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Abstract: This SO4/TiO2 catalyst as a heterogeneous acidic catalyst was synthesized in various
concentrations of H2SO4. The activity and selectivity of the SO4/TiO2 catalyst on the dehydration
reaction of ethanol to diethyl ether were studied as well. The SO4/TiO2 was prepared from TiO2

powder by wet impregnation method with a various aqueous solution of H2SO4 (1; 2; 3 M H2SO4) and
calcination temperature (400, 500, and 600 ◦C) to obtain a catalyst with optimum acidity. The catalysts
were characterized using FTIR, XRD, SEM-EDX, SAA, TGA/DSC, and acidity test gravimetrically
with ammonia. The liquid product of DEE was analyzed by gas chromatography (GC) to analyze
the selectivity of the catalyst. The catalyst TS-3-400 had the highest activity and selectivity in the
dehydration reaction of ethanol to diethyl ether at a temperature of 225 ◦C, with a conversion of
51.83% and a DEE selectivity of 1.72%.

Keywords: diethyl ether; ethanol dehydration; sulfated titania

1. Introduction

The expected gradual depletion of fossil fuels and the environmental impacts from the
fuel exhaust gas has drawn attention to establishing renewable energy sources. Ethanol,
derived from biomass, has stood out as a source of clean and renewable biofuel. In addition,
there is a growing interest in using ethanol in biorefineries to synthesize larger molecules.
Ethanol is a green alternative to petroleum in the production of olefins and aromatics,
and it can also be employed in the production of several oxygenated molecules, such as
1-butanol, acetaldehyde, and diethyl acetate [1–3].

Production of petrochemicals from a non-petroleum, environmentally feedstock and
development of new, efficient ethylene production processes are considered as challenging
research areas [4,5]. At present, the development of alternative energy is commonly
performed to restrict those issues. The use of alternative renewable fuels for diesel engines
has been endorsed worldwide because of fossil gas depletion and the damaging effect of
petroleum gas combustion on the environment [6]. One alternative energy that may be
used is renewable bioethanol [7].

Biodiesel is one of the most promising renewable fuels used for diesel engines without
engine modification [8]. Among the oxygenated options, dimethyl ether (DME) and diethyl
ether (DEE) appeared as one of the promising fuels or an oxygen additive for diesel engines
with its benefits of an excessive cetane quantity and oxygen content [9]. The production
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of DEE is of great interest because, in addition to being an important product in the fine
chemicals industry, it is used as a solvent substitute for aromatic solvents and has a number
of applications in the fuel chemical industry [10].

The use of ethanol requires a high concentration to become fuel, which is a process
that involves much energy. A high-energy separation process is needed to obtain high
concentrations of ethanol. This is due to the nature of ethanol and water that forms
an azeotropic solution at atmospheric pressure and temperature of 78 ◦C and 95% [11].
To minimize this energy, the low concentrations of ethanol can be used to convert into
DEE products. With limited water solubility and high solubility in oils, fats, and resins,
DEE is often used in liquid-liquid extraction processes using the Barbet process [12]. The
disadvantage of this method is that catalytic separation is difficult, expensive, and corrosive.
The use of a heterogeneous catalyst may accelerate the formation of DEE.

In general, product yields essentially depend on the nature of acid catalyst types
used [13,14]. Many solid acid catalysts have been used for dehydration of ethanol, such as
metal oxides, zeolites, supported phosphoric acid, alumina, silica-alumina, and heteropoly-
acid catalysts. The catalytic activity for ethanol dehydration could be correlated to the
number of strong Brønsted acid sites in the catalyst [15–18]. Several studies involving solid
acid catalysts such as TiO2, ZrO2, Al2O3, and H-ZSM-5 for the dehydration of ethanol to
diethyl ether have been conducted and gave various yield percentages. Different transition
metal oxide catalysts [19,20] were tested for the catalytic dehydration of ethanol.

