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Abstract: The rational design of ultra-small metal clusters dispersed on a solid is of crucial impor-
tance in modern nanotechnology and catalysis. In this contribution, the concept of catalyst fabrication
with a very ultra-small size of platinum nanoparticles supported on a hierarchical zeolite surface
via a one-pot hydrothermal system was demonstrated. Combining the zeolite gel with ethylene-
diaminetetraacetic acid (EDTA) as a ligand precursor during the crystallization process, it allows
significant improvement of the metal dispersion on a zeolite support. To illustrate the beneficial effect
of ultra-small metal nanoparticles on a hierarchical zeolite surface as a bifunctional catalyst, a very
high catalytic performance of almost 100% of cycloalkane product yield can be achieved in the consec-
utive mild hydrodeoxygenation of 4-propylphenol, which is a lignin-derived model molecule. This
instance opens up perspectives to improve the efficiency of a catalyst for the sustainable conversion
of biomass-derived compounds to fuels.

Keywords: ultra-small nanoparticles; hierarchical zeolite nanosheets; hydrodeoxygenation

1. Introduction

The rational design of ultra-small metal nanoparticles is one of the most fascinating
perspectives in modern nanotechnology because they are of crucial importance in a mul-
tiplicity of fields, for instance, adsorption [1], separation [2] to sensor [3], biosensor [4],
drug delivery [5], renewable energy [6], photocatalysis [7], and especially industrial cataly-
sis [8]. Previously, although metal nanoparticles (NPs) have been extensively developed
and used in many potential catalytic applications, such as Fischer-Tropsch synthesis [9],
CO oxidation process [10], hydrogenation [11], hydroisomerization [12], and hydrodeoxy-
genation [13], they usually suffer from the drawback of metal agglomeration at elevated
temperature, eventually leading to the catalytic activity loss during the reaction [14–16].
To circumvent these limitations, various solid materials, such as metal organic frameworks
(MOFs), metal oxides, mesoporous silicas, and zeolites have been globally used for dis-
persing and stabilizing metal nanoparticles, and subsequently improving the dispersion
of nanoparticles [17,18]. Among them, a zeolite is the most promising candidate and has
been extensively applied in fine-chemical and petrochemical industries owing to their
outstanding properties in terms of confinement effect [19], shape selectivity [20], thermal
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stability [21], tunable acidity [22], and ion-exchange ability [23]. To date, various transition
metals, such as Pt [17,18], Pd [24], Ag [25], Au [26], and Cu [27] have been successfully in-
corporated into a zeolite framework, exhibiting their unique properties for various catalytic
chemical reactions, for example, oxidation, hydrogenation, isomerization, and Fischer-
Tropsch synthesis [28]. The use of zeolites for hosting ultra-small nanoparticles benefits the
stabilization of metal particles inside zeolite frameworks due to their confinement effect,
eventually preventing the metal aggregation when they have been operated at high reaction
temperature [29]. In general, there are several proposed approaches for the fabrication of
metal nanoparticles and zeolites, such as wet impregnation (IM), ion-exchange, deposition-
precipitation (DP), and one-pot hydrothermal synthesis [30]. Although a wet impregnation
is a very simple method, which has been traditionally used in the industrial processes,
it often suffers from the drawbacks of large and non-homogeneous metal particles that are
mostly deposited on the external surface of zeolites due to a relatively weak metal-support
interaction [31]. On the other hand, a one-pot synthesis would provide well-dispersed
and ultra-small metal clusters on zeolite surfaces, and these particles are resistant to metal
sintering [32–39]. Moreover, the leaching of metal nanoparticles from zeolite surfaces can
be prevented, eventually improving the stability and reusability of a catalyst. As a result,
the catalytic performance in many reactions can be enhanced over the ultra-small metals
dispersed on zeolites such as a hydrogenation and tandem aldol condensation [40].

