Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrode Preparation
2.2. Au-MPTS-Pt Fabrication
2.3. Characterisation of Au-MPTS-Pt
2.4. Electrochemical Detection of Glucose
2.5. Interference Study
2.6. Amperometric Measurement of Glucose
2.7. Analysis of Real Samples
2.8. Reusability, Stability and Reproducibility
3. Materials and Methods
3.1. Materials
3.2. Fabrication of the Modified Electrode
3.3. Structural and Morphological Analysis
3.4. Electrochemical Surface Roughness Determination
3.5. Cyclic Voltammetric Detection of Glucose
3.6. Amperometric Detection of Glucose and Interferences
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schijgerl, K.; Hitzmann, B.; Jurgens, H.; Kullick, T.; Ulber, R.; Weigal, B. Challenges in Integrating Biosensors and FIA for On-Line Monitoring and Control. Trends Biotechnol. 1996, 14, 21–23. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. Available online: https://pubmed.ncbi.nlm.nih.gov/27195214 (accessed on 23 April 2021). [CrossRef] [Green Version]
- Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Y.; Fang, B.; Geng, B.; Zhang, X. Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 2013, 180, 161–186. [Google Scholar] [CrossRef]
- Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal Chim. Acta. 2006, 556, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, Y.; Dong, C. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite. Talanta 2015, 137, 87–93. Available online: http://www.sciencedirect.com/science/article/pii/S003991401500065X (accessed on 14 May 2021). [CrossRef]
- Zhao, J.; Wang, F.; Yu, J.; Hu, S. Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta 2006, 70, 449–454. Available online: http://www.sciencedirect.com/science/article/pii/S0039914006002013 (accessed on 16 May 2021). [CrossRef] [PubMed]
- Hui, N.; Wang, J. Electrodeposited honeycomb-like cobalt nanostructures on graphene oxide doped polypyrrole nanocomposite for high performance enzymeless glucose sensing. J. Electroanal. Chem. 2017, 798, 9–16. Available online: http://www.sciencedirect.com/science/article/pii/S1572665717303740 (accessed on 30 May 2021). [CrossRef]
- Jeong, H.; Nguyen, D.M.; Lee, M.S.; Kim, H.G.; Ko, S.C.; Kwac, L.K. N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor. Mater. Sci. Eng. C 2018, 90, 38–45. Available online: http://www.sciencedirect.com/science/article/pii/S0928493117336950 (accessed on 11 June 2021). [CrossRef] [PubMed]
- Muthuchamy, N.; Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Lee, Y.R. High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. J. Electroanal. Chem. 2018, 816, 195–204. [Google Scholar] [CrossRef]
- McCormick, W.; Muldoon, C.; McCrudden, D. Electrochemical flow injection analysis for the rapid determination of reducing sugars in potatoes. Food Chem. 2021, 340, 127919. Available online: http://www.sciencedirect.com/science/article/pii/S0308814620317817 (accessed on 17 June 2021). [CrossRef]
- Song, Y.-Y.; Zhang, D.; Gao, W.; Xia, X.-H. Nonenzymatic Glucose Detection by Using a Three-Dimensionally Ordered, Macroporous Platinum Template. Chem. A Eur. J 2005, 11, 2177–2182. [Google Scholar] [CrossRef]
- Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent advances in electrochemical glucose biosensors: A review. RSC Adv. 2013, 3, 4473–4491. [Google Scholar] [CrossRef]
- McCormick, W.; McCrudden, D. Development of a highly nanoporous platinum screen-printed electrode and its application in glucose sensing. J. Electroanal. Chem. 2020, 860, 113912. Available online: http://www.sciencedirect.com/science/article/pii/S1572665720300953 (accessed on 28 May 2021). [CrossRef]
- Park, S.; Chung, T.D.; Kim, H.C. Nonenzymatic Glucose Detection Using Mesoporous Platinum. Anal. Chem. 2003, 75, 3046–3049. [Google Scholar] [CrossRef]
- Lotfi, Z.; Gholivand, M.B.; Shamsipur, M. Introduction of a non-enzymatic glucose sensor based on a g-C3N4/NiO/CuO nanocomposite. Anal. Biochem 2020, 616, 114062. Available online: http://www.sciencedirect.com/science/article/pii/S0003269720305947 (accessed on 27 April 2021). [CrossRef]
- Espro, C.; Marini, S.; Giusi, D.; Ampelli, C.; Neri, G. Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. J. Electroanal. Chem. 2020, 873, 114354. Available online: http://www.sciencedirect.com/science/article/pii/S1572665720305816 (accessed on 24 May 2021). [CrossRef]