Titanium dioxide (TiO2), commonly known as titania, can be used as an acid and base
catalyst based on its amphoteric properties. TiO2 can be used as a heterogeneous catalyst
because it is a type of metal oxide catalyst with a high surface area, good chemical stability,
and has acid-base properties [21]. The utilization of TiO2 catalyst as a heterogeneous acid
catalyst has been widely studied in SO4/TiO2, which shows good catalytic activity. Sulfur
treatment with the addition of sulphuric acid will increase the reactivity and acid strength
of the catalyst material [22]. This catalyst is also called a solid superacid catalyst which is
widely used in the petrochemical industry and oil refining process, which shows better
performance compared to other metal sulfate oxides [23].

Several studies that show the success of making SO4/TiO2 as a catalyst include
research conducted by [24] on the esterification of fatty acids. Other studies have also been
conducted by [25], who synthesized SO4/TiO2 catalyst through the sol-gel method used
in the liquid-phase dehydration of sorbitol to isosorbide, and its selectivity of conversion
had been 100% and 75%. The dehydration of ethanol to DEE reaction still receive less
attention [15,26]. Considering the importance of ethanol dehydration to DEE and the fact
that the role the catalyst should play in determining high selectivity towards DEE is not yet
well established, the present work is focused on the dehydration of ethanol over SO4/TiO2
catalyst and its influence on the selectivity for DEE.

2. Methods
2.1. Materials

Materials used in this research were nano TiO2 (titanium dioxide) commercial, Aquadest,
and chemicals for analysis from Merck, namely sulfuric acid (H2SO4; 98%), ammonia (NH3),
ethanol (C2H5OH; 96%), and N2 gas.

2.2. Preparation of Catalysts

Preparation of SO4/TiO2 catalysts were carried out by the wet impregnation method.
Ten g of TiO2 was mixed with 150 mL of H2SO4 solution (1; 2; 3 M), and the mixture was
stirred for 24 h using a magnetic stirrer. The mixtures were then centrifuged for 20 min
with the speed of 2000 rpm to separate the solids from the mixture. The solid obtained
were dried in the oven at 105 ◦C overnight and were denoted as TS-1, TS-2, and TS-3. The
products were then characterized using FTIR and NH3 adsorption. The products were then
ground and sieved using a 200 mesh sieve. Material with the highest acidity was calcined
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in various temperatures at 400, 500, 600 ◦C for 4 h. Material with the highest acidity was
denoted as TS-3-400, TS-3-500, and TS-3-600 then the acidity of materials was tested.

2.3. Characterization of Catalysts

Catalysts were characterized using Fourier Transform Infrared (FTIR) series Nicolet
Avatar 360 IR to study functional groups in the samples. Catalysts characterized using
X-ray Diffraction (XRD) series Shimadzu Model XRD 6000 used to know the crystallinity of
catalyst. Characterization using TGA/DTA (Thermogravimetric Analysis-Differential Scanning
Calorimetry) was done to study thermal properties and phase changes due to enthalpy
changes of material. Characterization using SEM-EDX model Phenom Desktop ProXL was
performed to determine the surface condition and composition of elements in the sample.
Characterization using Surface Area Analyzer (SAA) was done to measure the surface area
and pore size of the sample.

The acidity test of catalysts was conducted with a gravimetry method using ammonia
vapour as an adsorbate base. Empty porcelains were prepared and heated at 100 ◦C for 2 h,
and then porcelains were weighed as W0. A total of 0.05 g of samples TS0, TS-1, TS-2, and
TS-3 were put in porcelains and heated at 100 ◦C for 2 h and weighed as W1. Porcelains
containing catalysts were inserted into the desiccator in a closed state. Furthermore,
ammonia vapour was flown towards the desiccator for 30 min. Samples were put for 24 h
and after were weighed as W2. The total acidity value was determined using the formula:

Acidity =
W2 − W1

(W1 − W0)× MW NH3
× 1000 mmol g−1

where:

W0: weight of empty porcelains (g)
W1: weight of crucible porcelain + sample before adsorption (g)
W2: weight of crucible porcelain + sample after adsorption (g)
MW NH3: molecular weight of NH3 (mol g−1)

2.4. Application of Catalyst

In this research, TS0 and TS-3-400 catalysts were applied to the dehydration process
to convert ethanol into DEE. The dehydration process was carried out in a reactor with
an N2 gas flow rate of 20 mL/min at various temperatures of 175, 200, and 225 ◦C using
1 g of catalyst and 10 mL of ethanol. Products from results of dehydration process were
determined percentage (%) conversion of its liquid products using the following calculation:

Liquid product conversion =
methanol(in) − methanol(out)

methanol(out)
× 100%

Yield DEE =
Ei

Etotal
× 100%

where:

methanol: mass of ethanol (g)
Ei: peak area of DEE in GC chromatogram
Etotal: total peak area in GC chromatogram

3. Results
3.1. Characterization of Catalyst
3.1.1. FTIR and Acidity Test

Figure 1 shows the FTIR spectra of TS0, TS1, TS2, and TS3. The typical absorption
bands that appeared in the FTIR spectra of TiO2 and SO4/TiO2 with various concentrations
were the sharp absorption bands at 3402–3441 cm−1, which were the stretching vibrations
of-OH and at 1630 cm−1, which was the bending vibrations of-OH from H2O coordinated
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with the material [24]. The occurrence of the bending and stretching vibrations of -OH from
H2O was due to the presence of water vapour in pure TiO2 and sulfate TiO2. The intensity
of the absorption peak increased with increasing of SO4

2− concentration due to the number
of hydrogen bonds in the catalyst. The results of the TiO2 and SO4/TiO2 sample spectra
showed the same absorption peak in the 400–850 cm−1 region, which represented the
vibration of the stretching of the O-Ti-O bond [27] where the peaks were 400–510 and
550–615 cm−1 were the stretching vibration of Ti-O [28].
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Figure 1. FTIR spectra of (a) TS0, (b) TS1, (c) TS2, and (d) TS3.

The FTIR spectra of SO4/TiO2 in the variation of concentrations had four new bands
appeared at the region of 979–1226 cm−1. The four bands were asymmetrical vibration of
S=O, symmetry vibration of S=O, asymmetric vibration of S-O, and symmetry vibration
of S-O which appeared at 1226, 1134, 1049, and 979 nm−1, respectively [29]. The results
showed the presence of sulfate ion bonded with titania cations. From these spectra, it could
be seen that the occurrence of S-O and S=O vibrations confirmed the presence of sulfate
ions bonded to the surface of the titania [24]. Based on the FTIR spectra shown in Figure 1,
it was illustrated that the intensity of the sulfate ion absorption band had increased along
with the increasing concentration of the sulfuric acid used in the sulfation process. The
higher the SO4

2− concentration, the more sulfate ions bonded to the surface of the titania.
The highest SO4

2− absorption peak intensity was demonstrated by the catalyst TS-3 which
also suggested that the catalyst TS-3 had a high acidity value. FTIR spectra could only
show data qualitatively, so an acidity test was needed to quantitatively determine the total
acidity possessed by SO4/TiO2 catalysts at various concentrations using the gravimetric
method. The acidity test of the catalyst to determine the number of acid sites present on
the catalyst was carried out by the gravimetric method using NH3 solution in a vacuum.
Table 1 shows the total acidity value of catalysts.

Table 1. Acidity test of catalysts.

Catalysts Total Acidity (mmol g−1)

TS-0 8.42
TS-1 12.50
TS-2 14.67
TS-3 17.94

The results of the acidity test showed that the catalyst TiO2 had an acidity number of
8.42 mmol g−1. The sulfation process affected the acidity of TiO2. With a higher concentra-
tion of sulfate ions, the acidity of the SO4/TiO2 catalyst increased due to a large number of
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sulfate ions bonded to the surface of the titanium dioxide, which then formed the acidic
site of Brønsted as the acid center of the catalyst. The catalyst of TS-3 showed the highest
acidity number of 17.94 mmol g −1. The catalyst with the highest total acidity content, TS-3
in this research, was run through a calcination process at temperature variations of 400, 500,
and 600 ◦C. This process aimed to determine the effect of temperature on the acid content
of the catalyst and determine the optimum temperature based on the highest acidity value
in the TS-3 catalyst synthesis process. [27] reported that as the calcination temperature
increased, the absorption intensity in the area decreased significantly, indicating that the
number of -OH absorbed in the catalyst material decreases as the temperature increased.
Table 2 represents the data of total acidity of catalysts after calcination.

Table 2. Acidity test of TS-3 at 400, 500, and 600 ◦C.

