kinetic study for the degradation of 1,2-dichloroethane by S-doped TiO2 under visible light. J. Nanopart. Res. 2014, 16, 2539. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Liu, J.; Fan, X.; Wang, B.; Wang, M.; Ren, W.; Wang, J.; Li, M.; Shi, J. Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 2015, 3, 3862–3867. [Google Scholar] [CrossRef]
- Guo, M.; Wang, Y.; He, Q.; Wang, W.; Wang, W.; Fu, Z.; Wang, H. Enhanced photocatalytic activity of S-doped BiVO4 photocatalysts. RSC Adv. 2015, 5, 58633–58639. [Google Scholar] [CrossRef]
- Bakar, S.A.; Ribeiro, C. Rapid and morphology controlled synthesis of anionic S-doped TiO2 photocatalysts for the visible-light-driven photodegradation of organic pollutants. RSC Adv. 2016, 6, 36516–36527. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Wang, H.; Cao, G.; Niu, J. Boron-doped bismuth oxybromide microspheres with enhanced surface hydroxyl groups: Synthesis, characterization and dramatic photocatalytic activity. J. Colloid Interface Sci. 2016, 463, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, D.; Song, L. A novel F-doped BiOCl photocatalyst with enhanced photocatalytic performance. Mater. Chem. Phys. 2016, 173, 298–308. [Google Scholar] [CrossRef]
- Bezerra, P.C.S.; Calvacante, R.P.; Garcia, A.; Wender, H.; Martines, M.A.U.; Casagrande, G.A.; Giménez, J.; Marco, P.; Oliveira, S.C.; Machulek, A., Jr. Synthesis, characterization, and photocatalytic activity of pure and N-, B-, or Ag-doped TiO2. Braz. J. Chem. Eng. 2017, 28, 1788–1802. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, K.; Wei, M.; Ma, Z. Phosphorus-doped cerium vanadate nanorods with enhanced photocatalytic activity. J. Colloid Interface Sci. 2018, 531, 618–627. [Google Scholar] [CrossRef]
- Dindar, B.; Güler, A.C. Comparison of facile synthesized N doped, B doped and undoped ZnO for the photocatalytic removal of Rhodamine B. Environ. Nanotechnol. Monit. Manag. 2018, 10, 457–466. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Zhang, J.; Guo, Y.; Kuo, D.-H. Cationic S-doped TiO2/SiO2 visible-light photocatalyst synthesized by co-hydrolysis method and its application for organic degradation. J. Mol. Liq. 2019, 273, 50–57. [Google Scholar] [CrossRef]
- Peter, C.N.; Anku, W.W.; Sharma, R.; Joshi, G.M.; Shukla, S.K.; Govender, P.P. N-doped ZnO/graphene oxide: A photostable photocatalyst for improved mineralization and photodegradation of organic dye under visible light. Ionics 2019, 25, 327–339. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Zhang, G.; El-Hosainy, H.M.; Ismail, A.A.; O’Shea, K.E.; Falaras, P.; Kontos, A.G.; Dionysiou, D.D. High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 2014, 280, 723–733. [Google Scholar] [CrossRef]
- Wang, M.; Niu, C.; Liu, J.; Wang, Q.; Yang, C.; Zheng, H. Effective visible light-active nitrogen and samarium co-doped BiVO4 for the degradation of organic pollutants. J. Alloy. Compd. 2015, 648, 1109–1115. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, L.; Wang, H.; Zhao, Y.; Zhang, J.; Hu, S. Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method. Appl. Surf. Sci. 2015, 332, 625–630. [Google Scholar] [CrossRef]
- Jin, Z.; Duan, W.; Duan, W.; Liu, B.; Chen, X.; Yang, F.; Guo, J. Indium doped and carbon modified P25 nanocomposites with high visible-light sensitivity for the photocatalytic degradation of organic dyes. Appl. Catal. A 2016, 517, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, V.; Ray, A.K.; Dhir, A. Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation. Sep. Purif. Technol. 2016, 161, 1–7. [Google Scholar] [CrossRef]
- Fakhri, A.; Behrouz, S.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Synthesis, structural and morphological characteristics of NiO nanoparticles co-doped with boron and nitrogen. J. Mol. Liq. 2016, 213, 326–331. [Google Scholar] [CrossRef]
- Irfan, S.; Li, L.; Saleemi, A.S.; Nan, C.-W. Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 2017, 5, 11143–11151. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Khedr, T.M.; Hakki, A.; Ismail, A.A.; Badawy, W.A.; Bahnemann, D.W. Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Sep. Purif. Technol. 2017, 173, 258–268. [Google Scholar] [CrossRef]
- Alam, U.; Khan, A.; Raza, W.; Khan, A.; Bahnemann, D.; Muneer, M. Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catal. Today 2017, 284, 169–178. [Google Scholar] [CrossRef]
- Zhu, X.; Pei, L.; Zhu, R.; Jiao, Y.; Tang, R.; Feng, W. Preparation and characterization of Sn/La co-doped TiO2 nanomaterials and their phase transformation and photocatalytic activity. Sci. Rep. 2018, 8, 12387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Han, X.; Yu, H.; Zou, Y.; Dong, X. Enhanced photocatalytic performance of boron and phosphorous co-doped graphitic carbon nitride nanosheets for removal of organic pollutants. Sep. Purif. Technol. 2019, 226, 128–137. [Google Scholar] [CrossRef]
- Sun, H.; Yao, T.; Xie, X.; Lu, Y.; Wang, Y.; Xu, Z.; Han, J.; Chen, X. Ni, Eu-Co doping effect on the photocatalytic activity and magnetic recyclability in multifunctional single-phase photocatalysts Bi5FeTi3O15. J. Colloid Interface Sci. 2019, 534, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Yan, A.; Zhao, H. Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst. In Semiconductor Photocatalysis—Materials, Mechanisms and Applications; Cao, W., Ed.; IntechOpen: London, UK, 2016. [Google Scholar]
