Iron-based composite oxide catalysts tuned by CTAB exhibit superior NH₃-SCR performance

Wenshuo Zhang^{1,2}, Xiaoyan Shi^{1,2}, Meng Gao^{1,2}, Jingjing Liu¹, Zhihui Lv^{1,2}, Yingjie

Wang⁴, Yanlong Huo^{1,2}, Chang Cui^{1,2}, Yunbo Yu^{1,2,3,4,*} and Hong He^{1,2,3,*}

¹ State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

² University of Chinese Academy of Sciences, Beijing 100049, China

³ Center for Excellence in Regional Atmospheric Environment, Institute of Urban

Environment, Chinese Academy of Sciences, Xiamen 361021, China

⁴ Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

Include 8 pages, 8 figures, 1 table.

Figure S1. N₂ selectivity over all the FeM_{0.3}O_x-C and FeM_{0.3}O_x (M = Nb, Ti, Mo) samples. Reaction conditions: $[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol}\%, N_2 \text{ balance, GHSV} = 500 000 \text{ h}^{-1}.$

Figure S2. Mössbauer spectra of all the FeM_{0.3}O_x-C and FeM_{0.3}O_x (M = Nb, Ti, Mo) samples at room temperature.

Sample	Sub Spectrum	Isomer Shift (mm s ⁻¹)	Quadrupole Splitting (mm s ⁻¹)	Internal Hyperfine Field (T)	Area (%)
FeNb _{0.3} O _x -C	Doublet	0.40	0.81	-	44.8
	Sextet	0.32	0.08	49.8	13.0
	Sextet	0.33	-	47.9	15.6
	Doublet	0.22	0.86	-	26.7
FeNb _{0.3} O _x	Doublet	0.34	0.66	-	45.4
	Doublet	0.33	1.13	-	54.6
FeTi _{0.3} O _x -C	Doublet	0.40	0.82	-	27.0
	Sextet	0.38	-0.21	51.1	14.1
	Sextet	0.32	-	49.8	43.5
	Doublet	0.21	0.86	-	15.3
FeTi _{0.3} O _x	Doublet	0.45	0.83	-	33.1
	Sextet	0.37	-0.21	51.4	21.4
	Sextet	0.37	-0.29	49.7	10.1
	Doublet	0.24	0.83	-	35.5
FeMo _{0.3} O _x -C	Doublet	0.33	0.87	-	12.6
	Sextet	0.32	0.00	47.7	20.6
	Sextet	0.33	-	43.4	34.4
	Sextet	0.43	-	24.7	32.3
FeMo _{0.3} O _x	Doublet	0.34	0.56	-	36.0
	Sextet	0.39	-0.28	50.06	4.6
	Sextet	0.36	-0.27	48.05	2.9
	Doublet	0.33	0.97	-	56.5

Table S1. Isomer shift (mm s⁻¹), quadrupole splitting (mm s⁻¹), internal hyperfine field (T), and area of sub-spectra from Mössbauer.

Figure S3. (a) NH₃-TPD results of all the FeM_{0.3}O_x-C and FeM_{0.3}O_x (M = Nb, Ti, Mo) samples in a flow of N₂ with a heating rate of 10 °C min⁻¹. Before measurement, each sample was pretreated in 20 % O₂/N₂ at 350 °C for 0.5 h, then exposed to 500 ppm NH₃/N₂ at 50 °C for 0.5 h, and purged by N₂ for 0.5 h. (b) Repeated NH₃-TPD results and (c) NH₃ desorption amount of all the FeM_{0.3}O_x-C and FeM_{0.3}O_x (M = Nb, Ti, Mo) samples with error bars.

Figure S4. XPS spectra of (**a**) Nb 3d; (**b**) Ti 2p; and (**c**) Mo 3d over FeM_{0.3}O_x-C and FeM_{0.3}O_x (M = Nb, Ti, Mo) samples.

Figure S5. XPS spectra of Fe 2p over FeM03Ox-C and FeM03Ox (M = Nb, Ti, Mo) samples.

The NH₃ conversion and NO conversion were calculated as follow:

Figure S6. Direct oxidation of NH₃ over all the FeM_{0.3}O_x-C and FeM_{0.3}O_x (M = Nb, Ti, Mo) samples. Reaction conditions: $[NH_3] = 500 \text{ ppm}$, $[O_2] = 5 \text{ vol}\%$, N₂ balance, GHSV = 250,000 h⁻¹.

Figure S7. Direct oxidation of NO over all the FeM_{0.3}O_x-C and FeM_{0.3}O_x (M = Nb, Ti, Mo) samples. Reaction conditions: [NO] = 500 ppm, $[O_2] = 5 \text{ vol}\%$, N₂ balance, GHSV = 250,000 h⁻¹.

Figure S8. NO_x conversion over pure γ -Fe₂O₃ and pure α -Fe₂O₃. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 5 vol%, N₂ balance, GHSV=500 000 h⁻¹.