The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Cytotoxic Efficacy of Filter Paper Loaded with AgNO3 on the Normal Cell Line
2.2. Assessment of Successful AgNO3 Loading on the Surface of Whatman Filter Paper
2.3. Assessment of Microbial Growth
2.4. Color Change Measurement
2.5. Tensile Strength and Elongation
2.6. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.7. Assessment of the Cellulosic Fibers of Treated/Untreated Filter Paper in the Presence/Absence of Microbial Inoculations Using SEM Analysis
3. Materials and Methods
3.1. Materials
3.2. Cytotoxic Efficacy of Whatman Filter Paper Loaded with Different Concentrations of AgNO3 on Normal Cells
3.3. Evaluate the Efficacy of a Safe Dose of AgNO3 on Paper Quality
3.3.1. Confirm Successful Loaded of AgNO3 on Sterilized Filter Paper
3.3.2. The Bacterial and Fungal Strains Used in This Study
3.3.3. Design of the Experiment
3.3.4. Assessment of Bacterial and Fungal Growth
3.3.5. Color Change Measurement
3.3.6. Tensile Strength and Elongation
3.3.7. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy
3.3.8. Scanning Electron Microscopy (SEM)
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sequeira, S.; Cabrita, E.J.; Macedo, M.F. Antifungals on paper conservation: An overview. Int. Biodeterior. Biodegrad. 2012, 74, 67–86. [Google Scholar] [CrossRef]
- Strlič, M.; Kolar, J. Ageing and Stabilisation of Paper; National and University Library Ljubljana: Ljubljana, Slovenia, 2005. [Google Scholar]
- Thapa, S.; Mishra, J.; Arora, N.; Mishra, P.; Li, H.; O′Hair, J.; Bhatti, S.; Zhou, S. Microbial cellulolytic enzymes: Diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev. Environ. Sci. Biol. Technol. 2020, 19, 621–648. [Google Scholar]
- Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Salem, S.S.; Hassan, S.E.-D.; El-Sadany, M.A.-H. Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int. Biodeterior. Biodegrad. 2019, 142, 160–169. [Google Scholar] [CrossRef]
- Fouda, A.H.; Hassan, S.E.-D.; Eid, A.M.; Ewais, E.E.-D. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann. Agric. Sci. 2015, 60, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Alkahtani, M.; Fouda, A.; Attia, K.A.; Alotaibi, F.E.; Eid, A.M.; Ewais, E.E.; Hijri, M.; St-Arnaud, M.; Hassan, S.E.; Khan, N.; et al. Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture. Agronomy 2020, 10, 1325. [Google Scholar] [CrossRef]
- Khalil, A.M.A.; Hassan, S.E.-D.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.-D.; Azab, E.; Gobouri, A.A.; Elkelish, A.; Fouda, A. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomolecules 2021, 11, 140. [Google Scholar] [CrossRef]
- Saini, A.; Aggarwal, N.K.; Sharma, A.; Yadav, A. Actinomycetes: A Source of Lignocellulolytic Enzymes. Enzym. Res. 2015, 2015, 279381. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Lynd, L.R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 2004, 88, 797–824. [Google Scholar] [CrossRef]
- Di Bella, M.; Randazzo, D.; Di Carlo, E.; Barresi, G.; Palla, F. Monitoring Biological Damage on Paper-based Documents in the Historical Archive of the Palermo Astronomical Observatory. Conserv. Sci. Cult. Herit. 2017, 15, 85–94. [Google Scholar]
