Enhancing Methane Conversion by Modification of Zn States in Co-Reaction of MTA
Abstract
:1. Introduction
2. Results and Discussions
2.1. ZSM-5 Catalysts with Different Zn Content for Methane Conversion in Co-Reaction of Methanol to Aromatics (MTA) Reaction
2.1.1. Characterization
2.1.2. Catalysis
2.2. ZSM-5 Catalysts with Different Zn Loading Strategies for Methane Conversion in Co-Reaction of MTA Reaction
2.2.1. Characterization
2.2.2. Catalysis
2.3. Zn Loaded ZSM-5 Catalysts with Different Treating Atmosphere for Methane Conversion in Co-Reaction of MTA Reaction Figures, Tables and Schemes
2.3.1. Characterization
2.3.2. Catalysis
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Hu, P.; Yang, J.; Zhu, Y.-A.; Chen, D. C–H bond activation in light alkanes: A theoretical perspective. Chem. Soc. Rev. 2021, 50, 4299–4358. [Google Scholar] [CrossRef]
- Campo, P.; Martínez, C.; Corma, A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem. Soc. Rev. 2021, 50, 8511–8595. [Google Scholar] [CrossRef]
- Zhang, T. Recent advances in heterogeneous catalysis for the nonoxidative conversion of methane. Chem. Sci. 2021, 12, 12529–12545. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, V.R.; Kinage, A.K.; Choudhary, T.V. Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science 1997, 275, 1286–1288. [Google Scholar] [CrossRef]
- Wang, A.; He, P.; Yung, M.; Zeng, H.; Qian, H.; Song, H. Catalytic co-aromatization of ethanol and methane. Appl. Catal. B-Environ. 2016, 198, 480–492. [Google Scholar] [CrossRef]
- Wang, A.; Austin, D.; Karmakar, A.; Bernard, G.M.; Michaelis, V.K.; Yung, M.M.; Zeng, H.; Song, H. Methane upgrading of acetic acid as a model compound for a biomass-derived liquid over a modified zeolite catalyst. ACS Catal. 2017, 7, 3681–3692. [Google Scholar] [CrossRef]
- Majhi, S.; Dalai, A.K.; Pant, K.K. Methanol assisted methane conversion for higher hydrocarbon over bifunctional Zn-modified Mo/HZSM-5 catalyst. J. Mol. Catal. A-Chem. 2015, 398, 368–375. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Wang, T.; Liu, Y.; Xu, T.; Zhang, Y. Efficient conversion of methane to aromatics by coupling methylation reaction. ACS Catal. 2016, 6, 5366–5370. [Google Scholar] [CrossRef]
- Xi, Z.; Zhou, B.; Jiang, B.; Wang, J.; Liao, Z.; Huang, Z.; Yang, Y. Efficient conversion of methane to aromatics in the presence of methanol at low temperature. Mol. Catal. 2019, 475, 110493. [Google Scholar] [CrossRef]
- Xi, Z.; Zhou, B.; Yu, Y.; Jiang, B.; Liao, Z.; Wang, J.; Huang, Z.; Yang, Y.; Sun, J.; Yang, Y. Enhancing low-temperature methane conversion on Zn/ZSM-5 in the presence of methanol by regulating the methanol-to-aromatics reaction pathway. Catal. Sci. Technol. 2020, 10, 6161–6172. [Google Scholar] [CrossRef]
- Gabrienko, A.A.; Lashchinskaya, Z.N.; Arzumanov, S.S.; Toktarev, A.V.; Freude, D.; Haase, J.; Stepanov, A.G. 1H MAS NMR in situ reaction monitoring reveals the particular effects of Zn2+ and ZnO species on the kinetics of isobutane transformation on Zn-modified zeolites. J. Phys. Chem. C 2021, 125, 21471–21480. [Google Scholar] [CrossRef]