Although there are several benefits (mentioned above) of the encapsulation of metal
clusters inside a framework of zeolites, it often suffers from the disadvantage of using a
conventional zeolite with a bulk structure. It has been reported that a small microporous
structure of the conventional zeolite can suppress the catalytic activity of a reaction involv-
ing a bulky molecule [41,42]. In order to overcome these drawbacks, a hierarchical zeolite
containing at least two levels of porous structures (micropores with integrated macropores
or/and mesopores) has been recently used to enhance the catalytic efficiency because it
improves the transportation of bulky compounds into active sites as well as promotes the
metal dispersion on solid zeolites [43]. Indeed, there are a lot of efforts to develop the
synthesis approaches of hierarchically structured zeolites. One of the most interesting
approaches is using the soft templating method with the aid of various chemical agents,
such as hydrophilic cationic polymers [44,45], and organosilanes [46,47]. In particular, the
hierarchical zeolite nanosheet, one type of hierarchical zeolites, has played an essential role
in the recent years because it not only improves diffusion limitation of bulky molecules in
small pores but also enhances metallic sites when using it as a solid support [47–52].

Not only the above-mentioned advantage of using a zeolite framework to stabilize the
ultra-small metal nanoparticles, but also the combination of acid zeolite together with the
metallic particles would benefit in many catalytic applications because it can be considered
as a bifunctional catalyst [53,54]. Typically, there are several catalytic reactions, requiring the
presence of a bifunctional Brønsted acid and Lewis acid catalyst, such as hydrocracking [55],
hydrogenation [56], and especially hydrodeoxygenation (HDO), which is one of the most
crucial pathways in bio-oil upgrading applications [57–59]. It is well known that a very high
content of oxygenates in bio-oils has been observed after the pyrolysis of corresponding bio-
oils, eventually producing a low quality of liquid fuels [60]. To overcome these problems,
the hydrodeoxygenation (HDO) is one of the most effective ways for removal of oxygen
parts from bio-oils to increase their quality. Typically, it requires the simultaneous presence
of Lewis acid and Brønsted acid sites in an overall HDO process because the former is the
main function for hydrogenation reaction and the latter is responsible for dehydration [57].
Therefore, the competence of a catalyst on HDO reaction depends on balancing of these
two catalytic functions. For example, the catalytic performance of hydrogenation of lignin-
derived compound using bifunctional Pt-Ru/Proton Zeolites Socony Mobil-5 (HZSM-5)
nanosheets has been significantly improved because the bimetallic nanoparticles on a
zeolite support provide the crucial factor to increase the high dispersibility of two metal
species [51]. Moreover, Hidetoshi et al. reported the catalytic conversion of HDO of 4-
propylphenol phenol using Pt supported on various zeolites. The Pt/HZSM-5 provided
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the best catalytic performance, in which almost 100% yield of propylcyclohexane at mild
reaction condition was observed [61].

In order to improve the efficiency of above-mentioned bifunctional catalysts, one
needs to highly disperse the ultra-small metal nanoparticles, which are located closely to
the Brønsted acid site in a zeolite framework. In this contribution, we have successfully
fabricated the ultra-small platinum nanoparticles dispersed on hierarchical zeolite sur-
faces by a one-pot hydrothermal system using the metal stabilization by interacting with
ethylenediaminetetraacetic acid (EDTA) as a ligand precursor. In addition, the ultra-small
metal nanoparticles on acid zeolite surfaces are advantageous for the mild 4-propylphenol
hydrodeoxygenation as a model reaction for bio-oil upgrading application with a very
high catalytic performance.