- Paulus, W. Directory of Microbicides for the Protection of Materials: A Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Gupta, P.; Aggarwal, M. Chapter 55—Toxicity of Fungicides, Veterinary Toxicology; Academic Press: Boston, MA, USA, 2012. [Google Scholar]
- Zervos, S.; Alexopoulou, I. Paper conservation methods: A literature review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Garside, P.; Knight, B. The behaviour of books in changing environmental conditions and the implications for collection storage. In Proceedings of the ICOM Committee for Conservation, Preprints of the 16th Triennial Conference, Lisbon, Portugal, 19–23 September 2011. [Google Scholar]
- Belloni, F.; Nassisi, V.; Alifano, P.; Monaco, C.; Panzanaro, S. The Effects of UV Laser Radiation as Sterilizer for Cultural Heritage. Macromol. Symp. 2006, 238, 52–56. [Google Scholar] [CrossRef]
- Alexopoulou, I.; Zervos, S. Paper conservation methods: An international survey. J. Cult. Herit. 2016, 21, 922–930. [Google Scholar] [CrossRef]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Wójciak, A. Washing, Spraying and Brushing. A Comparison of Paper Deacidification by Magnesium Hydroxide Nanoparticles. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2015, 36, 3–23. [Google Scholar] [CrossRef]
- Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Eid, A.M.; Barghoth, M.G.; El-Sadany, M.A.-H. Monitoring the effect of biosynthesized nanoparticles against biodeterioration of cellulose-based materials by Aspergillus niger. Cellulose 2019, 26, 6583–6597. [Google Scholar] [CrossRef]
- Salem, S.S.; El-Belely, E.F.; Niedbała, G.; Alnoman, M.M.; Hassan, S.E.-D.; Eid, A.M.; Shaheen, T.I.; Elkelish, A.; Fouda, A. Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials 2020, 10, 2082. [Google Scholar] [CrossRef]
- Kaplan, A.; Kutlu, H.M. Investigation of Silver Nitrate on Cytotoxicity and Apoptosis in MCF7 Human Breast Carcinoma Cells. Asian Pac. J. Cancer Biol. 2020, 5, 49–56. [Google Scholar] [CrossRef]
- Cuin, A.; Massabni, A.C.; Pereira, G.A.; Leite, C.Q.; Pavan, F.R.; Sesti-Costa, R.; Heinrich, T.A.; Costa-Neto, C.M. 6-Mercaptopurine complexes with silver and gold ions: Anti-tuberculosis and anti-cancer activities. Biomed. Pharmacother. Biomed. Pharmacother. 2011, 65, 334–338. [Google Scholar] [CrossRef]
- Radko, L.; Stypuła-Trębas, S.; Posyniak, A.; Żyro, D.; Ochocki, J. Silver(I) Complexes of the Pharmaceutical Agents Metronidazole and 4-Hydroxymethylpyridine: Comparison of Cytotoxic Profile for Potential Clinical Application. Molecules 2019, 24, 1949. [Google Scholar] [CrossRef] [Green Version]
- Raffi, M.; Hussain, F.; Bhatti, T.; Akhter, J.; Hameed, A.; Hasan, M. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 2008, 24, 192–196. [Google Scholar]
- Soliman, A.M.; Abdel-Latif, W.; Shehata, I.H.; Fouda, A.; Abdo, A.M.; Ahmed, Y.M. Green Approach to Overcome the Resistance Pattern of Candida spp. Using Biosynthesized Silver Nanoparticles Fabricated by Penicillium chrysogenum F9. Biol. Trace Elem. Res. 2021, 199, 800–811. [Google Scholar] [CrossRef]
