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Marija Stojković 1 and Igor A. Pašti 1,2,*

����������
�������

Citation: Stojković, M.; Pašti, I.A.
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Abstract: In recent years, the class of metal-organic framework (MOF) materials emerged. These
materials’ unique properties can be ascribed to their structure, containing inorganic nodes connected
with organic linkers. Due to their porosity and flexibility, MOFs have become suitable for various
energy-related applications, including gas storage, hydrogen production and heterogeneous catalysis,
and photocatalysis. Using DFT+U calculations, we show that the substitution of metal centers in
inorganic nodes and the strain engineering of UiO-66 alters the electronic and optical properties of
this material. We show that applying mechanical strain on UiO-66 enables the control of absorption
coefficient in the UV-Vis spectrum and the photocatalytic processes’ selectivity when reactants for
several photocatalytic processes are present. The presented findings could lead to general strategies
for designing novel MOFs for sustainable energy conversion applications.

Keywords: metal-organic framework; photocatalysis; band-gap modulation; strain engineering;
catalyst selectivity

1. Introduction

In recent years, there has been an ongoing challenge of using clean energy sources.
One of the most abundant and versatile clean energy sources is solar energy. There are
many possibilities of using this renewable source. In addition to photoelectrochemical
and photovoltaic systems [1,2], one of the main uses of solar energy is heterogeneous
photocatalysis. The photocatalytic processes include three main steps [3]: (1) absorption of
photon, (2) creation of electron-hole pair (exciton) which can migrate to catalytic centers,
and (3) redox reactions with substrates.

Regarding these steps in a photocatalytic process, a material used as a photocatalyst
should possess strong solar radiation absorption, a very long lifetime of excited states, and
good charge mobility to prevent rapid recombination [3,4]. Ever since the discovery of
TiO2 as a suitable catalyst for water photosplitting [5], there has been an expansion in the
research and development of new synthetic photocatalysts. The main focus has recently
been placed on a new class of materials known as metal-organic frameworks (MOFs) [6,7].
Due to their specific structure, which contains metal nodes connected with organic linkers,
MOFs showed great potential for energy storage and conversion-related applications, such
as capacitors and Li-ion batteries [8–10]. Different pore sizes inside MOFs and exchangeable
building units make this material suitable for gas storage and hydrogen production [11,12].
Moreover, MOFs’ high porosity leads to an increased number of active sites, making them
convenient for catalytic processes [13], including photocatalytic ones [14–16].

When we look at different MOF structures, we can see that the metal nodes usually
consist of monovalent and divalent, as well as trivalent and four valent metals such as
Zr4+, Ti4+. The most stable structures often have four valent metals [17]. In that kind
of system, metal clusters can contain up to twelve metal ions. When it comes to the
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connection between the building units, there is great diversity, particularly in materials
containing Zr ions. Nevertheless, in these MOFs, clusters are predominantly built from
highly symmetrical units in the form of Zr6O8. Considering the topology, MOFs can have
different numbers of connecting points [6,8,12].

UiO-66 is one of the most investigated MOFs to this day, justified by its chemical,
thermal, and mechanical stability [18]. In its original form, it has Zr metal centers and
the face-centered cubic structure [19]. Possible modifications of UiO-66(Zr) using either
the functionalization of linkers or replacements of Zr centers with other metals were
reported [20,21]. Wu et al. [22] systematically investigated the modification of UiO-66(Zr)
using both strategies and found that the longer-lived excited states in Ce-based UiO-66,
UiO-66(Ce) than in UiO-66 MOFs with other metals, ascribed to the facile charge separation
in the case of UiO-66(Ce). The authors further showed that the functionalization of the
linkers (1,4-benzene-dicarboxylate) enables modification of the electronic structure of
UiO-66(Ce), enabling the tuning of the photocatalytic activity.