2. Results and Discussion
2.1. Analysis of Structural and Morphological Structures

The present study demonstrates the perspectives of the fabrication of ultra-small Pt
nanoparticles (Pt NPs) onto hierarchical zeolite nanosheets by utilizing a polyprotic acid as
a chelating agent to effectively stabilize metal ions in zeolite domains during the crystal-
lization via a one-pot hydrothermal synthesis (Scheme 1). It is well known that ethylene-
diaminetetraacetic acid (EDTA) is one of the most important polyprotic aminocarboxylic
acids, which can form metal-ligand complexes with various metals [62,63]. As illustrated in
Scheme 1A, EDTA molecules interact with the Pt precursors forming chelated Pt complexes
in the synthesis gel, which contains tetraethyl orthosilicate (TEOS) and tetrabutylammo-
nium hydroxide (TBAOH) as a starting silica and a structure-directing agent, respectively.
Accordingly, the Pt precursors can be introduced to the zeolite matrix upon the dissolu-
tion of silica species followed by the formation of silicate network around the Pt-EDTA
complexes under the direction of TBAOH (Scheme 1A). After the crystallization under a
hydrothermal condition and the reduction under H2 atmosphere (Scheme 1B,C), ultra-small
Pt nanoparticles dispersed on hierarchical zeolite nanosheet surfaces have been successfully
obtained and the sample is denoted as Pt@SiNS(one) or Pt@HZSM-5NS(one) when using
silicalite-1 and HZSM-5 as supports, respectively. Moreover, to clarify the effects of the
preparation method on the characteristic of Pt nanoparticles, the impregnation method
was employed for adding Pt nanoparticles on hierarchical nanosheets and conventional
zeolites (denoted as Pt/SiNS(imp) or Pt/HZSM-5(imp), and Pt/SiCON(imp) or Pt/HZSM-
5CON(imp), respectively). The Pt content of all the prepared samples corresponds to
0.4–0.6 wt.% (Table S1).
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Scheme 1. Illustration of the synthesis step for ultra-small Pt nanoparticles supported on hierarchical
silicalite-1 nanosheets: (A) the self-assembly of Pt and EDTA in the presence of silica source (TEOS)
and the structure-directing agent (TBAOH), (B) the hydrothermal process of zeolite in the presence
of the Pt-EDTA complex, (C) the obtained ultra-small Pt particles dispersed on a zeolite structure.
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As shown in Figure 1A, the X-ray diffraction (XRD) patterns of all the prepared sam-
ples obviously verify the characteristic of the MFI (pentasil type zeolite) topology without
a contamination of other crystalline phases [64,65]. As expected, a lower crystallinity
shown by a lower intensity of the diffraction peaks of the zeolite nanosheet samples with
respect to the conventional zeolite relates to a smaller crystallite size and a partial loss
of micropores, which are typically found in case of hierarchical zeolite nanocrystals [46].
Interestingly, the XRD pattern of Pt@SiNS(one) does not exhibit the peaks referring to
metallic Pt (39.8◦ and 46.2◦) [40,66], which can be explained by a low Pt content or a well
dispersion of Pt nanoparticles [40]. The scanning electron micrograph (SEM) reveals that
both Pt@SiNS(one) and Pt/SiNS(imp) samples exhibit the uniform spherical assemblies of
aggregated MFI nanosheets with the particle size of 123.2 ± 11.6 nm and 166.5 ± 18.2 nm
(Figure 1B,C and Figure S1), respectively, which are in consistent with what has been
illustrated previously [67].
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Figure 1. (A) X-ray diffraction (XRD) patterns of (a) Pt@SiNS(one), (b) Pt/SiNS(imp),
and (c) Pt/SiCON(imp), scanning electron micrograph (SEM) images of (B) Pt@SiNS(one)
and (C) Pt/SiNS(imp), and (D) N2 adsorption/desorption isotherms of (a) Pt@SiNS(one),
(b) Pt/SiNS(imp), and (c) Pt/SiCON(imp).

In strong contrast to this, the Pt/SiCON(imp) exhibits cubic-shaped crystals with the
particle size of 1.8 ± 0.1 µm (Figure S1). To gain the insights into the textural properties of
all the synthesized materials, N2 sorption isotherms of all samples and the summarization
of textural information are shown in Figure 1D and Table 1, respectively. Typically, the
Pt/SiCON(imp) sample displays a type-I isotherm because of the adsorbed filling in a
micropores at the low P/P0 or relative pressure, which is a typical characteristic of a
microporous material [68]. However, the different appearance of N2 sorption isotherms
could be investigated for both Pt@SiNS(one) and Pt/SiNS(imp) samples demonstrating
the characteristics of combined type-I and type-IV isotherms, as clearly observed by a
hysteresis loop at high P/P0 (above 0.8), corresponding to a capillary condensation in
larger meso/macropores [68]. The corresponding textural properties of all the synthesized
samples are illustrated in Table S1.
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Table 1. Textural properties of the synthesized Pt supported on various silicalite-1 supports prepared by different methods.

Sample SBET
[a] Smicro

[b] Sext
[c] Vtotal

[d] Vmicro
[e] Vext

[f] Vext/Vtotal
[g]

Pt@SiNS(one) 391 252 139 0.89 0.14 0.75 0.84
Pt/SiNS(imp) 314 171 143 0.68 0.09 0.59 0.87
Pt/SiCON(imp) 284 226 58 0.22 0.11 0.11 0.50

[a] Brunaur-Emmett-Teller (BET) specific surface area, [b] microporous surface area, [c] external surface area, [d] total pore volume,
[e] micropore volume, [f] external volume = Vtotal − Vmicro, and [g] fraction of external volume. All surface areas and pore volumes are in
the unit of m2·g−1 and cm3·g−1, respectively.