- Lansdown, A.B. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006, 33, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Fouda, A.; Elgamal, M.S.; EL-Din Hassan, S.; Shaheen, T.I.; Salem, S.S. Enhancing of Cotton Fabric Antibacterial Properties by Silver Nanoparticles Synthesized by New Egyptian Strain Fusarium keratoplasticum A1-3. Egypt J. Chem. 2017, 60, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.; Akalin Ciftci, G.; Kutlu, H.M. Cytotoxic, anti-proliferative and apoptotic effects of silver nitrate against H-ras transformed 5RP7. Cytotechnology 2016, 68, 1727–1735. [Google Scholar] [CrossRef] [Green Version]
- Kolesarova, A.; Capcarova, M.; Sirotkin, A.V.; Medvedova, M.; Kovacik, J. In vitro assessment of silver effect on porcine ovarian granulosa cells. J. Trace Elem. Med. Biol. 2011, 25, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.W. History of the medical use of silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsharif, S.M.; Salem, S.S.; Abdel-Rahman, M.A.; Fouda, A.; Eid, A.M.; El-Din Hassan, S.; Awad, M.A.; Mohamed, A.A. Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 2020, 6, e03943. [Google Scholar] [CrossRef]
- Sambale, F.; Wagner, S.; Stahl, F.; Khaydarov, R.R.; Scheper, T.; Bahnemann, D. Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. J. Nanomater. 2015, 2015, 136765. [Google Scholar] [CrossRef]
- Medvetz, D.A.; Hindi, K.M.; Panzner, M.J.; Ditto, A.J.; Yun, Y.H.; Youngs, W.J. Anticancer Activity of Ag(I) N-Heterocyclic Carbene Complexes Derived from 4,5-Dichloro-1H-Imidazole. Metal-Based Drugs 2008, 2008, 384010. [Google Scholar] [CrossRef] [PubMed]
- Kaba, S.I.; Egorova, E.M. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol. Sci. Appl. 2015, 8, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Frazer, R. Use of Silver Nanoparticles in HIV Treatment Protocols: A Research Proposal. J. Nanomed. Nanotechnol. 2011, 3. [Google Scholar] [CrossRef]
- Magudapathy, P.; Gangopadhyay, P.; Panigrahi, B.; Nair, K.; Dhara, S. Electrical transport studies of Ag nanoclusters embedded in glass matrix. Phys. B Condens. Matter 2001, 299, 142–146. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.; Abdo, A.M.; El-Gamal, M.S. Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp. Biol. Trace Elem. Res. 2020, 195, 707–724. [Google Scholar] [CrossRef]
- Fouda, A.; Saad, E.; Salem, S.S.; Shaheen, T.I. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 2018, 125, 252–261. [Google Scholar] [CrossRef] [PubMed]
- El Bergadi, F.; Laachari, F.; Elabed, S.; Mohammed, I.H.; Ibnsouda, S.K. Cellulolytic potential and filter paper activity of fungi isolated from ancients manuscripts from the Medina of Fez. Ann. Microbiol. 2014, 64, 815–822. [Google Scholar] [CrossRef]
- Human, Z.; Munyaneza, A.; Omondi, B.; Sanabria, N.M.; Meijboom, R.; Cronjé, M.J. The induction of cell death by phosphine silver(I) thiocyanate complexes in SNO-esophageal cancer cells. Biometals Int. J. Role Metal Ions Biol. Biochem. Med. 2015, 28, 219–228. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Eid, A.M.; Fouda, A.; Niedbała, G.; Hassan, S.E.; Salem, S.S.; Abdo, A.M.; Hetta, H.F.; Shaheen, T.I. Endophytic Streptomyces laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics 2020, 9, 641. [Google Scholar] [CrossRef]