Due to very open structures, MOFs belong to the soft materials class [23], and small
mechanical strain can be applied to them without irreversible structural changes. Their
flexibility was recently employed for the development of strain-based sensors with un-
precedented performances [24]. Here we show that the strain engineering in MOFs can be
an excellent tool for modifying the electronic structure and the band gap, allowing the mod-
ification of optical and photocatalytic properties. For this purpose, we compare the effects
of strain on UiO-66(Zr) and UiO-66(Ce), demonstrating the mentioned effects in the latter
case. Using mechanical strain, we show that one can exclude undesired photochemical
processes and obtain high selectivity, which is a great challenge in practice.

2. Results
2.1. Geometry

The optimized structures of UiO-66(Zr) and UiO-66(Ce) (Figure 1) have triclinic
primitive cells with a0 = 14.834 Å for Zr and a0 = 15.440 Å for the Ce case.
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plied strain of −3%, the Zr–O bond is changed to 2.191 Å. However, in the Ce case, the Ce–
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Figure 1. (a) The optimized structure of the unit cell of UiO-66(Zr); (b) the optimized structure of the unit cell of UiO-66(Ce).

This difference is predominantly due to the M–O bond lengths, amounting to 2.216 Å
for Zr–O and 2.395 Å for the Ce–O bond. Upon analyzing the optimized structures, we see
that the M–O bonds behave differently in these two cases. Namely, the Zr–O bond is rather
rigid, and its change upon the application of strain is relatively small. For the applied
strain of −3%, the Zr–O bond is changed to 2.191 Å. However, in the Ce case, the Ce–O
bond contracts to 2.312 Å. As a result, the optimized structures with the negative strain
(contraction, Figure 2) look qualitatively different. In the case of Zr-based MOF, due to
the rigidity of the Zr–O bond, the contraction is compensated with the deformation of the
linker. In contrast, for the Ce-based MOF, the deformation of the Ce–O bond compensates
the applied strain. The situation is similar for the positive strain (expansion of the lattice).
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Figure 2. (a) The optimized structure of the unit cell of UiO-66(Zr) with the applied strain of −3%; (b) The optimized
structure of the unit cell of UiO-66(Ce) with the applied strain of −3%.

2.2. Electronic Structure

Upon optimizing the crystal structures, we turn to analyzing the electronic structures
of studied MOFs (Figure 3). Densities of states (DOS) show a bandgap in all the cases,
which is effectively tuned by the applied strain (Table 1). For UiO-66(Zr), the calculated
bandgap for the unstrained structure is 2.98 eV, which is lower than the experimental value
(3.76 eV [25]) and the HSE06/PBEsol result [22]. This difference is expected due to the level
of theory that we have used. For UiO-66(Ce), the HSE06/PBEsol result is 2.66 eV [22]. The
DOS profiles agree with the hybrid calculations, showing that for UiO-66(Zr), the Zr 4d
states are well above the bottom of the conduction band. However, for UiO-66(Ce), the
Ce 4f states form the conduction band. In the case of UiO-66(Ce), the bandgap is much
more sensitive to the applied strain. The lattice contraction causes the increase of the
bandgap, while the expansion of the lattice decreases the bandgap (Table 1). It is interesting
to observe that the applied strain does not cause much change in the Zr 4d states but
greatly affects the Ce 4f states, which we will discuss later. As the Ce 4f states form the
conduction band, this also reflects on the optical properties of UiO-66(Ce), presented in the
next section.
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the strain of −3%; (e) unstrained UiO-66(Ce); and (f) UiO-66(Ce) with the strain of +3%. DOS plots are generated using
sumo tools [26].

Table 1. Calculated bandgap for UiO-66(Zr) and UiO-66(Ce) for different strain applied on the lattice
unit cell.