- Wei, J.; Wen, X.; Zhu, F. Influence of surfactant on the morphology and photocatalytic activity of anatase TiO2 by solvothermal synthesis. J. Nanomater. 2018, 2018, 3086269. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Ismail, A.A. Impact of surfactant ratios on mesostructured MnFe2O4 nanocomposites and their photocatalytic performance. Ceram. Int. 2020, 46, 10925–10933. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Li, X.; Feng, B.; Wei, B.; Wang, D.; Zhai, H.; Song, H. Effect of surfactant on the morphology of ZnO nanopowders and their application for photodegradation of rhodamine B. Powder Technol. 2015, 286, 269–275. [Google Scholar] [CrossRef]
- Ozturk, B.; Pozan Soylu, G.S. Synthesis of surfactant-assisted FeVO4 nanostructure: Characterization and photocatalytic degradation of phenol. J. Mol. Catal. A Chem. 2015, 398, 65–71. [Google Scholar] [CrossRef]
- Sheikhnejad, O.; Feng, Z.; Rajabtabar, A.; Khodadad, E.; Mostofizadeh, A.; Huang, Y. Influence of temperature and surfactant on the photocatalytic performance of TiO2 Nanoparticles. Int. J. Electrochem. Sci. 2014, 9, 4230–4240. [Google Scholar]
- Hao, C.; Wang, J.; Cheng, Q.; Bai, Y.; Wang, X.; Yang, Y. Anionic surfactants-assisted solution-phase synthesis of ZnO with improved photocatalytic performance. J. Photochem. Photobiol. A 2017, 332, 384–390. [Google Scholar] [CrossRef]
- Khalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386. [Google Scholar] [CrossRef]
- Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Souza, J.R.B.; Zhang, T.; Pilau, E.J.; Asefa, T.; Almeida, V.C. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int. 2017, 43, 4411–4418. [Google Scholar] [CrossRef]
- Serp, P.; Corrias, M.; Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 2003, 253, 337–358. [Google Scholar] [CrossRef]
- Velasco, L.F.; Parra, J.B.; Ania, C.O. Role of activated carbon features on the photocatalytic degradation of phenol. Appl. Surf. Sci. 2010, 256, 5254–5258. [Google Scholar] [CrossRef] [Green Version]
- Suresh, P.; Vijaya, J.J.; Kennedy, L.J. Photocatalytic degradation of textile dyeing wastewater through microwave synthesized Zr-AC, Ni-AC and Zn-AC. Trans. Nonferrous Met. Soc. China 2015, 25, 4216–4225. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Tran, H.N.; Fu, C.-C.; Lu, Y.-T.; Juang, R.-S. Roles of adsorption and photocatalysis in removing organic pollutants from water by activated carbon–supported titania composites: Kinetic aspects. J. Taiwan Inst. Chem. Eng. 2020, 109, 51–61. [Google Scholar] [CrossRef]
- El-Salamony, R.A.; Amdeha, E.; Badawy, N.A.; Ghoneim, S.A.; Al-Sabagh, A.M. Visible light sensitive activated carbon-metal oxide (TiO2, WO3, NiO, and SnO) nano-catalysts for photo-degradation of methylene blue: A comparative study. Toxicol. Environ. Chem. 2018, 100, 143–156. [Google Scholar] [CrossRef]
- Velasco, L.F.; Fonseca, I.M.; Parra, J.B.; Lima, J.C.; Ania, C.O. Photochemical behaviour of activated carbons under UV irradiation. Carbon 2012, 50, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Adamu, H.; McCue, A.J.; Taylor, R.S.F.; Manyar, H.G.; Anderson, J.A. Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites. Appl. Catal. B 2017, 217, 181–191. [Google Scholar] [CrossRef]
- Abega, A.V.; Ngomo, H.M.; Nongwe, I.; Mukaya, H.E.; Sone, P.-M.A.K.; Mbianda, X.Y. Easy and convenient synthesis of CNT/TiO2 nanohybrid by in-surface oxidation of Ti3+ ions and application in the photocatalytic degradation of organic contaminants in water. Synth. Met. 2019, 251, 1–14. [Google Scholar] [CrossRef]
- Das, R.K.; Kar, J.P.; Mohapatra, S. Enhanced photodegradation of organic pollutants by carbon quantum dot (CQD) deposited Fe3O4@mTiO2 nano-pom-pom balls. Ind. Eng. Chem. Res. 2016, 55, 5902–5910. [Google Scholar] [CrossRef]
- Chen, D.; Wang, D.; Ge, Q.; Ping, G.; Fan, M.; Qin, L.; Bai, L.; Lv, C.; Shu, K. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 2015, 574, 1–9. [Google Scholar] [CrossRef]
- Gar Alalm, M.; Tawfik, A.; Ookawara, S. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J. Environ. Chem. Eng. 2016, 4, 1929–1937. [Google Scholar] [CrossRef]
- Gamage McEvoy, J.; Zhang, Z. Synthesis and characterization of Ag/AgBr–activated carbon composites for visible light induced photocatalytic detoxification and disinfection. J. Photochem. Photobiol. A 2016, 321, 161–170. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, Q.; Xia, H.; Zhang, L.; Peng, J.; Lin, G.; Liao, X.; Jiang, X.; Zhang, Q. Microwave one-pot production of ZnO/Fe3O4/activated carbon composite for organic dye removal and the pyrolysis exhaust recycle. J. Clean. Prod. 2018, 188, 900–910. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Abdi, J.; Taghizadeh, M.; Taghizadeh, A.; Hayati, B.; Shekarchi, A.A.; Vossoughi, M. Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. J. Environ. Manag. 2019, 233, 660–672. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, H.; Liu, R.; Gan, H.; Wei, X. Dispersion of Ag–AgBr particles in activated carbon as a recyclable photocatalyst for adsorption and degradation of pollutants. J. Dispers. Sci. Technol. 2020, 41, 81–91. [Google Scholar] [CrossRef]