- Pinilla-Herrero, I.; Borfecchia, E.; Holzinger, J.; Mentzel, U.V.; Joensen, F.; Lomachenko, K.A.; Bordiga, S.; Lamberti, C.; Berlier, G.; Olsbye, U.; et al. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. J. Catal. 2018, 362, 146–163. [Google Scholar] [CrossRef] [Green Version]
- Conte, M.; Lopez-Sanchez, J.A.; He, Q.; Morgan, D.J.; Ryabenkova, Y.; Bartley, J.K.; Carley, A.F.; Taylor, S.H.; Kiely, C.J.; Khalid, K.; et al. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catal. Sci. Technol. 2012, 2, 105–112. [Google Scholar] [CrossRef]
- Yu, Y.; Xi, Z.; Zhou, B.; Jiang, B.; Liao, Z.; Yang, Y.; Wang, J.; Huang, Z.; Sun, J.; Yang, Y. Acidity modification of ZSM-5 for methane conversion in co-feeding method with MTA reaction. Chem. Res. Chin. Univ. 2021. [Google Scholar] [CrossRef]
- Tian, H.; Yang, X.; Tian, H.; Zha, F.; Guo, X.; Tang, X. Realization of rapid synthesis of H-ZSM-5 zeolite by seed-assisted method for aromatization reactions of methanol or methane. Can. J. Chem. 2021, 99, 874–880. [Google Scholar] [CrossRef]
- Abdelsayed, V.; Smith, M.W.; Shekhawat, D. Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization. Appl. Catal. A-Gen. 2015, 505, 365–374. [Google Scholar] [CrossRef]
- Abdelsayed, V.; Shekhawat, D.; Smith, M.W. Effect of Fe and Zn promoters on Mo/HZSM-5 catalyst for methane dehydroaromatization. Fuel 2015, 139, 401–410. [Google Scholar] [CrossRef]
- Niu, X.; Gao, J.; Miao, Q.; Dong, M.; Wang, G.; Fan, W.; Qin, Z.; Wang, J. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous Mesoporous Mater. 2014, 197, 252–261. [Google Scholar] [CrossRef]
- Lashichinskaya, Z.N.; Gabrienko, A.A.; Arzumanov, S.S.; Kolganov, A.A.; Toktarev, A.V.; Freude, D.; Haase, J.; Strpanov, A.G. Which species, Zn2+ cations or ZnO clusters, are more efficient for olefin aromatization? 13C solid-state NMR investigation of n-but-1-ene transformation on Zn-modified zeolite. ACS Catal. 2020, 10, 14224–14233. [Google Scholar] [CrossRef]
- Gao, J.; Wie, C.; Dong, M.; Wang, G.; Li, Z.; Qin, Z.; Wang, J.; Fan, W. Evolution of Zn species on Zn/HZSM-5 catalyst under H2 pretreated and its effect on ethylene aromatization. ChemCatChem 2019, 11, 3892–3902. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Xu, J.; Qi, G.; Wang, C.; Wang, Q.; Zhao, Y.; Zhang, Y.; Feng, N.; Zhao, X.; Li, J.; et al. Mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: Understanding the dehydrogenation Process. ACS Catal. 2018, 8, 9809–9820. [Google Scholar] [CrossRef]
- Lezcano-González, I.; Oord, R.; Rovezzi, M.; Glatzel, P.; Botchway, S.W.; Weckhuysen, B.M.; Beale, A.M. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-ray methods. Angew. Chem. Int. Ed. 2016, 55, 5215–5219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, Z.; Shen, J.; Liu, H.; Zhang, J. High-throughput screening of HZSM-5 supported metal-oxides catalysts for the coupling of methane with CO to benzene and naphthalene. Catal. Commun. 2005, 6, 343. [Google Scholar] [CrossRef]