Catalyst Total Acidity (mmol g−1)

TS-3-400 11.35
TS-3-500 6.19
TS-3-600 3.3

Figure 2 shows that the differences in the temperature of calcination affected the
strength of the presence of the sulfate ion. There were four absorption bands of sulfate
ions at temperatures 400 ◦C in the wavenumbers of 1230–900 cm−1, while the absorption
strength of the sulfate ions began to decrease at temperatures of 500 and 600 ◦C. At the
wavenumbers of 3417 and 1635 cm−1 (H2O vibration), the absorption bands were reduced
in the intensity level. This indicated that the water vapor in the TS-3-400 catalyst had
decreased to decrease the rate of absorption due to the heating process. As the calcination
temperature increased, the absorption intensity in the area decreased significantly, which
indicated that the number of -OH had been absorbed into the catalyst material with in-
creasing of temperature [27]. FTIR spectra of TS-3-400 catalyst also showed the appearance
of a new specific absorption in the region of the wavenumber 1238 cm−1 which was a
vibration of symmetry of the S=O bond of SO4

2− ions [29], so that at a higher temperature
the absorption in this area was lost, since the S=O bond began to decompose at a calcination
temperature of more than 400 ◦C. The symmetrical vibration of the SO4

2− ion S-O bond
in the range of 973–1102 cm−1 region also showed the highest intensity at a temperature
of 400 ◦C, which indicated the number of SO4

2− ions that adhered to the TiO2 surface at
this temperature.
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3.1.2. Characterization Using XRD

Figure 3 shows the composition of the crystalline structure of the catalyst indicated
at 2θ = 5–90◦. [30] found that at temperatures between 550 and 750 ◦C, the calcined TiO2
powder only formed the anatase phase. [31] synthesized SO4/TiO2 catalyst at 400 ◦C and
discovered the formation of a pure anatase crystallinity process without the formation of
rutile or brookite. It was found that sulfate ions were anchored to anatase phases of titania
crystals at annealing temperatures of 400–600 ◦C, since these materials had short O-O
atomic bond length, which was larger than the longest O-O bond length of sulfate ions.
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Therefore, the sulfate ions tended to deform less and were consequently more stable [32].
At a temperature of 800 ◦C, a mixture of anatase and rutile phases began to form, and at
1000 ◦C, 100% of the rutile phase was formed [33]. The sulfation process on the surface
of TiO2 caused a decrease in the intensity of the main diffraction peaks of TiO2. Due to
the high concentration of H2SO4, TiO2 dissolved in H2SO4, and the amount of SO4

2− ions
covering the TiO2 surface increased, which induced the formation of Ti-O-S, whereby
the phase became more amorphous, or the crystallinity decreased [34]. The calcination
temperature also affected the crystallinity of the catalyst. The diffractogram of TS-3-400 ◦C
catalyst showed lower crystallinity which was indicated by the lower intensity of the
diffraction peaks due to the incomplete calcination process and the number of SO4

2−

ions on the surface of TiO2 that could decrease its crystallinity. Increasing the calcination
temperature increased the intensity of the diffraction peak due to decomposition of the
SO4

2− ions on the TiO2 surface so that the crystallinity increased. Furthermore, catalytic
calcination at higher temperatures resulted in an increase in catalyst crystal size of 17.25
and 19.73 nm at 500 and 600 ◦C, respectively. According to [30], increasing calcination
temperatures resulted in an increase in crystal size of catalyst SO4/TiO2. Table 3 represents
the information of crystal size of catalysts.

Table 3. Crystal size of catalysts.