- Aazam, E.S. Visible light photocatalytic degradation of thiophene using Ag–TiO2/multi-walled carbon nanotubes nanocomposite. Ceram. Int. 2014, 40, 6705–6711. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, E.; Hong, Z.L.; Ahmed, W.; Elhissi, A.; Khalid, N.R. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultrason. Sonochem. 2014, 21, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar Mohamed, M.; Osman, G.; Khairou, K.S. Fabrication of Ag nanoparticles modified TiO2–CNT heterostructures for enhanced visible light photocatalytic degradation of organic pollutants and bacteria. J. Environ. Chem. Eng. 2015, 3, 1847–1859. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, P.; Yang, S.; Lu, Y.; Li, W.; Zhu, N.; Dang, Z.; Huang, Z. Synergetic effect of functionalized carbon nanotubes on ZnCr–mixed metal oxides for enhanced solar light-driven photocatalytic performance. RSC Adv. 2016, 6, 37689–37700. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Qian, F.; Min, Y. Magnetic BiFeO3 grafted with MWCNT hybrids as advanced photocatalysts for removing organic contamination with a high concentration. RSC Adv. 2016, 6, 49966–49972. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Xu, H.; Zhu, X.; Lian, J.; Xu, Y.; Zhao, Y.; Huang, L.; Ji, H.; Li, H. Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C3N4: Facile synthesis and the enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2017, 494, 38–46. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Lee, J.Y.; Bajaj, H.C.; Jo, W.-K.; Tayade, R.J. Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catal. Today 2017, 282, 13–23. [Google Scholar] [CrossRef]
- Farhadian, M.; Sangpour, P.; Hosseinzadeh, G. Preparation and photocatalytic activity of WO3–MWCNT nanocomposite for degradation of naphthalene under visible light irradiation. RSC Adv. 2016, 6, 39063–39073. [Google Scholar] [CrossRef]
- Oveisi, M.; Alinia Asli, M.; Mahmoodi, N.M. Carbon nanotube based metal-organic framework nanocomposites: Synthesis and their photocatalytic activity for decolorization of colored wastewater. Inorg. Chim. Acta 2019, 487, 169–176. [Google Scholar] [CrossRef]
- Shi, L.; Yao, L.; Si, W. One step to prepare CNTs modified porous g-C3N4 with excellent visible-light photocatalytic performance. J. Mater. Sci. Mater. Electron. 2019, 30, 1714–1723. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Zhou, J. Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation. J. Mater. Sci. 2019, 54, 3294–3308. [Google Scholar] [CrossRef]
- Hao, X.; Wang, G.; Chen, S.; Yu, H.; Quan, X. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants. Front. Environ. Sci. Eng. 2019, 13, 77. [Google Scholar] [CrossRef]
- Thangavel, S.; Venugopal, G.; Kim, S.-J. Enhanced photocatalytic efficacy of organic dyes using β-tin tungstate–reduced graphene oxide nanocomposites. Mater. Chem. Phys. 2014, 145, 108–115. [Google Scholar] [CrossRef]
- Dang, X.; Zhang, X.; Lu, Z.; Yang, Z.; Dong, X.; Zhang, X.; Ma, C.; Ma, H.; Xue, M.; Shi, F. Construction of Au@TiO2/graphene nanocomposites with plasmonic effect and super adsorption ability for enhanced visible-light-driven photocatalytic organic pollutant degradation. J. Nanopart. Res. 2014, 16, 2215. [Google Scholar] [CrossRef]
- Min, Y.; Fan, J.; Xu, Q.; Zhang, S. High visible-photoactivity of spherical Cd0.5Zn0.5S coupled with graphene composite for decolorizating organic dyes. J. Alloy. Compd. 2014, 609, 46–53. [Google Scholar] [CrossRef]
- Chen, X.-J.; Dai, Y.-Z.; Wang, X.-Y.; Guo, J.; Liu, T.-H.; Li, F.-F. Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2,4-dichlorophenol under visible light irradiation. J. Hazard. Mater. 2015, 292, 9–18. [Google Scholar] [CrossRef]
- Choi, J.; Reddy, D.A.; Islam, M.J.; Ma, R.; Kim, T.K. Self-assembly of CeO2 nanostructures/reduced graphene oxide composite aerogels for efficient photocatalytic degradation of organic pollutants in water. J. Alloy. Compd. 2016, 688, 527–536. [Google Scholar] [CrossRef]
- Kim, T.-W.; Park, M.; Kim, H.Y.; Park, S.-J. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants. J. Solid State Chem. 2016, 239, 91–98. [Google Scholar] [CrossRef]
- Alam, U.; Fleisch, M.; Kretschmer, I.; Bahnemann, D.; Muneer, M. One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Appl. Catal. B 2017, 218, 758–769. [Google Scholar] [CrossRef]
- Suave, J.; Amorim, S.M.; Moreira, R.F.P.M. TiO2-graphene nanocomposite supported on floating autoclaved cellular concrete for photocatalytic removal of organic compounds. J. Environ. Chem. Eng. 2017, 5, 3215–3223. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Manivel, P.; Rajendrakumar, R.T.; Uyar, T. Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem. Eng. J. 2017, 325, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Gong, J.; Zeng, G.; Zhang, P.; Song, B.; Cao, W.; Liu, H.; Huan, S. Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids Surf. A 2018, 559, 169–183. [Google Scholar] [CrossRef]
- Niu, J.; Dai, P.; Zhang, Q.; Yao, B.; Yu, X. Microwave-assisted solvothermal synthesis of novel hierarchical BiOI/rGO composites for efficient photocatalytic degardation of organic pollutants. Appl. Surf. Sci. 2018, 430, 165–175. [Google Scholar] [CrossRef]