As expected, BET surface area is improved in cases of Pt-loaded silicalite-1 nanosheet
samples with respect to Pt/SiCON(imp) due to their enhanced mesoporosity. Interest-
ingly, a lower BET surface area of Pt/SiNS(imp) with respect to Pt@SiNS(one) indicates
that Pt nanoparticles in Pt/SiNS(imp) are probably located on the outermost surface of
zeolite, eventually blocking the zeolite pore entrances. The high-resolution TEM image of
Pt@SiNS(one) reveals the small dark spots dispersing on the zeolite nanosheets surfaces
(Figure 2A), likely corresponding to ultra-small Pt nanoparticles deposited on a zeolite
matrix. To verify this hypothesis, the STEM-EDS elemental mapping of Pt@SiNS(one)
was performed (Figure 2B). The results demonstrate that Pt nanoparticles are homoge-
neously distributed in the matrix of silicate-1 nanosheets with the average particle size
of 1.09 ± 0.22 nm (Figure 2B,C). In strong contrast to this, the Pt/SiNS(imp) prepared by
the impregnation method, the agglomeration of Pt nanoparticles is observed with the
corresponding average particle size of 3.19 ± 0.52 nm (Figure S2A).
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Remarkably, the significantly smaller Pt nanoparticles in Pt@SiNS(one) with respect
to Pt/SiNS(imp) relate to the fact that the use of EDTA for Pt incorporation into the zeolite
synthesized a one-pot hydrothermal system can effectively control the Pt particle size dis-
tribution, subsequently preventing the aggregation of Pt nanoparticles. In addition, in the
case of Pt impregnated on the conventional zeolite (Pt/SiCON(imp)), Pt precursor cannot
be incorporated inside the micropores, and Pt nanoparticles then tend to agglomerate to
large clusters (43.2 ± 0.1 nm) deposited on the external surface of a zeolite (Figure S2B)
upon the calcination process [15,69].

Typically, metal-acid bifunctional catalysts are known to be a highly efficient material
for hydrodeoxygenation (HDO) process, which is one of the most favourable pathways for
the application of bio-oil conversion [51]. Indeed, the key factor to achieve high catalytic
performance in the HDO process is the close proximity of the metallic nanoparticles with
the Brønsted acid sites of a zeolite [70,71].

Indeed, the improvement of ultra-small metal nanoparticles (<1.5 nm in diameter)
deposited onto the zeolite surface is of crucial importance to promote sequential reactions
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on two different active sites, and therefore the high catalytic activity would be achieved [71].
Remarkably, the present work demonstrates the successful fabrication of Pt nanoparticles
onto the siliceous MFI (silicalite-1) zeolite nanosheet as evidenced above. Consequently, the
above-mentioned efficient synthesis approach was further employed to prepare metal-acid
bifunctional catalysts, containing the highly dispersed Pt nanoparticles on protonated MFI
zeolite nanosheets (denoted as Pt@HZSM-5NS(one)).

To characterize the chemical and physical properties of the metal-acid bifunctional
ZSM-5 synthesized by a one-pot synthesis (Pt@HZSM-5NS(one)) with respect to the ones
prepared by an impregnation method (referred as Pt/HZSM-5NS(imp) and Pt/HZSM-
5CON(imp), for Pt loaded onto H-ZSM-5 nanosheet, and conventional H-ZSM-5, respec-
tively), their crystalline structures, morphologies, textural properties, zeolite particle size
distribution, and Pt particle size distribution are presented in Figures S3–S6 and Table S2.
XRD patterns again confirm that the MFI topology is the main characteristics without the
interference of any crystalline phases (Figure S3A) as well as no characteristic of platinum
oxides was observed for Pt@HZSM-5NS(one), whereas Pt/HZSM-5NS(imp) and Pt/HZSM-
5CON(imp) show some characteristics of platinum oxides at 2θ of 39.2◦, corresponding to
the characteristic of Pt nanoparticles [40,62].