- Shamsabadi, A.S.; Tavanai, H.; Ranjbar, M.; Farnood, A.; Bazarganipour, M. Electrochemical non-enzymatic sensing of glucose by gold nanoparticles incorporated graphene nanofibers. Mater. Today Commun. 2020, 24, 100963. Available online: http://www.sciencedirect.com/science/article/pii/S2352492819314667 (accessed on 18 June 2021). [CrossRef]
- Promsuwan, K.; Kachatong, N.; Limbut, W. Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes. Electrochim. Acta 2019, 320, 134621. Available online: http://www.sciencedirect.com/science/article/pii/S0013468619314690 (accessed on 21 March 2021). [CrossRef]
- Khosroshahi, Z.; Karimzadeh, F.; Kharaziha, M.; Allafchian, A. A non-enzymatic sensor based on three-dimensional graphene foam decorated with Cu-xCu2O nanoparticles for electrochemical detection of glucose and its application in human serum. Mater. Sci. Eng. C 2020, 108, 110216. Available online: http://www.sciencedirect.com/science/article/pii/S0928493119312391 (accessed on 29 June 2021). [CrossRef] [PubMed]
- Ji, X.; Ren, J.; Ni, R.; Liu, X. A stable and controllable Prussian blue layer electrodeposited on self-assembled monolayers for constructing highly sensitive glucose biosensor. Analyst 2010, 135, 2092–2098. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.-M.; Wu, X.; Liu, X.-C.; Dong, W.-H.; Han, B.-K.; Du, X.; Zhang, C.; Zhang, Y.-Y.; Wang, H.-T.; et al. An array of poly-l-histidine functionalized multi-walled carbon nanotubes on 4-aminothiophenol self-assembled monolayer and the application for sensitively glucose sensing. Electrochim. Acta 2017, 258, 988–997. Available online: http://www.sciencedirect.com/science/article/pii/S0013468617325124 (accessed on 6 April 2021). [CrossRef]
- Lee, I.; Loew, N.; Tsugawa, W.; Ikebukuro, K.; Sode, K. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. Biosens. Bioelectron. 2019, 124–125, 216–223. [Google Scholar] [CrossRef]
- Thompson, W.R.; Cai, M.; Ho, M.; Pemberton, J.E. Hydrolysis and Condensation of Self-Assembled Monolayers of (3-Mercaptopropyl)trimethoxysilane on Ag and Au Surfaces. Langmuir 1997, 13, 2291–2302. [Google Scholar] [CrossRef]
- Kloke, A.; Köhler, C.; Gerwig, R.; Zengerle, R.; Kerzenmacher, S. Cyclic Electrodeposition of PtCu Alloy: Facile Fabrication of Highly Porous Platinum Electrodes. Adv. Mater. 2012, 24, 2916–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weremfo, A.; Fong, S.T.C.; Khan, A.; Hibbert, D.B.; Zhao, C. Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors. Electrochim Acta 2017, 231, 20–26. Available online: http://www.sciencedirect.com/science/article/pii/S0013468617302682 (accessed on 9 June 2021). [CrossRef]
- Trasatti, S.; Petri, A. Real Surface AREA Measurements IN ELECTROCHEMISTRY. Int. Union Pure Appl. Chem. 1991, 63, 711–734. [Google Scholar] [CrossRef]
- Chou, C.-H.; Chen, J.-C.; Tai, C.-C.; Sun, I.-W.; Zen, J.-M. A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water-Insensitive Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid. Electroanalysis 2008, 20, 771–775. [Google Scholar] [CrossRef]
- Yang, D.-Q.; Hennequin, B.; Sacher, E. XPS Demonstration of π−π Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles. Chem. Mater. 2006, 18, 5033–5038. [Google Scholar] [CrossRef]
- Romanchenko, A.; Likhatski, M.; Mikhlin, Y. X-ray Photoelectron Spectroscopy (XPS) Study of the Products Formed on Sulfide Minerals Upon the Interaction with Aqueous Platinum (IV) Chloride Complexes. Minerals 2018, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhou, F.; Yao, Y.; Zhang, Y.; Du, L.; Geng, D.; Wang, P. Ordered assembly of platinum nanoparticles on carbon nanocubes and their application in the non-enzymatic sensing of glucose. J. Electroanal. Chem. 2017, 803, 165–172. [Google Scholar] [CrossRef]
- Unmüssig, T.; Weltin, A.; Urban, S.; Daubinger, P.; Urban, G.A.; Kieninger, J. Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures. J. Electroanal. Chem. 2018, 816, 215–222. Available online: https://www.sciencedirect.com/science/article/pii/S1572665718302364 (accessed on 20 August 2021). [CrossRef]
- Lin, L.; Weng, S.; Zheng, Y.; Liu, X.; Ying, S.; Chen, F.; You, D. Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential. J. Electroanal. Chem. 2020, 865, 114147. [Google Scholar] [CrossRef]