Strain/%
Bandgap/eV

UiO-66(Zr) UiO-66(Ce)

−3 2.71 2.50
−2 2.87 2.40
−1 2.93 2.27
0 2.98 2.09

+1 2.97 1.91
+2 2.97 1.69
+3 2.95 1.45

2.3. Optical Properties

UiO-66(Zr) is a white-colored substance with optical absorption below 300 nm and
an absorbance maximum around 250 nm [27]. Compared to our result (Figure 4a), the
absorption maximum is shifted to higher energy as the experimental bandgap is larger
than the one we calculated. However, the qualitative agreement is rather good. As the
strain affects the bandgap of UiO-66(Zr) very little (except for the largest negative strain,
Table 1), optical spectra are little affected by strain. However, for UiO-66(Ce), the effect
of strain on the optical absorption is appreciable. Negative strain (lattice contraction)
causes the blueshift of the optical spectra, while the positive strain (lattice expansion)
causes the redshift of the optical spectra (Figure 4b). Moreover, the absorption coefficient
is larger for UiO-66(Ce) compared to UiO-66(Zr) (Figure 4). Aside from the tuning of
the bandgap via applied strain, a possibility to tune the optical absorption using strain is
another strong indication that the strain engineering can be applied as a tool for controlling
the photocatalytic properties of MOFs.

2.4. Tuning Selectivity of the Photocatalytic Process via Strain

Finally, we present the results of the band alignment procedure for UiO-66(Zr) (Figure 5a)
and UiO-66(Ce) (Figure 5b). For the standard hydrogen electrode (SHE) absolute value, we
took 4.44 eV [28]. The potentials of other redox couples in Figure 5 are then recalculated to
the vacuum scale. We note that there is an uncertainty of the value of the absolute potential of
SHE, so the final result of the band alignment procedure has an uncertainty of approximately
±0.2 eV [29]. In addition to the potentials of H+/H2 and O2/H2O couples, we also added
the couples corresponding to the CO2 reduction process, using the summary of standard
electrode potentials reported by Wu et al. [22].
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We see that the valence band (VB) top is weakly affected by the applied strain for both
investigated MOFs. However, for UiO-66(Ce), the conduction band (CB) bottom shifts
significantly with the applied strain. This result gives a possibility to tune the photocatalytic
activity of UiO-66(Ce) using strain. For example, for the unstrained Ce-based MOF, four
reduction processes presented in Figure 5b can occur. However, if a positive strain is
applied, the CB bottom shifts downwards, and the processes with more positive redox
potentials (at vacuum scale) are switched off one by one. Finally, for the strain of +3%,
only the reduction of CO2 to CH4 can occur (among presented redox couples), and it is
combined with anodic O2 formation. Such a level of selectivity is generally difficult to
obtain, while the use of strain for the control of photocatalytic activity also enables that one
material can be used for different processes, which can be switched on or off as desired.
This level of control is not possible if other strategies for the control of the catalytic activity
are applied, such as chemical modification of the linker.
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3. Discussion

As we have shown, the concept of using strain for the control of the electronic structure
of MOFs works nicely for the UiO-66(Ce). The induced modifications of the electronic
structure reflect onto the optical properties and ultimately the photocatalytic ones. In the
case of UiO-66(Ce), a downshift of the CB bottom is seen, and we look into it in more detail.
Figure 6 presents DOSes of Ce atoms for different applied strains. As one can see, the
f orbitals of Ce atoms degenerate with positive strain, and the band becomes narrower.
This occurrence is not seen for the CB of UiO-66(Zr) (Figure 3). If one recalls the results of
the structural relaxation of strained structures (Figure 2), it becomes clear that this is due
to the variation of the Ce–O bond length. With negative applied strain, the Ce–O bond
becomes shorter and causes an upshift of the Ce f states to higher energies, accompanied
by removing the Ce f levels’ degeneracy. This change in the electronic structure reflects
directly on the bandgap and the absolute position of the CB bottom at the vacuum scale.
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The resulting modifications of the electronic structure of UiO-66(Ce) also have a strong
impact on the optical properties (Figure 4). Putting the results in a wider context, it is
suggested that mechanical strain can be used to modulate the optical absorption, color
and conductivity of UiO-66(Ce). This observation opens the possibility for wider use of
UiO-66(Ce), from smart optical materials to strain and chemical sensors. However, we
want to link the effects of strain on the photocatalytic activity and selectivity control.