The N2 sorption isotherms again confirm the presence of the combined micro-meso/
macroporous structures of Pt@HZSM-5NS(one), and Pt/HZSM-5NS(imp), whereas the
Pt/HZSM-5CON(imp) contains the microporous structure as evidenced by the type-I N2
isotherm (Figure S3B). As for the zeolite particle size and Pt particle size distribution, it was
found that the particle sizes of zeolites are in the range of 93.1 ± 9.4 nm, 123.6 ± 17.8 nm,
and 6.9 ± 1.1 µm, and Pt particle sizes are approximately 0.94 ± 0.28, 5.57 ± 0.40, and
38.0 ± 0.02 nm for Pt@HZSM-5NS(one), Pt/HZSM-5NS(imp), and Pt/HZSM-5CON(imp),
respectively (Figure S4–S6).

The electronic properties and chemical bonding of Pt in the bifunctional catalysts were
studied by X-ray absorption near-edge spectroscopy (XANES). As depicted in Figure S7,
the normalized Pt L3 edge XANES spectra of all Pt-modified H-ZSM-5 catalysts exhibit the
absorption edge feature (E0) close to that of Pt white line at the L3 edge is increased as Pt
foil (11,564 eV) [72], confirming that Pt clusters were fully reduced under H2 atmosphere.
Moreover, the intensity of the white line peak at 11,564 eV related to electronic transitions
from 2p3/2 core level to unoccupied 5d states of all samples is higher than that of Pt foil,
presenting the remarkable electronic force between Pt nanoparticles and zeolite support [73].
Typically, the intensity of the white line at the L3 edge is increased as Pt particle size
decreases [74,75]. Interestingly, the most intense white line feature of Pt@HZSM-5NS(one)
demonstrates that Pt nanoparticles are the smallest and highly dispersed with respect to
the other samples, corresponding to the above results.

To investigate the acid properties of the metal-acid bifunctional ZSM-5, the NH3-TPD
experiments have been performed (Figure S8). According to NH3-TPD profiles of all three
samples (Pt@HZSM-5NS(one), Pt/HZSM-5NS(imp), and Pt/HZSM-5CON(imp)), two
NH3 desorption peaks at around 180 to 200 ◦C and 350 to 400 ◦C, have been obtained
corresponding to NH3 desorption from weak and strong acid locations at low and high
temperatures, respectively. Accordingly, the weak and strong acid densities of all the syn-
thesized samples are demonstrated in Table S3. The results show that all three synthesized
bifunctional catalysts exhibit a comparable acid density.

2.2. Catalytic Test in Hydrodeoxygenation (HDO) Process

As stated above, the hydrodeoxygenation (HDO) can be performed using the bifunc-
tional catalysts containing the hydrogenation site and acid sites. Typically, hydrogenation
occurs on Pt sites and dehydration can be catalyzed by the Brønsted acid sites (Figure 3A,B).
As shown in Figure 3A, the hydrodeoxygenation of 4-propylphenol to propylcyclohexane
proceeds via multiple steps of a reaction composed of hydrogenation and dehydration.
Hence, the bifunctional catalysts containing both Lewis metallic sites (Hydrogenation) and
Brønsted acid sites (Dehydration) are needed [76–79]. Therefore, if both active sites are
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located closely in the porous network of zeolite, this would be interesting to transfer the
intermediates from one to another sites, eventually enhancing the catalytic performance
(Figure 3B). In the case of Pt located on the outermost surface of the zeolite crystal as
displayed in Figure 3B, the distance between metallic Pt and Brønsted acid sites in zeolite
framework is quite far from each other. Hence, in order to complete the hydrodeoxy-
genation process, the substrate needs to diffuse from Pt sites located on the outermost
surface into the microporous network in which Brønsted acid sites are located, and even
more it has to diffuse back again to the Pt sites located at the external surface as the last
hydrogenation step.
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Figure 3. (A) Proposed reaction pathway of the 4-propylphenol conversion to propylcyclohexane
over bifunctional Pt supported on an acid catalyst, (B) Illustration of the proposed perspective of
4-propylphenol conversion over Brønsted acid sites and Pt active sites of Pt/HZSM-5NS(imp) and
Pt@HZSM-5NS(one), (C) Catalytic behaviors of Pt@HZSM-5NS(one) in the hydrodeoxygenation of
4-propylphenol as shown in terms of reactant conversion (%) and product selectivity (%) as a function
of reaction time, and (D) Product selectivity (%) in the hydrodeoxygenation of 4-propylphenol over
(a) Pt@HZSM-5NS(one), (b) Pt/HZSM-5NS(imp), (c) Pt/HZSM-5CON(imp), and (d) Pt@NaZSM-
5NS(one). The catalytic results were investigated at 110 ◦C under H2 atmospheric pressure for
10 h.