Sample Crystal Size (nm)

TS0 25.99
TS-3-400 10.03
TS-3-500 17.25
TS-4-600 19.73
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3.1.3. Characterization Using SEM-EDX

Figure 4 at a magnification of 5000 times represents the morphology of catalyst TS0
and TS-3-400. The catalyst of TS0 particles has a uniform and darker morphology. Research
conducted by [33] suggested that calcination temperature has an effect on changes in
TiO2 particle size. A calcination temperature of 400 ◦C produced spherical particles with
particle size < 20 nm, then at 400 ◦C it formed larger particles and agglomeration formation
occurred and at temperatures of 800 ◦C and 1000 ◦C produced particles of non-uniform
size due to all agglomeration particles resulting in increased crystalline size.
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Morphology of catalyst TS0 after sulfation process showed the formation of particles
in the form of brighter granules with a slightly larger size due to the formation of agglom-
eration in the presence of SO4

2− ions bound to TiO2. The presence of a brighter part of
the catalyst surface of TS-3-400 indicates the presence of high-charged ions bound to the
catalyst [35]. This explains that the sulfate group has been successfully isolated on the
surface of TS0, which was confirmed by the presence of sulfur elements in the catalyst
TS-3-400 based on EDX data. Table 4 shows the information of characterization of catalysts
TS0 and TS-3-400.

Table 4. Characterization of catalysts TS0 and TS-3-400.

Element
Atom (%)

TS0 TS-3-400

Ti 28.30 28.26
O 71.70 66.92
S - 4.82

3.1.4. Characterization Using TGA/DSC

Figure 5 shows thermogram of TS0 and TS-3-400, respectively. The decrease in mass
occurred in the temperature range of 50–250 ◦C, which was associated with the loss of
physically adsorbed water molecules. At a temperature of 500–900 ◦C, a decrease in mass
indicated the removal of organic material (polymer chains) in the TiO2 material and the
decomposition of SO4

2− ions adhering to the TiO2 surface in a TS-3-400. According to [36],
the curve of the high mass reduction of the SO4

2− depends on its concentration which was
used in the catalyst preparation, the higher the amount or concentration of SO4

2− lead to a
mass reduction curve with higher intensity.
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The result of the DSC analysis for the TS0 and TS-3-400 catalyst showed the formation
of an endothermic curve in the range from 50–150 ◦C with an enthalpy of 508.6 J/g, which
represented the loss of mass of physically adsorbed water molecules on the catalyst material.
According to [34], the endothermic curve formed in sulfated titania catalysts in the range
of 50–300 ◦C contributed to the loss of physically adsorbed water and the hydration of
the water of the catalyst material. In addition, the endothermic curve in catalyst TS0
in the range of 600–897 ◦C with an enthalpy of 560.22 J/g indicated the loss of organic
material (polymer chains) from the TS0 material, whereas the endothermic curve in the
catalyst TS-3–400 in the range 516–573 ◦C with an enthalpy of 133.56 J/g indicated the
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decomposition of the sulfate ion from the solid catalyst TS-3-400 and the formation of the
TS0 rutile phase.

3.1.5. Characterization Using SAA

The sulfation process in TS0 material reduced the specific surface area from 94.90 m2g−1

to 9.85 m2g−1, as well as the total value of the pore volume and the pore diameter of
the catalyst by adding sulfuric acid, which covered the surface of the titanium. Table 5
represents the data of textural properties of catalysts TS0 and TS-3-400.

Table 5. Textural properties of catalysts TS0 and TS-3-400.

Catalyst Surface Area Total Pore Volume Pore Diameter

(m2g−1) (ccg−1) (nm)

TS0 94.90 0.360 15.17
TS-3-400 9.85 0.073 29.60

The increase in sulfuric acid addition also caused a reduction in the amount of catalyst
pores induced by the entry of sulfate groups into the surface of the titanium. The porosity of
the material catalyst was caused by the formation of aggregates as a result of the interaction
between TiO2 and SO4

2− ions [36]. Ref. [37] also reported that the specific surface area
of TiO2 had decreased from 80.90 m2g−1 to 48.96 m2g−1 on SO4/TiO2. Both samples had
the same isotherm curve profile, which was the adsorption–desorption isotherm type IV,
which showed a characteristic of mesopore materials with pore diameters of 2–50 nm, i.e.,
15.18 nm for TS0 and 29.60 nm for TS-3-400. Figure 6 shows the adsorption-desorption
curve of TS0 and TS-3-400.
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3.2. Application of Catalyst
3.2.1. Test of Catalysts Activity toward Dehydrated Liquid Products