- Kanwal, Z.; Raza, M.A.; Riaz, S.; Manzoor, S.; Tayyeb, A.; Sajid, I.; Naseem, S. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. R. Soc. Open Sci. 2019, 6, 182135. [Google Scholar] [CrossRef] [Green Version]
- Zervos, S.; Moropoulou, A. Methodology and Criteria for the Evaluation of Paper Conservation Interventions: A Literature Review. Restaur. Int. J. Preserv. Libr. Arch. Mater. Restaur. 2006, 27, 219–274. [Google Scholar] [CrossRef]
- Rushdy, A.; Noshy, W.; Youssef, A.; Kamel, S. Influence of Bleaching Materials on Mechanical and Morphological Properties for Paper Conservation. Egypt. J. Chem. 2017, 60, 893–903. [Google Scholar]
- Viggiano, A.; Salo, O.; Ali, H.; Szymanski, W.; Lankhorst, P.P.; Nygård, Y.; Bovenberg, R.A.L.; Driessen, A.J.M. Pathway for the Biosynthesis of the Pigment Chrysogine by Penicillium chrysogenum. Appl. Environ. Microbiol. 2018, 84, e02246-17. [Google Scholar] [CrossRef] [Green Version]
- Amornkitbamrung, L.; Mohan, T.; Hribernik, S.; Reichel, V.; Faivre, D.; Gregorova, A.; Engel, P.; Kargl, R.; Ribitsch, V. Polysaccharide stabilized nanoparticles for deacidification and strengthening of paper. RSC Adv. 2015, 5, 32950–32961. [Google Scholar] [CrossRef] [Green Version]
- Khaneja, R.; Perez-Fons, L.; Fakhry, S.; Baccigalupi, L.; Steiger, S.; To, E.; Sandmann, G.; Dong, T.; Ricca, E.; Fraser, P. Carotenoids found in Bacillus. J. Appl. Microbiol. 2010, 108, 1889–1902. [Google Scholar] [PubMed]
- Rosenau, T.; Potthast, A.; Krainz, K.; Hettegger, H.; Henniges, U.; Yoneda, Y.; Rohrer, C.; French, A.D. Chromophores in cellulosics, XI: Isolation and identification of residual chromophores from bacterial cellulose. Cellulose 2014, 21, 2271–2283. [Google Scholar] [CrossRef]
- Bajpai, P. Chapter 2—Paper and Its Properties. In Biermann’s Handbook of Pulp and Paper, 3rd ed.; Bajpai, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 35–63. [Google Scholar]
- Tang, B.; Li, J.; Hou, X.; Afrin, T.; Sun, L.; Wang, X. Colorful and Antibacterial Silk Fiber from Anisotropic Silver Nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 4556–4563. [Google Scholar] [CrossRef]
- Ariafar, A.A.; Afsharpour, M.; Samanian, K. Use of TiO2/chitosan nanoparticles for enhancing the preservative effects of carboxymethyl cellulose in paper-art-works against biodeterioration. Int. Biodeterior. Biodegrad. 2018, 131, 67–77. [Google Scholar] [CrossRef]
- Vishtal, A.; Retulainen, E. Deep-drawing of paper and paperboard: The role of material properties. BioResources 2012, 7, 4424–4450. [Google Scholar]
- Seth, R.S. Optimizing reinforcement pulps by fracture toughness. Tappi J. 1996, 79, 170–178. [Google Scholar]
- Zeng, X.; Vishtal, A.; Retulainen, E.; Sivonen, E.; Fu, S. The Elongation Potential of Paper—How Should Fibres be Deformed to Make Paper Extensible? Bioresources 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Sherazy, E.; Saad, M.; Kobesy, O.; Almetwally, A.A.; Aly, N.M. Characterization of the Tensile Strength Properties of Hybrid Sandwich Composites. Int. Des. J. 2015, 5, 1285–1292. [Google Scholar]