Catalysts 2021, 11, 333 8 of 14

To explore the reaction pathway of 4-propylphenol hydrodeoxygenation over the
Pt@ZSM-5NS(one) catalyst (Figure 3A), the conversion of 4-propylphenol and prod-
uct distribution vs. reaction time are demonstrated as shown in Figure 3C. Firstly, 4-
propylphenol was transformed to propylcyclohexanone via a partial hydrogenation, and
then subsequently further facilitated to propylcyclohexanol. Subsequently, propylcyclo-
hexanol is dehydrated to propylcyclohexene and eventually hydrogenated to propyl-
cyclohexane [51,80,81]. It is reasonable to assume that propylcyclobenzene is also produced
as an intermediate via direct deoxygenation, which is further hydrogenated to propylcy-
clohexane [51,80–82]. Interestingly, the conversion of 4-propylphenol reached 99% within
150 min (Figure 3C and Table S4), which is contributed to the effect of highly dispersed
Pt metallic sites acting as the hydrogenation part on the catalytic reaction. Obviously,
propylcyclohexanone and propylcyclohexanol disappeared after 300 min (See Table S4),
indicating that the hydrogenation in the first two steps is completed within 300 min and at
that point over 99% of propylcyclohexane is obtained. Finally, the high yield of propylcyclo-
hexane (100%) was obtained at 600 min of the reaction time. To illustrate the advantage of
the designed catalyst composed of metallic sites positioning close to Brønsted acid sites, the
catalytic performance of ultra-small Pt nanoparticles supported on hierarchical HZSM-5
prepared via one-pot synthesis (Pt@ZSM-5NS(one)) was compared with the one obtained
using Pt supported on hierarchical and conventional ZSM-5 prepared by an impregnation
method (Pt@ZSM-5NS(imp), and Pt@ZSM-5CON(imp), respectively), and the Pt supported
on non-acidic ZSM-5 prepared by one-pot synthesis (Pt@NaZSM-5NS(one)) (Figure 3D
and Table S5).

The results show that only 41% conversion of 4-propylphenol is observed when
using Pt@ZSM-5NS(imp) with 45% of propylcyclohexane selectivity, whereas 100% of
4-propylphenol conversion and propylcyclohexane selectivity is obtained when using
Pt@ZSM-5NS(one). This suggests that Pt@ZSM-5NS(one) displays an outstanding and
propitious catalytic performance, which might be attributed to the presence of the Lewis
acid sites derived from the metallic sites of Pt, and Brønsted acid sites in zeolite framework
within adjacent distance to each other.

To further elucidate the consequence of a zeolite porous system on the catalytic
performance, the Pt supported on bulk HZSM-5 (Pt@ZSM-5CON(imp)) was also performed.
It was found that the conversion of 4-propylphenol was only 17% with 22% of propyl-
cyclohexane selectivity and it was significantly lower than those of Pt@ZSM-5NS(imp) as
shown in Table S5. These observations clearly confirm that the presence of ultra-small Pt
nanoparticles located within the adjacent distance with Brønsted acid site in the hierarchical
network could improve diffusion limitation of substrates, and promoting the transfers of
the intermediates between these two sites, eventually resulting in enhancing the catalytic
performance of HDO process.