- Zarrabi, M.; Haghighi, M.; Alizadeh, R.; Mahboob, S. Solar-light-driven photodegradation of organic dyes on sono-dispersed ZnO nanoparticles over graphene oxide: Sono vs. conventional catalyst design. Sep. Purif. Technol. 2019, 211, 738–752. [Google Scholar] [CrossRef]
- Mitra, M.; Ahamed, S.T.; Ghosh, A.; Mondal, A.; Kargupta, K.; Ganguly, S.; Banerjee, D. Polyaniline/reduced graphene oxide composite-enhanced visible-light-driven photocatalytic activity for the degradation of organic dyes. ACS Omega 2019, 4, 1623–1635. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.-N.; Ou, C.-L.; Fang, S.-S.; Zheng, X.-C.; Zheng, G.-P.; Guan, X.-X. One-pot self-assembly of 3D CdS-graphene aerogels with superior adsorption capacity and photocatalytic activity for water purification. Powder Technol. 2019, 345, 213–222. [Google Scholar] [CrossRef]
- Rizal, M.Y.; Saleh, R.; Taufik, A. Characterization and photocatalytic activity of Ag/Mn3O4/graphene composites under visible light irradiation for organic dyes degradation. J. Environ. Chem. Eng. 2020, 8, 103610. [Google Scholar] [CrossRef]
- Zhao, C.; Li, W.; Liang, Y.; Tian, Y.; Zhang, Q. Synthesis of BiOBr/carbon quantum dots microspheres with enhanced photoactivity and photostability under visible light irradiation. Appl. Catal. A 2016, 527, 127–136. [Google Scholar] [CrossRef]
- Ming, F.; Hong, J.; Xu, X.; Wang, Z. Dandelion-like ZnS/carbon quantum dots hybrid materials with enhanced photocatalytic activity toward organic pollutants. RSC Adv. 2016, 6, 31551–31558. [Google Scholar] [CrossRef]
- Miao, R.; Luo, Z.; Zhong, W.; Chen, S.-Y.; Jiang, T.; Dutta, B.; Nasr, Y.; Zhang, Y.; Suib, S.L. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl. Catal. B 2016, 189, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Di, J.; Xia, J.; Huang, Y.; Ji, M.; Fan, W.; Chen, Z.; Li, H. Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation. Chem. Eng. J. 2016, 302, 334–343. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, M.; Kim, H.Y.; Ding, B.; Park, S.-J. A facile ultrasonic-assisted fabrication of nitrogen-doped carbon dots/BiOBr up-conversion nanocomposites for visible light photocatalytic enhancements. Sci. Rep. 2017, 7, 45086. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Dong, H.; Liu, Y.; Wang, L.; Peng, B.; Zhang, C.; Chen, F. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Appl. Catal. B 2018, 222, 115–123. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, G.; Liang, X.; Dong, X.; Zhang, X. Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation. Appl. Surf. Sci. 2019, 467, 320–327. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Dutta, V.; Singh, P.; Raizada, P.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A.; Thakur, V.K. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review. J. Clean. Prod. 2019, 228, 755–769. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, X. A review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts 2020, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Ju, L.; Wu, P.; Lai, X.; Yang, S.; Gong, B.; Chen, M.; Zhu, N. Synthesis and characterization of Fullerene modified ZnAlTi-LDO in photo-degradation of Bisphenol A under simulated visible light irradiation. Environ. Pollut. 2017, 228, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zhong, J.; Li, J.; Wang, L.; Peng, R. Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight. Appl. Surf. Sci. 2018, 443, 497–505. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, Z.; Chen, L. Removal of Zn(II) from aqueous solution by natural halloysite nanotubes. J. Radioanal. Nucl. Chem. 2012, 292, 435–443. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, G. Recent advances in synthesis and applications of clay-based photocatalysts: A review. Phys. Chem. Chem. Phys. 2014, 16, 8178–8192. [Google Scholar] [CrossRef]
- Szczepanik, B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl. Clay Sci. 2017, 141, 227–239. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, H.; Wang, X. A facile method to synthesize the photocatalytic TiO2/montmorillonite nanocomposites with enhanced photoactivity. Appl. Surf. Sci. 2014, 319, 158–166. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Rodriguez, J.J. Titania–clay heterostructures with solar photocatalytic applications. Appl. Catal. B 2015, 176–177, 278–287. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Cui, T.; Dong, L.; Zhang, J.; Han, L.; Li, G.; Liu, C. Photocatalyst from one-dimensional TiO2 nanowires/synthetic zeolite composites. Mater. Express 2014, 4, 465–474. [Google Scholar] [CrossRef]
- Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A. As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater. Sci. Semicond. Process. 2015, 39, 265–275. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, X.; Zheng, L.; Wan, C. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light. Appl. Surf. Sci. 2015, 358, 468–478. [Google Scholar] [CrossRef]
- Akkari, M.; Aranda, P.; Ben Rhaiem, H.; Ben Haj Amara, A.; Ruiz-Hitzky, E. ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. Appl. Clay Sci. 2016, 131, 131–139. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Álvarez-Montero, M.A.; Rodriguez, J.J. Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures. Catal. Today 2016, 266, 36–45. [Google Scholar] [CrossRef]