- Gim, M.Y.; Song, C.; Kim, T.H.; Song, J.H.; Kim, D.H.; Lee, K.-Y.; Song, I.K. BTX production by coaromatization of methane and propane over gallium oxide supported on mesoporous HZSM-5. Mol. Catal. 2017, 439, 134–142. [Google Scholar] [CrossRef]
Catalyst | Zn Content a (wt.%) | SBET b (m2 g−1) | Vtotal b (cm3 g−1) | Vmicro b (cm3 g−1) | Amount of Acid Sites (mmol g−1) c | |||
---|---|---|---|---|---|---|---|---|
W | M | S | Total | |||||
HZSM-5 | - | 402 | 0.34 | 0.14 | 0.83 | 0.00 | 0.31 | 1.14 |
1.0Zn/Z | 0.99 | 384 | 0.34 | 0.13 | 0.82 | 0.16 | 0.15 | 1.13 |
2.0Zn/Z | 1.70 | 372 | 0.29 | 0.12 | 0.82 | 0.23 | 0.08 | 1.13 |
3.0Zn/Z | 2.93 | 355 | 0.26 | 0.11 | 0.82 | 0.26 | 0.06 | 1.14 |
Catalyst | Ratios of Zn Species before Reaction | Ratios of Zn Species after Reaction | ||
---|---|---|---|---|
ZnO (%) | ZnOH+ (%) | ZnO (%) | ZnOH+ (%) | |
1.0Zn/Z | 13.9 | 86.1 | 35.4 | 64.6 |
2.0Zn/Z | 36.2 | 63.8 | 55.0 | 45.0 |
3.0Zn/Z | 93.2 | 6.8 | 96.7 | 3.3 |
Catalyst | Zn Content a (wt.%) | SBET b (m2 g−1) | Vtotal b (cm3 g−1) | Vmicro b (cm3 g−1) | Amount of Acid Sites c (mmol g−1) | Ratios of Zn Species d (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
W | M | S | Total | ZnO | ZnOH+ | |||||
1.0Zn/Z | 0.99 | 384 | 0.34 | 0.13 | 0.82 | 0.09 | 0.23 | 1.14 | 13.9 | 86.1 |
1.0Zn/Z-IE | 1.11 | 397 | 0.34 | 0.13 | 0.82 | 0.16 | 0.15 | 1.13 | 3.9 | 96.1 |
1.0Zn/Z-PM | 1.03 | 397 | 0.34 | 0.14 | 0.82 | 0.20 | 0.12 | 1.14 | 81.9 | 19.1 |
Catalyst | Zn Content a (wt.%) | Ratios of Zn Species (%) | ||
---|---|---|---|---|
ZnOH+ | ZnO | Zn2+ | ||
1.0Zn/Z | 0.99 | 86.1 | 13.9 | - |
1.0Zn/Z-H2 | 0.98 | 37.2 | - | 62.8 |
1.0Zn/Z-N2 | 1.01 | 59.8 | 40.2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Xi, Z.; Zhou, B.; Jiang, B.; Liao, Z.; Yang, Y.; Wang, J.; Huang, Z.; Sun, J.; Yang, Y. Enhancing Methane Conversion by Modification of Zn States in Co-Reaction of MTA. Catalysts 2021, 11, 1540. https://doi.org/10.3390/catal11121540
Yu Y, Xi Z, Zhou B, Jiang B, Liao Z, Yang Y, Wang J, Huang Z, Sun J, Yang Y. Enhancing Methane Conversion by Modification of Zn States in Co-Reaction of MTA. Catalysts. 2021; 11(12):1540. https://doi.org/10.3390/catal11121540
Chicago/Turabian StyleYu, Yue, Zhixiang Xi, Bingjie Zhou, Binbo Jiang, Zuwei Liao, Yao Yang, Jingdai Wang, Zhengliang Huang, Jingyuan Sun, and Yongrong Yang. 2021. "Enhancing Methane Conversion by Modification of Zn States in Co-Reaction of MTA" Catalysts 11, no. 12: 1540. https://doi.org/10.3390/catal11121540
APA StyleYu, Y., Xi, Z., Zhou, B., Jiang, B., Liao, Z., Yang, Y., Wang, J., Huang, Z., Sun, J., & Yang, Y. (2021). Enhancing Methane Conversion by Modification of Zn States in Co-Reaction of MTA. Catalysts, 11(12), 1540. https://doi.org/10.3390/catal11121540