- Hamza, M.F.; Abdel-Rahman, A.A.-H. Extraction studies of some hazardous metal ions using magnetic peptide resins. J. Dispers. Sci. Technol. 2015, 36, 411–422. [Google Scholar] [CrossRef]
- Hamza, M.F.; Abdel-Rahman, A.A.-H.; Guibal, E. Magnetic glutamine-grafted polymer for the sorption of U(VI), Nd(III) and Dy(III). J. Chem. Technol. Biotechnol. 2018, 93, 1790–1806. [Google Scholar] [CrossRef]
- Böhm, A.; Trosien, S.; Avrutina, O.; Kolmar, H.; Biesalski, M. Covalent attachment of enzymes to paper fibers for paper-based analytical devices. Front. Chem. 2018, 6, 214. [Google Scholar] [CrossRef] [PubMed]
- Kruer-Zerhusen, N.; Cantero-Tubilla, B.; Wilson, D.B. Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose 2018, 25, 37–48. [Google Scholar] [CrossRef]
- Lech, T. Evaluation of a parchment document, the 13th century incorporation charter for the city of Krakow, Poland, for microbial hazards. Appl. Environ. Microbiol. 2016, 82, 2620–2631. [Google Scholar] [CrossRef] [Green Version]
- Naraian, R.; Gautam, R.L. Penicillium enzymes for the saccharification of lignocellulosic feedstocks. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 121–136. [Google Scholar]
- Salem, S.S.; Fouda, M.M.G.; Fouda, A.; Awad, M.A.; Al-Olayan, E.M.; Allam, A.A.; Shaheen, T.I. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J. Clust. Sci. 2021, 32, 351–361. [Google Scholar] [CrossRef]
- Ansari, N.A.; Khan, M.W.; Muheet, A. Evaluation of some fungicides for seed treatment and foliar application in management of damping-off of seedlings and blight of rapeseed caused by Alternaria brassicae. Mycopathologia 1990, 110, 163–167. [Google Scholar] [CrossRef]
- Abdel-Maksoud, G.; Marcinkowska, E. Changes in some properties of aged and historical parchment. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2000, 21, 138–157. [Google Scholar] [CrossRef]
- Reis-Menezes, A.A.; Gambale, W.; Giudice, M.C.; Shirakawa, M.A. Accelerated testing of mold growth on traditional and recycled book paper. Int. Biodeterior. Biodegrad. 2011, 65, 423–428. [Google Scholar] [CrossRef]
- Tappi, T. Tensile properties of paper and paperboard (using constant rate of elongation apparatus). Tech. Assoc. Pulp Pap. Ind. Atlanta 2001. [Google Scholar]
Filter Paper Treated with | Inoculated by | Growth Inhibition (%): | ||
---|---|---|---|---|
7 Days | 14 Days | 21 Days | ||
AgNO3 (80 µg mL−1) | Bacillus subtilis B3 | 100 ± 0.0 a | 100 ± 0.0 a | 100 ± 0.0 a |
AgNO3 (80 µg mL−1) | Penicillium chrysogenum F9 | 43.8 ± 3.4 c | 68.8 ± 1.5 b | 85.9 ± 1.1 d |
Treatment | Inoculated with | 7 Days | 14 Days | 21 Days | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | ΔE | L* | a* | b* | ΔE | L* | a* | b* | ΔE | ||
Reference | - | 91.6 ± 1.8 a | −0.24 ± 0.07 c | 0 ± 0.0 | 0 ± 0.0 | 91.6 ± 1.8 a | −0.24 ± 0.01 c | 0 ± 0.0 | 0 ± 0.0 | 91.6 ± 1.8 a | −0.24 ± 0.07 c | 0 ± 0.0 | 0 ± 0.0 |
Negative control | - | 89.4 ± 1.2 ab | −0.16 ± 0.07 c | 1.8 ± 0.2 c | 2.6 ± 0.3 e | 89.1 ± 0.7 b | −0.17 ± 0.01 c | 1.76 ± 0.1 c | 1.9 ± 0.2 d | 87.7 ± 0.9 a | −0.17 ± 0.01 c | 2.3 ± 0.3 c | 2.5 ± 0.4 e |