- Guesh, K.; Mayoral, Á.; Márquez-Álvarez, C.; Chebude, Y.; Díaz, I. Enhanced photocatalytic activity of TiO2 supported on zeolites tested in real wastewaters from the textile industry of Ethiopia. Microporous Mesoporous Mater. 2016, 225, 88–97. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Rodriguez, J.J. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J. Hazard. Mater. 2017, 322, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Maksod, I.H.A.E.; Al-Shehri, A.; Bawaked, S.; Mokhtar, M.; Narasimharao, K. Structural and photocatalytic properties of precious metals modified TiO2-BEA zeolite composites. Mol. Catal. 2017, 441, 140–149. [Google Scholar] [CrossRef]
- Silvestri, S.; Foletto, E.L. Preparation and characterization of Fe2O3/TiO2/clay plates and their use as photocatalysts. Ceram. Int. 2017, 43, 14057–14062. [Google Scholar] [CrossRef]
- Yang, L.; Wang, F.; Hakki, A.; Macphee, D.E.; Liu, P.; Hu, S. The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance. Appl. Surf. Sci. 2017, 392, 687–696. [Google Scholar] [CrossRef]
- Bel Hadjltaief, H.; Ben Ameur, S.; Da Costa, P.; Ben Zina, M.; Elena Galvez, M. Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay. Appl. Clay Sci. 2018, 152, 148–157. [Google Scholar] [CrossRef]
- Bel Hadjltaief, H.; Galvez, M.E.; Ben Zina, M.; Da Costa, P. TiO2/clay as a heterogeneous catalyst in photocatalytic/photochemical oxidation of anionic reactive blue 19. Arab. J. Chem. 2019, 12, 1454–1462. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Islam, D.A.; Acharya, H. Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation. J. Solid State Chem. 2019, 269, 566–574. [Google Scholar] [CrossRef]
- Phan, T.T.N.; Nikoloski, A.N.; Bahri, P.A.; Li, D. Enhanced removal of organic using LaFeO3-integrated modified natural zeolites via heterogeneous visible light photo-Fenton degradation. J. Environ. Manag. 2019, 233, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Bel Hadjltaief, H.; Ben Zina, M.; Galvez, M.E.; Da Costa, P. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. J. Photochem. Photobiol. A 2016, 315, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Hendrix, Y.; Lazaro, A.; Yu, Q.; Brouwers, J. Titania-silica composites: A review on the photocatalytic activity and synthesis methods. World J. Nano Sci. Eng. 2015, 51, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Lu, D.; Shen, B.; Liu, Y.; Lei, J.; Wang, L.; Zhang, J.; Matsuoka, M. Mesoporous silica-based carbon dot/TiO2 photocatalyst for efficient organic pollutant degradation. Microporous Mesoporous Mater. 2016, 226, 79–87. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, X.; Li, R.; Chen, W. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light. J. Hazard. Mater. 2016, 303, 1–9. [Google Scholar] [CrossRef]
- Qu, R.; Li, C.; Liu, J.; Xiao, R.; Pan, X.; Zeng, X.; Wang, Z.; Wu, J. Hydroxyl radical based photocatalytic degradation of halogenated organic contaminants and paraffin on silica gel. Environ. Sci. Technol. 2018, 52, 7220–7229. [Google Scholar] [CrossRef]
- Najafidoust, A.; Haghighi, M.; Abbasi Asl, E.; Bananifard, H. Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes. Sep. Purif. Technol. 2019, 221, 101–113. [Google Scholar] [CrossRef]
- Peter, A.; Mihaly-Cozmuta, L.; Mihaly-Cozmuta, A.; Nicula, C.; Cadar, C.; Jastrzębska, A.; Kurtycz, P.; Olszyna, A.; Vulpoi, A.; Danciu, V.; et al. Silver functionalized titania-silica xerogels: Preparation, morpho-structural and photocatalytic properties, kinetic modeling. J. Alloy. Compd. 2015, 648, 890–902. [Google Scholar] [CrossRef]
- Pal, A.; Jana, T.K.; Chatterjee, K. Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation. Mater. Res. Bull. 2016, 76, 353–357. [Google Scholar] [CrossRef]
- Eddy, D.R.; Puri, F.N.; Noviyanti, A.R. Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO2 photocatalyst. Procedia Chem. 2015, 17, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-D.; Wang, H.-L.; Wei, X.-N.; Liu, X.-Y.; Yang, Y.-F.; Jiang, W.-F. Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core–shell microspheres supported by silica aerogels from industrial fly ash. J. Alloy. Compd. 2016, 659, 240–247. [Google Scholar] [CrossRef]
- Pakdel, E.; Daoud, W.A.; Seyedin, S.; Wang, J.; Razal, J.M.; Sun, L.; Wang, X. Tunable photocatalytic selectivity of TiO2/SiO2 nanocomposites: Effect of silica and isolation approach. Colloids Surf. A 2018, 552, 130–141. [Google Scholar] [CrossRef]
- Liao, G.; He, W.; He, Y. Investigation of microstructure and photocatalytic performance of a modified zeolite supported nanocrystal TiO2 composite. Catalysts 2019, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Shamsabadi, M.; Nezamzadeh-Ejhieh, A. Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles. J. Mol. Catal. A Chem. 2016, 418, 103–114. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Zeolite-based photocatalysts. Chem. Commun. 2004, 13, 1443–1459. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.Y.; Abdelrahman, E.A. Hydrothermal tuning of the morphology and crystallite size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J. Mol. Liq. 2017, 242, 364–374. [Google Scholar] [CrossRef]