- Imran, H.; Vaishali, K.; Antony Francy, S.; Manikandan, P.N.; Dharuman, V. Platinum and zinc oxide modified carbon nitride electrode as non-enzymatic highly selective and reusable electrochemical diabetic sensor in human blood. Bioelectrochemistry 2021, 137, 107645. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, A.; Navaneeth, P.; Suneesh, P.V.; Nair, B.G.; Babu, T.G.S. A graphite pencil electrode with electrodeposited Pt-CuO for nonenzymatic amperometric sensing of glucose over a wide linear response range. Mikrochim. Acta 2020, 187, 113. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Deng, X.; Xia, L. Non-enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene. Sci. Rep. 2020, 10, 16788. [Google Scholar] [CrossRef]
- Hu, Y.J.; Du, W.J.; Chen, C.Y. Fabrication of flower-shaped Pt-Au-graphene nanostructure and its application in electrochemical detection of glucose. Chin. J. Anal Chem. 2014, 42, 1240–1244. [Google Scholar] [CrossRef]
- Dhara, K.; Stanley, J.; Ramachandran, T.; Nair, B.G.; Satheesh Babu, T.G. Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor. Sens. Actuators B Chem. 2014, 195, 197–205. [Google Scholar] [CrossRef]
- Remes, A.; Manea, F.; Motoc, S.; Baciu, A.; Szerb, E.I.; Gascon, J.; Gug, G. Highly Sensitive Non-Enzymatic Detection of Glucose at MWCNT-CuBTC Composite Electrode. Appl. Sci. 2020, 10, 8419. [Google Scholar] [CrossRef]
- Ridhuan, N.S.; Abdul Razak, K.; Lockman, Z. Fabrication and Characterization of Glucose Biosensors by Using Hydrothermally Grown ZnO Nanorods. Sci. Rep. 2018, 8, 13722. [Google Scholar] [CrossRef]
- Zhang, R.X.; Yang, P.; Zhang, Y.X. A novel high-sensitivity non-enzymatic glucose sensor via Cu2O@CuO@NiCo2O4 nanowires as catalyst. Mater. Lett. 2020, 272, 127850. Available online: https://www.sciencedirect.com/science/article/pii/S0167577X20305553 (accessed on 2 July 2021). [CrossRef]
- Jang, K.; Park, K.R.; Kim, K.M.; Hyun, S.; Ahn, C.; Kim, J.C.; Lim, S.; Han, H.; Mhin, S. Electrochemical performance of the spinel NiCo2O4 based nanostructure synthesized by chemical bath method for glucose detection. Appl. Surf. Sci. 2021, 545, 148927. Available online: https://www.sciencedirect.com/science/article/pii/S0169433221000039 (accessed on 18 July 2021). [CrossRef]
- Xu, J.; Gao, Z.; Dou, X.; Song, Y.-Y. Needle-like Co3O4 nanoarrays as a dual-responsive amperometric sensor for enzyme-free detection of glucose and phosphate anion. J. Electroanal. Chem. 2021, 897, 115605. Available online: https://www.sciencedirect.com/science/article/pii/S1572665721006317 (accessed on 18 July 2021). [CrossRef]
Electrode Modification | Potential (V) | Linear Range (mM) | Sensitivity (µA mM−1 cm−2) | Detection Limit (µM) | Year and Ref. |
---|---|---|---|---|---|
PtNPs/CNCs | −0.30 [a] | 0.05–10.0 | - | 20 | 2017 [31] |
Hierarchical Pt micro-/nanostructures | +0.45 [a] | Up to 3.0 | 473 | 85 | 2018 [32] |
PtAu/C | −0.33 [b] | 0.01–10 | - | 3 | 2020 [33] |
ZnO-Pt-g-C3N4 | +0.20 [a] | 0.25–110 | 3.34 | 0.1 | 2020 [34] |
Pt-CuO/GPE | +0.60 [a] | Up to 25 | 2035 | 0.1 | 2020 [35] |
PtNi alloy-graphene | +0.30 [a] | 0.5–15.0 | 24.03 | 16 | 2020 [36] |
Pt-Au-graphene/GCE | −0.10 [b] | 1.0–25.0 | 26.33 | 4.0 | 2014 [37] |
Pt-CuO/rGO | +0.60 [a] | 0.0005–12 | 3577 | 0.01 | 2014 [38] |
Pt nanoporous | +0.40 [a] | 1.0–10.0 | 5.67 | 800 | 2017 [26] |
Au-MPTS-Pt | +0.40 [a] | 1.0–7.07.0–18.0 | 191.67135.98 | 37 | This work |
Sample | Hospital Laboratory (mM) | Au/MPTS/Pt (mM) | Recovery (%) |
---|---|---|---|
1 | 5.08 | 5.09 | 100.2 |
2 | 7.16 | 7.11 | 99.3 |
3 | 3.75 | 3.55 | 94.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCormick, W.; McDonagh, P.; Doran, J.; McCrudden, D. Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing. Catalysts 2021, 11, 1161. https://doi.org/10.3390/catal11101161
McCormick W, McDonagh P, Doran J, McCrudden D. Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing. Catalysts. 2021; 11(10):1161. https://doi.org/10.3390/catal11101161
Chicago/Turabian StyleMcCormick, Wesley, Pádraig McDonagh, John Doran, and Denis McCrudden. 2021. "Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing" Catalysts 11, no. 10: 1161. https://doi.org/10.3390/catal11101161
APA StyleMcCormick, W., McDonagh, P., Doran, J., & McCrudden, D. (2021). Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing. Catalysts, 11(10), 1161. https://doi.org/10.3390/catal11101161