Dehydroisomerisation of α-Pinene and Limonene to p-Cymene over Silica-Supported ZnO in the Gas Phase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterisation
2.2. Dehydroisomerisation of α-Pinene
2.3. Dehydroisomerisation of Limonene
3. Materials and Methods
3.1. Chemicals and Catalysts
3.2. Techniques
3.3. Catalyst Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberge, D.M.; Buhl, D.; Niederer, J.P.M.; Hölderich, W.F. Catalytic aspects in the transformation of pinenes to p-Cymene. Appl. Catal. A 2001, 215, 111–124. [Google Scholar] [CrossRef]
- Weissermel, K.; Arpe, H.J. Industrial Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Neatu, F.; Culica, G.; Florea, M.; Parvulescu, V.I.; Cavani, F. Synthesis of terephthalic acid by p-Cymene oxidation using oxygen: Toward a more sustainable production of bio-polyethylene terephthalate. ChemSusChem 2016, 9, 3102–3112. [Google Scholar] [CrossRef]
- Erman, W.F. Chemistry of the Monoterpenes: An Encyclopedic Handbook; Dekker, M.: New York, NY, USA, 1985. [Google Scholar]
- Severino, A.; Esculcas, A.; Rocha, J.; Vital, J.; Lobo, L.S. Effect of extra-lattice aluminium species on the activity, selectivity and stability of acid zeolites in the liquid phase isomerisation of α-pinene. Appl. Catal. A 1996, 142, 255–278. [Google Scholar] [CrossRef]
- Gunduz, G.; Dimitrova, R.; Yilmaz, S.; Dimotrov, L. Liquid phase transformation of α-pinene over Beta zeolites containing aluminium or boron, titanium and vanadium as lattice ions. Appl. Catal. A 2005, 282, 61–65. [Google Scholar] [CrossRef]
- Rachwalik, R.; Olejniczak, Z.; Jiao, J.; Huang, J.; Hunger, M.; Sulikwoski, B. Isomerization of α-pinene over dealuminated ferrierite-type zeolites. J. Catal. 2007, 252, 161–170. [Google Scholar] [CrossRef]
- Yadav, M.K.; Chudasama, C.D.; Jasra, R.V. Isomerisation of α-pinene using modified montmorillonite clays. J. Mol. Catal. A 2004, 216, 51–59. [Google Scholar] [CrossRef]
- Volzone, C.; Masini, O.; Comelli, N.A.; Grzona, L.M.; Ponzi, E.N.; Ponzi, M.I. α-Pinene conversion by modified-kaolinitic clay. Mater. Chem. Phys. 2005, 93, 296–300. [Google Scholar] [CrossRef]
- Comelli, N.A.; Ponzi, E.N.; Ponzi, M.I. α-Pinene isomerization to camphene: Effect of thermal treatment on sulfated zirconia. Chem. Eng. J. 2006, 117, 93–99. [Google Scholar] [CrossRef]
- Chimal-Valencia, O.; Robau-Sanchez, A.; Collins-Martinez, V.; Aguilar-Elguezabal, A. Ion exchange resins as catalyst for the isomerization of α-pinene to camphene. Bioresour. Technol. 2004, 93, 119–123. [Google Scholar] [CrossRef]
- Comelli, N.A.; Grzona, L.M.; Masini, O.; Ponzi, E.N.; Ponzi, M.I. Obtention of camphene with H3PW12O40 catalysts supported on TiO2, SiO2 and ZrO2nH2O. J. Chil. Chem. Soc. 2004, 49, 245–250. [Google Scholar] [CrossRef]
- Newman, A.D.; Lee, A.F.; Wilson, K.; Young, N.A. On the active site in H3PW12O40/SiO2 catalysts for fine chemical synthesis. Catal. Lett. 2005, 102, 45–50. [Google Scholar] [CrossRef]
- Da Silva Rocha, K.A.; Robles-Dutenhefner, P.A.; Kozhevnikov, I.V.; Gusevskaya, E.V. Phosphotungstic heteropoly acid as efficient heterogeneous catalyst for solvent-free isomerization of α-pinene and longifolene. Appl. Catal. A 2009, 35, 188–192. [Google Scholar] [CrossRef]
- Alsalme, A.; Kozhevnikova, E.F.; Kozhevnikov, I.V. α-Pinene isomerisation over heteropoly acid catalysts in the gas-phase. Appl. Catal. A 2010, 390, 219–224. [Google Scholar] [CrossRef]