Semiconductor | Band Gap (eV) | SBET (m2 g−1) | Pd (nm) | Pv (cm3 g−1) | Contaminant | Light Source | * Removal Performance (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bare | Doped | Bare | Doped | Bare | Doped | Bare | Doped | |||||
TiO2 | 2.60 | - | 71.80 | - | 7.13 | - | 0.13 | Methylene Blue | Vis | - | 100.00 | [19] |
TiO2 | 2.87 | 5.40 | 54.40 | - | - | - | - | Rhodamine B | Vis | 45.00 | 99.00 | [21] |
TiO2 | - | - | 86.35 | - | - | - | 0.25 | Rhodamine B | Vis | 56.00 | 100.00 | [24] |
NaBiO3 | 1.68 | 32.80 | 36.20 | - | - | - | - | Rhodamine B Bisphenol A | Vis | 50.00 55.00 | 99.00 100.00 | [25] |
BiVO4/CeO2 | 2.33 | 6.71 | 78.35 | - | - | 0.06 | 0.20 | Rhodamine B Bisphenol A | Vis | 42.69 20.78 | 92.68 71.95 | [26] |
BiOBr | 2.73 | 0.22 | 0.24 | - | - | - | - | Phenol Rhodamine B | UV | 15.00 100.00 | 42.00 100.00 | [27] |
g-C3N4 | 2.56 | 4.62 | 128.06 | 34.82 | 27.95 | 0.72 | 2.68 | Methylene Blue | Vis | 52.00 | 88.00 | [28] |
g-C3N4 | 2.47 | 18.36 | 29.77 | 23.75 | 14.87 | 0.10 | 0.11 | Tetracycline | Vis | 52.00 | 76.78 | [29] |
Metal Oxide | Dopant | Band Gap (eV) | SBET (m2 g−1) | Pd (nm) | Pv (cm3 g−1) | Contaminant | Light Source | * Removal Performance (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bare | Doped | Bare | Doped | Bare | Doped | Bare | Doped | |||||||
Metal | TiO2 | Ce Nd | 2.40 3.05 | 50.10 | 107.90 87.46 | - | - | - | - | Methylene Blue | Vis | 7.00 | 88.00 | [30] |
Synthetic dye | 67.00 | 15.00 | ||||||||||||
Methylene Blue | 7.00 | 88.00 | ||||||||||||
Synthetic dye | 67.00 | 12.00 | ||||||||||||
TiO2 | Ag+ | 3.12 | 123.00 | 56.00 | - | - | - | - | Rhodamine B | UV | 97.00 | 98.00 | [31] | |
Al3+ | 3.22 | 123.00 | - | - | - | - | 96.00 | |||||||
Mn2+ | 3.00 | 61.00 | - | - | - | - | 98.00 | |||||||
Ni2+ | 3.06 | 48.00 | - | - | - | - | 92.00 | |||||||
TiO2 | Ag+ | 3.08 | 12.71 | 13.92 | 7.78 | 8.13 | 2.16 × 10−2 | 2.45 × 10−2 | Methylene Blue | - | 52.00 | 60.00 | [33] | |
Fe2+ | 2.51 | 12.06 | 9.20 | 2.32 × 10−2 | Vis | 87.00 | ||||||||
Fe3+ | 2.42 | 15.32 | 8.17 | 2.72 × 10−2 | - | 90.00 | ||||||||
FeVO4 | Mn2+ | 1.98 | 27.47 | 45.71 | - | - | - | - | Methylene Blue | - | 70.00 | 76.00 | [34] | |
Malachite Green | 94.00 | 98.00 | ||||||||||||
Ti4+ | 2.08 | 38.23 | - | - | - | - | Methylene Blue | Vis | 70.00 | 70.00 | ||||
Malachite Green | 94.00 | 40.00 | ||||||||||||
Zn2+ | 2.03 | 40.12 | - | - | - | - | Methylene Blue | - | 70.00 | 98.00 | ||||
Malachite Green | 94.00 | 94.00 | ||||||||||||
ZnO | Mn2+ | 3.51 | - | - | - | - | - | - | Methylene Blue | UV | 85.00 | 88.00 | [35] | |
Methyl Orange | 87.00 | 93.30 | ||||||||||||
Congo Red | 86.00 | 93.00 | ||||||||||||
CeO2 | Mn3+ | - | 49.40 | 83.7 | 9.70 | 7.60 | 0.08 | 0.17 | Rhodamine B | - | 32.00 | 77.00 | [36] | |
Fe3+ | - | 72.3 | 6.10 | 0.14 | - | 72.00 | ||||||||
La3+ | - | 56.6 | 4.50 | 0.11 | UV | 40.00 | ||||||||
Pr3+ | - | 63.7 | 3.20 | 0.12 | - | 58.00 | ||||||||
BiOCl | Cu2+ | 2.53 | 3.32 | 2.32 | 3.51 | 3.51 | 1.96 × 10−2 | 2.14 × 10−2 | Tartrazine | Vis | - | 91.00 | [37] | |
TiO2 | Ni2+ | 2.80 | 64.60 | 95.40 | - | - | - | - | 4-Chlorophenol | - | 68.90 | 89.50 | [38] | |
Naproxen | 84.90 | 84.00 | ||||||||||||
Cu2+ | 2.90 | 59.50 | - | - | - | - | 4-Chlorophenol | UV | 68.90 | 90.20 | ||||
Naproxen | 84.90 | 87.40 | ||||||||||||
Fe3+ | 2.80 | 84.40 | - | - | - | - | 4-Chlorophenol | - | 68.90 | 37.00 | ||||
Naproxen | 84.90 | 97.70 | ||||||||||||
TiO2 | Vd | 2.89 | 61.05 | 75.70 | - | - | - | - | Methylene Blue | Vis | 74.00 | 96.00 | [39] | |
Non-metal | TiO2 | N | 2.87 | 61.05 | 72.82 | - | - | - | - | Methylene Blue | Vis | 74.00 | 95.00 | [39] |
TiO2 | S | 2.28 | 120.00 | 132 | - | - | - | - | 1,2-DCE | Vis | 16.00 | 99.00 | [40] | |
g-C3N4 | P | - | 26.86 | 34.60 | - | - | - | - | Rhodamine B | Vis | 75.00 | 99.00 | [41] | |
BiVO4 | S | 2.44 | 1.72 | 3.18 | - | - | - | - | Methylene Blue | Vis | 50.00 | 99.00 | [42] | |
TiO2 | S | 2.80 | 71.00 | 89.00 | - | - | 0.41 | 0.48 | Methyl Orange | Vis | 11.20 | 94.30 | [43] | |
BiOBr | B | - | 8.90 | 8.60 | - | - | - | - | Rhodamine B | Vis | 71.00 | 99.30 | [44] | |
Phenol | 46.00 | 78.30 | ||||||||||||
BiOCl | F | 3.47 | 16.45 | 16.97 | - | - | - | - | Rhodamine B | Vis | 78.90 | 99.70 | [45] | |
Methylene Blue | 94.10 | 92.50 | ||||||||||||
TiO2 | N | - | 69.50 | 68.10 | 11.35 | 18.36 | 0.20 | 0.31 | Methylene Blue | Solar | 60.00 | 88.00 | [46] | |
B | - | 126.40 | 6.96 | 0.33 | 65.00 | |||||||||
CeVO4 | P | 1.66 | 37.00 | 68.70 | - | - | - | - | Methylene Blue | Vis | 39.20 | ~100.00 | [47] | |
Methyl Orange | 25.80 | 88.20 | ||||||||||||
ZnO | N | 3.38 | 15.90 | 18.20 | - | - | 47.44 | 47.26 | Rhodamine B | Vis | 90.46 | 100.00 | [48] | |
TiO2/SiO2 | S | 3.15 | 37.10 | 148.60 | - | - | - | - | Phenol | Vis | 13.30 | 100.00 | [49] | |
TiO2 | 3.16 | 58.50 | - | - | - | - | 75.80 | |||||||
ZnO | N | 2.95 | 4.46 | 12.681 | - | - | - | - | Brilliant Smart Green | Vis | 66.00 | 83.00 | [50] | |
ZnO/GO | 2.91 | 22.128 | - | - | - | - | 100.00 | |||||||
Co-doping | TiO2 | V,N | 2.65 | 61.05 | 103.87 | - | - | - | - | Methylene Blue | Vis | 74.00 | 99.00 | [39] |
TiO2 | S,N,C | 2.9 | 226.2 | 85.1 | 2.20 | 3.6 | 0.253 | 0.203 | Microcystin-LR | Vis | 11.00 | ~100.00 | [51] | |
BiVO4 | N,Sm | 2.16 | 3.14 | 5.17 | - | - | - | - | Methyl Orange | Vis | 30.00 | 95.00 | [52] | |