For this purpose, we constructed the 3D diagram showing the dependence of the
CB bottom and the VB top positions and the potentials of three selected redox couples
(the anodic process is O2 formation, while reduction processes are H2 formation and CO2
reduction to methanol) on the applied strain and pH (Figure 7). We assume that the CB
bottom and the VB top positions depend only on the strain, while the redox potentials
depend only on pH. H2 and O2 evolution processes involve one proton per transferred
electron, so the calculated plane slope versus pH axis is 0.059 eV per pH unit. CO2 reduction
to methanol follows the equation:

CO2 + 6e− + 6H+ = CH3OH + H2O (1)

so the slope versus pH axis is also 0.354 eV per pH unit at room temperature. We choose to
discuss the CO2 reduction to methanol due to the importance of methanol in contemporary
energy technologies.

As can be seen from Figure 7, pH modulates the relative positions of redox couple
potentials vs. the CB bottom of UiO-66(Ce), allowing one to identify the pH-strain domain
in which the potential of the H+/H2 couple shifts above the CB bottom while the potential
of CO2/CH3OH couple is still below the CB bottom. In this way, one excluded the H2
formation, while CO2 reduction still proceeds. While this discussion only demonstrates



Catalysts 2021, 11, 264 7 of 9

the general principle of strain-controlled photocatalysis by UiO-66(Ce), we note that in
this particular case, this pH-strain region corresponds to small positive strains for pH just
below 7. Hence, as well as altering MOFs (photocatalytic) properties using the change of
metal centers and chemical modification of linkers, we suggest that strain should be added
to this list and combined with the former two strategies to fully exploit the application
potential of MOFs.
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Considering the practical realization of strain-based control of the photocatalytic
activity of UiO-66(Ce), or MOFs in general, we have to stress out that this could be rather
challenging. However, a first try could be using piezoelectric supports on which thin MOF
films are deposited so that the strain can be controlled using the voltage applied to the
piezoelectric support. For this strategy, one should build highly adhesive MOF layers
with extended crystalline domains so that the grain boundaries do not compensate for the
applied strain. Another approach would be the use of architectures similar to those in the
membrane-type surface stress sensor used by Yeung et al. [24].

4. Materials and Methods

The first-principles DFT calculations were performed using the Vienna ab initio simula-
tion code (VASP, VASP Software GmbH, Vienna, Austria, version 5.4.4, April 2017) [30–33].
We used the generalized gradient approximation (GGA) in the parametrization by Perdew,
Burk, and Ernzerhof [34] and the projector augmented wave (PAW) method [35,36]. The
on-site Coulomb interactions were added to the d states of Zr and f states of Ce using the
DFT + U scheme of Dudarev et al. [37]. We have systematically investigated the effects of
the value of U on the bandgap and opted for U = 6 eV in both cases. The cut-off energy of
500 eV and Gaussian smearing with a width of σ = 0.025 eV for the electronic levels’ occu-
pation were used. A Monkhorst–Pack Γ-centered 3 × 3 × 3 k-point mesh was employed
for the relaxation calculations. The relaxation of all the atoms in the simulation cell was
unrestricted. The relaxation procedure was performed until the Hellmann–Feynman forces
on all atoms below 0.01 eV Å−1. Spin-polarization was considered in all of the presented
calculations. We used 6 × 6 × 6 k-point mesh for the DOS calculations in combination
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with the Blöch tetrahedron method [38]. For the band alignment, we used the method of
Butler et al. [39] with the same converge criteria for the vacuum potential as in the ref. [22].
Optical spectra were calculated from the frequency-dependent microscopic polarizability
matrix in the projector-augmented wave (PAW) methodology [40]. VESTA code was used
for visualization [41].

5. Conclusions

We propose the use of strain for the control of the photocatalytic activity and selectivity
of MOFs. The general principle is demonstrated for the case of UiO-66(Ce) using DFT + U
calculations. While we are aware of the limitations of our theoretical approach, the concept
itself shows that the mechanical strain is an eligible tool for controlling MOFs’ electronic
structure, optical properties, and, ultimately, photocatalytic performance. It is suggested
that the combination of strain and pH can be used to control the selectivity of the photocat-
alytic process to a great extent, as exemplified in the case of CO2 reduction to methanol.
However, the results should be sought in a wider context, as the strain engineering could
open a large range of potentially new MOFs applications.
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