Catalyst activity tests were carried out to assess the catalysts that were synthesized to
convert baits (ethanol) into biofuels (diethyl ether). Dehydration process was carried out at
temperatures of 175–225 ◦C with a gas flow rate of N2 of 20 mL/min for 60 min.
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Figure 7 presents the data of conversion percentage on dehydration reaction using
catalysts TS0 and TS-3-400 at various temperatures of 175, 200, and 225 ◦C. The liquid
products conversion using catalyst TS-3-400 at various temperatures was higher compared
to catalyst TS0. This was due to the addition of sulfate to titania catalyst increased the
number of Brønsted acid and Lewis acid sites in catalysts, where acid strength was the
most influential factor in determining catalytic activity in ethanol dehydration reaction [37].
Strong acid sites influenced improved the catalytic activity of the SO4/TiO2 catalyst.
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According to [13] the presence of Lewis and Brønsted acid sites number could be
determined by NH3-TPD analysis. It showed that TiO2 contained several weak acids, and
medium acid sites. The addition of SO4

2− ions increases the acidity of TiO2, which was
indicated by the presence of weak acid, medium acid and strong acid sites and the higher
the SO4

2− ion concentration showed the more medium acid and strong acid sites. Strong
acid sites influenced improved the catalytic activity of the SO4/TiO2 catalyst.

3.2.2. Selectivity Test for Dehydrated Liquid Products

The chemical composition of the product and the selectivity of the catalyst were
determined using Gas Chromatography (GC) analysis. The ability of a catalyst to convert
ethanol into diethyl ether was referred as catalyst selectivity. The percentage of diethyl
ether content based on GC analysis data was used to determine selectivity. In this research,
catalytic activity was tested using TiO2 and TS-3-400 in an ethanol dehydration reaction
using 3 various temperatures of 175, 200, and 225 ◦C.

The results of DEE levels in ethanol dehydration reactions with TS-3-400 catalysts
were compared to results obtained from TS0 catalyst shown in Figure 8. Diethyl ether levels
were 0% in the catalytic reaction using TS0 catalyst at a temperature of 175, 200, and 225 ◦C.
The difference in the results demonstrated that the reaction temperature and treatment
of the catalyst were critical in the ethanol dehydration reaction. While DEE levels in the
catalyst of TS-3-400 increased as the reaction temperature increased. This indicated that the
ideal temperature for ethanol dehydration to diethyl ether was 225 ◦C with a DEE content
of 1.72%. According to the Arrhenius equation, rising temperatures could increase ethanol
conversion. From the equation, an increase in temperature would increase the constant
reaction speed, thereby increasing the reaction rate [38].
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The result of dehydration reaction of ethanol to diethyl ether using a heterogeneous
catalyst SO4/TiO2 was still low. Research conducted by [39] showed that the alumina cata-
lyst used in the dehydration process of ethanol to diethyl ether produced more diethyl ether
of 2.41%. However, when compared to the heterogeneous phosphorous modified alumina
catalyst, the DEE content produced by the ethanol dehydration process with SO4/TiO2
were still relatively higher. Research conducted by [40] discovered that a heterogenous
phosphorous modified alumina catalyst that was synthesized and applied to the ethanol
dehydration process at low temperature resulted in a DEE level of 0% at temperatures of
200 and 250 ◦C.

The significant difference in the results of DEE levels was influenced by several factors.
The most effective outcome of the dehydration process of ethanol was the surface area
and the pore size of the heterogeneous catalyst because these two factors significantly
influenced the activity and selectivity of a catalyst. It was known that alumina catalyst had
larger surface area than SO4/TiO2 catalyst, which was 200 m2 g−1 and a pore diameter
of 34.76 nm [39]. While the SO4/TiO2 catalyst had a larger surface area compared to
the phosphorous modified alumina catalyst, that was 9.85 m2g−1 and pore diameter of
29.60 nm (mesopore system), while phosphorous modified alumina catalyst had a surface
area of 6 m2g−1 and pore diameter of 19.75 nm [40].

4. Conclusions

The sulfation process on titania catalyst could form solid acid catalyst which had
Brønsted acid and Lewis acid sites, surface area with the mesoporous system effectively
increase the activity and selectivity of catalyst to diethyl ether product. The highest DEE
content yield was obtained at 1.72% using the TS-3-400 catalyst with a reaction temperature
of 225 ◦C.
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