g-C3N4 | K,Na | 2.58 | 8.90 | 46.90 | - | - | - | - | Rhodamine B | Vis | 19.00 | 89.00 | [53] | |
TiO2 | In,C | 2.62 | 60.00 | 92.00 | - | - | - | - | Methylene Blue | Vis | 40.00 | 92.00 | [54] | |
Reactive Red 4 | 38.00 | 92.00 | ||||||||||||
TiO2 | Bi,Ni | 2.89 | - | 74.00 | - | - | - | - | Ofloxacin | Solar | 40.00 | 86.00 | [55] | |
NiO | B,N | - | 70.00 | 144.50 | - | - | - | - | 4NCB | Vis | 56.00 | 84.00 | [56] | |
BiFeO3 | Le,Se | 1.97 | 3.30 | 10.00 | 2.20 | 1.96 | 0.02 | 0.06 | Congo Red | Vis | 16.50 | 32.50 | [57] | |
TiO2 | C,N | 2.99 | 21.70 | 72.40 | 2.80–8.70 | 9.30 | 0.05 | 0.27 | Ibuprofen | Vis | 11.10 | 100.00 | [58] | |
ZnO | Y,V | 2.38 | 6.90 | 11.13 | - | - | - | - | Rhodamine B | Vis | 48.00 | 90.00 | [59] | |
TiO2 | Sn,La | 3.17 | 4.40 | 85.70 | - | - | - | - | Rhodamine B | Vis | 82.50 | 99.00 | [60] | |
g-C3N4 | B,P | 2.61 | 8.40 | 85.60 | - | - | 0.06 | 0.38 | Oxytetracycline | Vis | 35.00 | 71.00 | [61] | |
Rhodamine B | 48.00 | 100.00 | ||||||||||||
Bi5FeTi3O15 | Ni,Eu | 2.16 | 8.84 | 14.66 | 5.15 | 4.85 | 0.03 | 0.25 | Rhodamine B | Vis | 85.00 | 99.00 | [62] |
Bare | SBET (m2 g−1) | Pd (nm) | Pv (cm3 g−1) | Band Gap (eV) | Contaminant | Light Source | * Degradation Efficiency (%) | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bare | Composite | Bare | Composite | Bare | Composite | Bare | Composite | ||||||
AC | ZrO2 | - | 423.86 | - | - | - | - | 4.81 | Textile dying wastewater | UV | 13.00 | 32.00 | [75] |
NiO | 404.24 | 3.24 | 24.00 | 47.00 | |||||||||
ZnO | 247.76 | 3.17 | 29.00 | 82.00 | |||||||||
TiOSO4 | - | 496.00 | - | 4.14 | - | 0.51 | - | Phenol | UV | - | 58.00 | [76] | |
Naphthol Blue Black | 95.00 | ||||||||||||
Reactive Black 5 | 98.00 | ||||||||||||
TiO2 | - | 1101.00 | - | 3.30 | - | 0.91 | - | Phenol | - | 77.00 | |||
Naphthol Blue Black | 90.00 | ||||||||||||
Reactive Black 5 | 85.00 | ||||||||||||
TiO2 | - | 193.60 | - | 1.21 | - | 5.90 × 10−2 | 2.10 | Methylene Blue | UV | - | 67.00 | [77] | |
SnO | 51.20 | 1.15 | 6.40 × 10−2 | 1.25 | 96.00 | ||||||||
WO3 | 49.70 | 1.18 | 7.00 × 10−2 | 1.70 | 60.00 | ||||||||
NiO | 27.60 | 1.53 | 5.30 × 10−2 | 1.35 | 94.00 | ||||||||
Cu2O/TiO2 | 50.00 | 51 | 26.70 | 27.50 | 0.38 | 0.41 | 2.90 | Nitrite | UV | 57.60 | 42.50 | [79] | |
Oxalic acid | 99.80 | 96.90 | |||||||||||
TiO2 | - | 849.20 | - | 3.74 | - | 0.78 | - | Amoxicillin | Solar | 88.00 | 100.00 | [83] | |
Ampicillin | 84.00 | 100.00 | |||||||||||
Diclofenac | 64.00 | 85.00 | |||||||||||
Paracetamol | 57.00 | 70.00 | |||||||||||
Ag/AgBr | - | 72.70 | - | 6.43 | - | 0.08 | - | Methyl Orange | Vis | 93.30 | 95.45 | [84] | |
ZnO/Fe3O4 | - | 1282.29 | - | 1.85 | - | 0.49 | - | Methylene Blue | Vis | 72.00 | 90.00 | [85] | |
MOF | 150.70 | 199.40 | - | - | 0.43 | 0.41 | 3.79 | Reactive Red 198 | UV | 87.00 | 99.00 | [86] | |
Ag-Ag-Br | 62.38 | 117.68 | 79.10 | 8.48 | - | - | - | Rhodamine B | Vis | 82.00 | 99.90 | [87] | |
CNT | Ag-TiO2 | 48.00 | 148.00 | 11.50 | 10.70 | 0.47 | 0.81 | 2.50 | Thiophene | Vis | 47.00 | 99.00 | [88] |
ZnO | 31.40 | 103.90 | - | - | - | - | - | Rhodamine B | Solar | 15.00 | 40.00 | [89] | |
TeVAg | - | 81.00 | - | - | - | 0.12 | - | Rhodamine B | Vis | 20.00 | 100.00 | [90] | |
ZnCr | 13.98 | 35.15 | 42.18 | 16.79 | 0.15 | 0.16 | - | Bisphenol A | Vis | 80.00 | ~100.00 | [91] | |
BiFeO3 | 8.90 | 47.80 | - | - | - | - | 1.70 | Rhodamine B | Vis | 26.00 | ~100.00 | [92] | |
mpg-C3N4 | 223.10 | 217.30 | 17.20 | 16.10 | 1.10 | 1.07 | - | Methyl Orange | Vis | 25.00 | 88.00 | [93] | |
Rhodamine B | 4.00 | 95.00 | |||||||||||
TC | 53.20 | 67.13 | |||||||||||
TiO2 | 196.50 | 275.00 | 11.84 | 16.67 | 0.58 | 1.03 | 3.11 | Rhodamine B | Vis | 78.00 | 89.00 | [94] | |
WO3 | 40.00 | 160.00 | 185.00 | 164.00 | - | - | 2.68 | Naphthalene | Vis | 18.00 | 66.00 | [95] | |
MOF | - | 499.00 | - | 3.52 | - | 0.44 | - | Reactive Black 5 | UV | 45.00 | 59.00 | [96] | |
TiO2 | 72.24 | 106.10 | 23.56 | 6.51 | 0.43 | 0.17 | - | Methyl Orange | Solar | 31.40 | 87.00 | [80] | |
C3N4 | 21.30 | 49.30 | - | - | - | - | 2.68 | Rhodamine B | Vis | 81.00 | 99.00 | [97] | |
α-Bi2O3 | 5.90 | 17.20 | - | - | - | - | 2.75 | Doxycycline | Vis | 62.00 | 91.00 | [98] | |
TiO2 | 84.39 | 95.91 | - | - | 0.25 | 0.25 | - | Phenol | UV | 50.00 | ~100.00 | [99] | |
Graphene | ZnO | 34.10 | 22.35 | - | - | - | - | - | Methylene Blue | Vis | 66.57 | 82.57 | [82] |
β-SnWO4 | 0.56 | 26.12 | - | - | - | - | 2.30 | Methyl Orange | Vis | 55.00 | 90.00 | [100] | |
Rhodamine B | 60.00 | 91.00 | |||||||||||
Au/TiO2 | 112.60 | 115.40 | - | - | - | - | 3.25 | 2,4-Dichlorophenol | Vis | 77.60 | 95.40 | [101] | |
Cd0.5Zn0.5S | 10.80 | 51.80 | - | - | - | - | 2.41 | Malachite Green | Solar | 45.00 | 96.00 | [102] | |
Ag3PO4 | 0.14 | 7.553 | - | - | - | - | 2.10 | 2,4-Dichlorophenol | Vis | 50.41 | 98.43 | [103] | |
CeO2 | 11.39 | 15.08 | - | - | - | - | - | Rhodamine B | Vis | 18.50 | 85.00 | [104] | |
FTS | 225.00 | 249.00 | - | - | 0.68 | 0.78 | 3.15 | Rhodamine B | Solar | 60.00 | 97.50 | [105] | |
Bi-TiO2 | 79.61 | 158.80 | - | - | - | - | 2.78 | Methylene Blue | Vis | 60.00 | 95.00 | [106] | |
Dinoseb | 29.00 | 71.00 | |||||||||||
TiO2 | 55.00 | 68.40 | 18.72 | 23.52 | 0.26 | 0.41 | - | Methylene Blue | UV | - | 99.40 | [107] | |