- Stanislaus, A.; Yeddanapalli, L.M. Vapor phase catalytic transformations of terpene hydrocarbons in the C10H16 series. II. Aromatization of α-pinene over chromia-alumina. Can. J. Chem. 1972, 50, 113–118. [Google Scholar] [CrossRef]
- Linnekoski, J.A.; Asikainen, M.; Heikkinen, H.; Kaila, R.K.; Rasanen, J.; Laitinen, A.; Harlin, A. Production of p-Cymene from crude sulphate turpentine with commercial zeolite catalyst using a continuous fixed bed reactor. Org. Process. Res. Dev. 2014, 18, 1468–1475. [Google Scholar] [CrossRef]
- Golets, M.; Ajaikumar, S.; Mohln, M.; Wärna, J.; Rakesh, S.; Mikkola, J.-P. Continuous production of the renewable p-Cymene from α-pinene. J. Catal. 2013, 307, 305–315. [Google Scholar] [CrossRef]
- Al-Wadaani, F.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Zn(II)–Cr(III) mixed oxide as efficient bifunctional catalyst for dehydroisomerisation of α-pinene to p-Cymene. Appl. Catal. A 2009, 363, 153–156. [Google Scholar] [CrossRef]
- Satira, A.; Espro, C.; Paone, E.; Calabrò, P.; Pagliaro, M.; Ciriminna, R.; Mauriello, F. The limonene biorefinery: From extractive technologies to its catalytic upgrading into p-Cymene. Catalysts 2021, 11, 387. [Google Scholar] [CrossRef]
- Retajczyk, M.; Wróblewska, A. Isomerization and dehydroaromatization of R-(+)-limonene over the Ti-MCM-41 catalyst: Effect of temperature, reaction time and catalyst content on product yield. Catalysts 2019, 9, 508. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, J.; Luo, Z.; Zhao, C. Mechanisms into dehydroaromatization of bioderived limonene to p-Cymene over Pd/HZSM-5 in the presence and absence of H2. RSC Adv. 2016, 6, 66695–66704. [Google Scholar] [CrossRef]
- Yilmazoglu, E.; Akgün, M. p-Cymene production from orange peel oil using some metal catalyst in supercritical alcohols. J. Supercrit. Fluids 2018, 131, 37–46. [Google Scholar] [CrossRef]
- Kamitsou, M.; Panagiotou, G.D.; Triantafyllidis, K.S.; Bourikas, K.; Lycourghiotis, A.; Kordulis, C. Transformation of α-limonene into p-Cymene over oxide catalysts: A green chemistry approach. Appl. Catal. A 2014, 474, 224–229. [Google Scholar] [CrossRef]
- Buhl, D.; Roberge, D.M.; Hölderich, W.F. Production of p-Cymene from limonene over silica supported Pd catalysts. Appl. Catal. A 1999, 188, 287–299. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; Wiley-Interscience: New York, NY, USA, 1988. [Google Scholar]
- Monda, F.; Madsen, R. Zinc oxide-catalyzed dehydrogenation of primary alcohols into carboxylic acids. Chem. Eur. J. 2018, 24, 17832–17837. [Google Scholar] [CrossRef]
- Al-Wadaani, F.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Pd supported on Zn(II)–Cr(III) mixed oxide as a catalyst for one-step synthesis of methyl isobutyl ketone. J. Catal. 2008, 257, 199–205. [Google Scholar] [CrossRef]
- Costa, V.V.; Bayahia, H.; Kozhevnikova, E.F.; Gusevskaya, E.V.; Kozhevnikov, I.V. Highly active and recyclable metal oxide catalysts for the Prins condensation of biorenewable feedstocks. ChemCatChem 2014, 6, 2134–2139. [Google Scholar] [CrossRef]
- Bayahia, H.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Ketonisation of carboxylic acids over Zn-Cr oxide in the gas phase. Appl. Catal. B 2015, 165, 253–259. [Google Scholar] [CrossRef]
- Knözinger, H. Infrared spectroscopy for the characterization of surface acidity and basicity. In Handbook of Heterogeneous Catalysis, 2nd ed.; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds.; Wiley-VCH: Weinheim, Germany, 2008; Volume 2, p. 1138. [Google Scholar]