FB + 80 µg mL−1 AgNO3 | - | 87.7 ± 1.5 b | −0.06 ± 0.0 b | 2.4 ± 0.2 bc | 3.3 ± 0.4 de | 88.1 ± 1.3 b | −0.14 ± 0.06 c | 2.87 ± 0.1 bc | 3.9 ± 0.5 c | 87.7 ± 0.9 a | −0.14 ± 0.0 c | 2.9 ± 0.2 c | 3.7 ± 0.2 de |
Positive control | Bacillus subtilis B3 | 82.2 ± 1.4 c | 0.86 ± 1.1 a | 20.1 ± 0.9 a | 15.4 ± 1.1 c | 82.02 ± 1.5 c | 0.69 ± 0.08 a | 21.03 ± 1.3 a | 21.2 ± 1.7 b | 80.6 ± 1.2 b | 1.3 ± 0.1 a | 21.7 ± 1.7 a | 15.0 ± 0.7 c |
FB + 80 µg mL−1 Ag NO3 | Bacillus subtilis B3 | 87.8 ± 0.6 b | −0.22 ± 0.02 c | 3.5 ± 0.4 b | 4.8 ± 0.2 d | 85.9 ± 0.4 c | −0.25 ± 0.01 c | 3.79 ± 0.1 b | 5.3 ± 0.7 c | 87.1 ± 0.7 a | −0.23 ± 0.02 c | 3.7 ± 0.1 bc | 5.5 ± 0.4 d |
Positive control | P. chrysogenum F9 | 15.2 ± 1.1 e | −0.13 ± 0.007 c | 3.39 ± 0.4 b | 75.2 ± 1.5 a | 9.9 ± 0.3 e | −0.32 ± 0.02 b | 3.99 ± 0.1 b | 80.3 ± 1.3 a | 10.3 ± 0.7 d | −0.5 ± 0.05 b | 4.7 ± 0.6 b | 81.2 ± 1.2 a |
FB + 80 µg mL−1 Ag NO3 | P. chrysogenum F9 | 54.7 ± 0.7 d | −0.32 ± 0.02 c | 2.13 ± 0.3 bc | 35.1 ± 0.9 b | 66.8 ± 1.3 d | −0.42 ± 0.06 b | 2.41 ± 0.3 bc | 24.1 ± 0.5 b | 65.9 ± 1.9 c | −0.5 ± 0.03 b | 2.4 ± 0.3 c | 23.4 ± 1.5 b |
Treatment | Inoculated by | After 7 Days | After 14 Days | After 21 Days | |||
---|---|---|---|---|---|---|---|
Tensile Strength (N) | Elongation % | Tensile Strength | Elongation % | Tensile Strength | Elongation % | ||
Reference | - | 22.54 ± 0.4 b | 1.37 ± 0.1 ab | 22.54 ± 0.4 a | 1.36 ± 0.1 b | 22.54 ± 0.4 b | 1.34 ± 0.02 b |
Negative control | - | 23.54 ± 0.2 b | 2.24 ± 0.2 ab | 22.19 ± 0.7 a | 1.29 ± 0.2 b | 21.85 ± 0.5 b | 1.19 ± 0.08 b |
FB + 80 µg mL−1 AgNO3 | - | 24.91 ± 0.4 ab | 2.53 ± 0.1 a | 24.21 ± 0.6 a | 2.59 ± 0.3 a | 24.57 ± 0.9 b | 3.51 ± 0.4 a |
Positive control | Bacillus subtilis B3 | 15.41 ± 0.6 c | 0.81 ± 0.02 b | 12.02 ± 1.5 b | 0.53 ± 0.03 c | 11.27 ± 1.2 c | 0.32 ± 0.02 c |
FB + 80 µg mL−1 AgNO3 | Bacillus subtilis B3 | 26.16 ± 1.2 a | 2.76 ± 0.1 a | 23.38 ± 1.7 a | 2.3 ± 0.3 a | 29.39 ± 7.01 a | 2.27 ± 0.2 ab |
Positive control | P. chrysogenum F9 | 15.62 ± 1.1 c | 0.98 ± 0.03 b | 11.78 ± 1.3 b | 0.72 ± 0.02 c | 13.2 ± 0.7 c | 0.79 ± 0.04 c |
FB + 80 µg mL−1 AgNO3 | P. chrysogenum F9 | 25.97 ± 1.7 ab | 2.71 ± 0.2 a | 23.26 ± 1.4 a | 2.27 ± 0.2 a | 24.01 ± 1.6 b | 2.42 ± 0.4 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouda, A.; Abdel-Maksoud, G.; Saad, H.A.; Gobouri, A.A.; Mohammedsaleh, Z.M.; Abdel-Haleem El-Sadany, M. The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes. Catalysts 2021, 11, 310. https://doi.org/10.3390/catal11030310
Fouda A, Abdel-Maksoud G, Saad HA, Gobouri AA, Mohammedsaleh ZM, Abdel-Haleem El-Sadany M. The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes. Catalysts. 2021; 11(3):310. https://doi.org/10.3390/catal11030310
Chicago/Turabian StyleFouda, Amr, Gomaa Abdel-Maksoud, Hosam A. Saad, Adil A. Gobouri, Zuhair M. Mohammedsaleh, and Mohamad Abdel-Haleem El-Sadany. 2021. "The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes" Catalysts 11, no. 3: 310. https://doi.org/10.3390/catal11030310
APA StyleFouda, A., Abdel-Maksoud, G., Saad, H. A., Gobouri, A. A., Mohammedsaleh, Z. M., & Abdel-Haleem El-Sadany, M. (2021). The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes. Catalysts, 11(3), 310. https://doi.org/10.3390/catal11030310