Methyl Orange | 86.90 | ||||||||||||
Ketoprofen | 44.90 | ||||||||||||
ZnO | 2.34 | 19.43 | - | - | - | - | - | Methylene Blue | Vis | 35.30 | 93.90 | [108] | |
Rhodamine B | 29.30 | 88.10 | |||||||||||
Methyl Orange | 22.60 | 75.30 | |||||||||||
BiVO4 | 2.39 | 3.29 | 10.66 | 10.39 | 0.06 | 0.09 | 2.37 | Malachite Green | Vis | 77.29 | 99.50 | [109] | |
Rhodamine B | 64.94 | 99.84 | |||||||||||
BiOI | - | 45.57 | 5.36 | 0.17 | 1.58 | Methylene Blue | Vis | 43.00 | 68.00 | [110] | |||
ZnO | 41.00 | 268.50 | 13.20 | 12.90 | 0.18 | 1.12 | 2.42 | Methylene Blue | Solar | 26.00 | 98.00 | [111] | |
PANI | 15.41 | 35.06 | - | - | - | - | 2.74 | Malachite Green | Vis | 61.07 | 99.68 | [112] | |
Rhodamine B | 70.46 | 99.35 | |||||||||||
Congo Red | 73.66 | 98.73 | |||||||||||
CdS | 1.90 | 175.00 | - | - | 4.00 × 10−3 | 0.29 | - | Rhodamine B | Vis | 36.00 | 98.90 | [113] | |
Ag/Mn3O4 | 16.97 | 10.07 | 1.61 | 2.60 | 0.39 | 0.26 | - | Congo Red | Vis | - | ~100.00 | [114] | |
Methylene Blue | ~100.00 | ||||||||||||
CQDs/CDs | Fe3O4@mTiO2 | 489.00 | 267.07 | - | - | - | - | 2.11 | Ciprofloxacin | Vis | 31.00 | 98.00 | [81] |
Methylene Blue | 28.00 | 95.00 | |||||||||||
Quinalphos | 48.00 | 90.00 | |||||||||||
p-Nitrophenol | 10.00 | 82.00 | |||||||||||
BiOBr | 6.66 | 23.65 | 10.45 | 12.45 | 1.70 × 10−2 | 0.07 | 1.86 | Rhodamine B | Vis | 57.00 | ~100.00 | [115] | |
ZnS | - | 98.40 | - | - | - | - | - | Methylene Blue | Solar | 68.00 | 90.00 | [116] | |
Rhodamine B | 48.00 | 73.00 | |||||||||||
TiO2 | 83.00 | 53.00 | 3.50 | 3.40 | 0.08 | 0.04 | - | Methylene Blue | Vis | 6.00 | 98.00 | [117] | |
Bi2SiO5 | 30.87 | 29.93 | - | Rhodamine B | UV | 62.60 | 92.90 | [118] | |||||
BiOBr | 15.30 | 37.50 | 0.04 | 0.13 | 0.11 | 0.27 | - | Rhodamine B | Vis | 70.00 | 89.30 | [119] | |
Bi2WO6 | 42.60 | 51.30 | - | - | - | - | - | Methyl Orange | Vis | 47.30 | 94.10 | [120] | |
Bisphenol A | 32.30 | 99.50 | |||||||||||
MOF | 487.00 | 198.00 | - | - | - | - | 2.35 | Rhodamine B | Vis | 64.00 | 100.00 | [121] |
Composite | SBET (m2 g−1) | Pd (nm) | Pv (cm3 g−1) | Band Gap (eV) | Contaminant | Light Source | * Degradation Efficiency (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bare | Composite | Bare | Composite | Bare | Composite | Metal Oxide | Composite | |||||
TiO2/MMT | 10.20 | 209.50 | 14.67 | 4.88 | 0.03 | 0.19 | - | Methylene Blue | Vis | 24.00 | 60.00 | [131] |
TiO2/MMT | 58.00 | 100.00 | - | - | 0.14 | 0.17 | 3.19 | Rhodamine B | Solar | - | 100.00 | [132] |
Phenol | 76.00 | |||||||||||
TiO2/zeolite | 197.00 | 433.00 | - | - | - | - | - | Methylene Blue | UV | - | 90.00 | [133] |
NiO–ZSM-5 | 380.00 | 360.00 | - | - | 0.22 | 0.16 | - | Malachite Green | UV | - | 93.00 | [134] |
TiO2/MoS2@zeolite | 18.50 | 139.60 | 20.70 | 9.00 | - | - | - | Methyl Orange | Solar | 55.00 | 95.00 | [135] |
ZnO/CLO | - | 96.00 | - | - | - | 0.25 | 2.98 | Methylene Blue | UV | 38.00 | 99.00 | [136] |
ZnO/TSM ZnO/Sep-1 | - - | 50.50 103.60 | - - | 0.20 0.37 | 3.10 3.01 | 92.00 48.00 | 99.00 98.00 | |||||
TiO2/CLO | 58.00 | 211.00 | - | - | 0.14 | 0.25 | 2.70 | Rhodamine B | Solar | - | 100.00 | [137] |
Phenol | 76.00 | |||||||||||
TiO2-zeolite | 720.00 | 415.00 | - | - | - | 0.10 | - | Methyl Orange | UV | 96.00 | 87.18 | [138] |
TiO2-mordenite | 500.00 | 304.00 | - | - | - | - | 96.00 | 98.05 | ||||
CLO/TiO2/Zr | 58.00 | 210.00 | - | 0.14 | 0.28 | 3.12 | Antipyrine | Solar | - | 90.00 | [139] | |
TiO2-zeolite | - | 575.00 | - | 30.00 | - | - | - | Malachite Green | UV | 8.00 | 9.00 | [140] |
Pd-TiO2-zeolite | 247.00 | 48.00 | 88.00 | |||||||||
Au-TiO2-zeolite | 210.00 | 52.00 | 93.00 | |||||||||
Ag-TiO2-zeolite | 208.00 | 56.00 | 70.00 | |||||||||
Fe2O3/TiO2/clay | 3.50 | 6.50 | - | - | - | - | - | Acid Orange 7 | Solar | 10.00 | 91.00 | [141] |
Zeolite/TiO2 | 31.87 | 27.24 | - | - | 0.23 | 0.22 | - | Rhodamine B | Vis | 70.00 | 99.00 | [142] |
ZnO/clay | 36.70 | 132.10 | 2.24 | 5.68 | 0.13 | 0.26 | - | Malachite Green | Solar | - | ~100.00 | [143] |
Congo Red | 97.00 | |||||||||||
Clay/TiO2 | 36.70 | 116.70 | 2.24 | 7.06 | 0.13 | 0.26 | - | Reactive Blue 19 | UV | - | 99.60 | [144] |
CuO/ZIF-8 | 31.82 | 65.40 | - | - | - | - | - | Rhodamine 6G | Solar | 36.00 | 96.00 | [145] |
LaFeO3-zeolite | 12.53 | 88.44 | 13.55 | 7.06 | - | 0.05 | 0.07 | Rhodamine B | Vis | 86.83 | 97.60 | [146] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohtar, S.S.; Aziz, F.; Ismail, A.F.; Sambudi, N.S.; Abdullah, H.; Rosli, A.N.; Ohtani, B. Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts 2021, 11, 1160. https://doi.org/10.3390/catal11101160
Mohtar SS, Aziz F, Ismail AF, Sambudi NS, Abdullah H, Rosli AN, Ohtani B. Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts. 2021; 11(10):1160. https://doi.org/10.3390/catal11101160
Chicago/Turabian StyleMohtar, Safia Syazana, Farhana Aziz, Ahmad Fauzi Ismail, Nonni Soraya Sambudi, Hamidah Abdullah, Ahmad Nazrul Rosli, and Bunsho Ohtani. 2021. "Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review" Catalysts 11, no. 10: 1160. https://doi.org/10.3390/catal11101160
APA StyleMohtar, S. S., Aziz, F., Ismail, A. F., Sambudi, N. S., Abdullah, H., Rosli, A. N., & Ohtani, B. (2021). Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts, 11(10), 1160. https://doi.org/10.3390/catal11101160