- Heitmann, G.P.; Dahlhoff, G.; Hoelderich, W.F. Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. J. Catal. 1999, 186, 12–19. [Google Scholar] [CrossRef]
- Barbera, K.; Bonino, F.; Bordiga, S.; Janssens, T.V.W.; Beato, P. Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. J. Catal. 2011, 280, 196–205. [Google Scholar] [CrossRef]
- Bayahia, H.; Kozhevnikova, E.; Kozhevnikov, I.V. High catalytic activity of silicalite in gas-phase ketonisation of propionic acid. Chem. Commun. 2013, 49, 3842–3844. [Google Scholar] [CrossRef]
Catalyst 1 | SBET 2 (m2 g−1) | Pore Volume 3 (cm3 g−1) | Pore Size 4 (Å) | Water Content 5 (wt%) |
---|---|---|---|---|
ZnO | 0.01 | - | - | - |
SiO2(300) | 296 | 1.32 | 179 | - |
5%ZnO/SiO2(300) | 294 | 0.96 | 155 | - |
10%ZnO/SiO2(300) | 218 | 1.14 | 209 | 1.2 (1.3) |
15%ZnO/SiO2(300) | 188 | 0.90 | 191 | - |
20%ZnO/SiO2(300) | 162 | 0.90 | 222 | - |
30%ZnO/SiO2(300) | 130 | 0.77 | 237 | - |
10%ZnO/SiO2(200) | 166 | 0.68 | 163 | 1.5 (1.4) |
10%ZnO/SiO2(600) | 491 | 0.91 | 74 | 2.0 (2.0) |
10%ZnO/SiO2(750) | 391 | 1.19 | 121 | 4.5 (3.5) |
Entry | Catalyst | Conversion 2 (%) | Selectivity (%mol) 2 | ||||
---|---|---|---|---|---|---|---|
Lights | Camphene | Limonene | p-Cymene | Other | |||
1 | SiO2(300) | 98 | 9 | 13 | 20 | 0 | 59 |
2 | ZnO | 98 | 8 | 5 | 0 | 52 | 35 |
3 | 5%ZnO/SiO2(300) | 100 | 10 | 0 | 0 | 86 | 4 |
4 | 10%ZnO/SiO2(300) | 100 | 12 | 0 | 0 | 88 | 0 |
5 | ZnO+SiO2(300) (1:9) 3 | 100 | 9 | 6 | 0 | 21 | 64 |
6 | 10%ZnO/SiO2(300) 4 | 100 | 16 | 1 | 0 | 83 | 1 |
7 | 15%ZnO/SiO2(300) | 99 | 14 | 0 | 0 | 83 | 3 |
8 | 20%ZnO/SiO2(300) | 99 | 10 | 1 | 0 | 83 | 6 |
9 | 30%ZnO/SiO2(300) | 98 | 13 | 1 | 0 | 82 | 4 |
Catalyst | Conversion 2 (%) | Selectivity (%mol) 2 | ||||
---|---|---|---|---|---|---|
Lights | Camphene | Limonene | p-Cymene | Other | ||
10%ZnO/SiO2(200) | 100 | 13 | 0 | 0 | 87 | 0 |
10%ZnO/SiO2(300) | 100 | 10 | 0 | 0 | 89 | 1 |
10%ZnO/SiO2(600) | 99 | 16 | 0 | 0 | 83 | 1 |
10%ZnO/SiO2(750) | 99 | 17 | 0 | 0 | 83 | 0 |
Catalyst | Conversion 2 (%) | Selectivity (%mol) 2 | ||||
---|---|---|---|---|---|---|
Camphene | β-Pinene | α-Terpinene | p-Cymene | Terpinolene | ||
5%ZnO/SiO2(300) | >99 | 6 | 6 | 3 | 84 | 1 |
10%ZnO/SiO2(300) | >99 | 1 | 2 | 0 | 97 | 0 |
20%ZnO/SiO2(300) | 100 | 0 | 3 | 0 | 97 | 0 |
30%ZnO/SiO2(300) 3 | 100 | 0 | 2 | 0 | 98 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharif, A.; Smith, N.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Dehydroisomerisation of α-Pinene and Limonene to p-Cymene over Silica-Supported ZnO in the Gas Phase. Catalysts 2021, 11, 1245. https://doi.org/10.3390/catal11101245
Alsharif A, Smith N, Kozhevnikova EF, Kozhevnikov IV. Dehydroisomerisation of α-Pinene and Limonene to p-Cymene over Silica-Supported ZnO in the Gas Phase. Catalysts. 2021; 11(10):1245. https://doi.org/10.3390/catal11101245
Chicago/Turabian StyleAlsharif, Aliyah, Natalie Smith, Elena F. Kozhevnikova, and Ivan V. Kozhevnikov. 2021. "Dehydroisomerisation of α-Pinene and Limonene to p-Cymene over Silica-Supported ZnO in the Gas Phase" Catalysts 11, no. 10: 1245. https://doi.org/10.3390/catal11101245
APA StyleAlsharif, A., Smith, N., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2021). Dehydroisomerisation of α-Pinene and Limonene to p-Cymene over Silica-Supported ZnO in the Gas Phase. Catalysts, 11(10), 1245. https://doi.org/10.3390/catal11101245