3. Materials and Methods
3.1. Reagent and Materials

Tetraethyl orthosilicate (TEOS: ≥99.0%, Sigma-Aldrich, St. Louis, MO, USA) was
applied as a starting silica for the synthesis of silicalite-1 and ZSM-5 nanosheets. As the
alumina source, aluminum isopropoxide (NaAlO2: ≥98.0%, Sigma-Aldrich, St. Louis, MO,
USA) was utilized for hierarchical ZSM-5 and sodium aluminate (NaAlO2: 56 wt.% Al2O3,
44 wt.% Na2O, Riedel-deHaen, Seelze, Germany) was applied for conventional ZSM-5
zeolite. In addition, sodium hydroxide (NaOH: Carlo Erba, Barcelona, Spain) and tetra-
n-butylammonium hydroxide (TBAOH: 40% in aqueous solution, LEONID, Bengaluru,
India) were used as a mineralizer and a structure-directing agent (SDA), respectively.
Tetrapropylammonium hydroxide solution (TPAOH: 1 M in H2O, Sigma-Aldrich, St. Louis,
Missouri, USA) has been addressed for conventional silicalite-1 and ZSM-5 as the SDA.
Ammonium nitrate (NH4NO3: Acros Organics, Geel, Belgium, ≥98%) was used for the
ion exchange process. Tetraammineplatinum (II) nitrate (Pt(NH3)4(NO3)2: ≥99.9%, Sigma-
Aldrich, St. Louis, MO, USA) was used as Pt source. Ethylenediamine (EDTA: ≥99.0%,
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Sigma-Aldrich, St. Louis, MO, USA) was used as a ligand precursor to stabilize Pt particles.
As for the hydrodeoxygenation (HDO) reaction testing, there are several reagents including
4-propylphenol (C9H11OH: Sigma-Aldrich, St. Louis, MO, USA), decane (C10H22: Sigma-
Aldrich, St. Louis, MO, USA) and octane (C8H18: Sigma-Aldrich, St. Louis, MO, USA) as
reactant, internal standard, and solvent, respectively.

3.2. Synthesis of Ultra-Small Pt Clusters Distributed on Hierarchical Silicalite-1 by a One-Pot
Hydrothermal System (Pt@SiNS(one))

The ultra-small Pt nanoparticles dispersed on hierarchical siliceous nanosheets were
synthesized by a basic hydrothermal process. The synthesis gel was 60SiO2/18TBAOH/
0.75NaOH/240EtOH/600H2O/0.11Pt/0.004EDTA molar ratio. In a typical synthesis pro-
cedure, 8.68 g of TEOS was mixed with 0.20 g of sodium hydroxide in 2.32 mL of deionized
(DI) water under vigorous stirring. Then, tetraammineplatinum (II) nitrate solution was
obtained by combining 0.025 g of Pt precursor in 0.125 mL of ethylenediamine (EDTA) and
8.1 g of TBAOH under stirring at room temperature, until a homogeneous mixture was
acquired. After that, the tetraammineplatinum (II) nitrate solution was added dropwise
into tetraethyl orthosilicate solution. After that, it was further mixed by vigorous stirring
at 25 ◦C for 12 h. The mixture was then transferred for the crystallization step, which is
eventually heated to 403 K for 24 h. The white sediment was rinsed by DI water and the
pH of the filtrate is almost neutral. Finally, the obtained samples were applied in drying
process overnight at a temperature of 373 K, and calcination at 773 K for 2 h in a static air
atmosphere. The sample is denoted as Pt@SiNS(one).

3.3. Synthesis of Pt on Hierarchical Silicalite-1 (Pt/SiNS(imp)) and Conventional Silicalite-1
(Pt/SiCON(imp)) by an Impregnation

The hierarchical silicalite-1 nanosheet was synthesized under hydrothermal pro-
cess following literature procedure with some modifications [47,67]. The molar ratio of
60SiO2/18TBAOH/0.75NaOH/240EtOH/600H2O gel composition was prepared. Briefly,
8.6 g of TEOS was mixed with 0.02 g of NaOH, 2.32 g of DI water, and 8.10 g of TBAOH.
Subsequently, it was mixed at 25 ◦C for 12 h. Then, the homogeneous gel was crystallized
for 48 h at 403 K. The acquired powder was repeatedly washed with DI until the pH of the
filtrate was almost neutral. Finally, the product was observed after drying overnight at 373
K, and calcination in air at a temperature of 773 K for 2 h.

As for the synthesis of conventional silicalite-1, the precursor of 10SiO2/1TPAOH/
1.03NaOH/240EtOH/400H2O molar ratio was used. The synthesis proceeded as stated
above except the hydrothermal step which was for 72 h at 453 K.

The wet impregnation of Pt on zeolite supports was performed. Typically, an aqueous
solution of Pt(NH3)4(NO3)2 (0.6 wt.% Pt, H2O 10 mL) was added into 1g of a zeolite
support by stirring for 24 h. Subsequently, the solvent was removed for 2 h at 323 K and
the achieved powder was treated under an air atmosphere at 773 K for 2 h. The sample was
defined as Pt/SiNS(imp) and Pt/SiCON(imp) for Pt supported on hierarchical silicalite-1
nanosheet and conventional silicalite-1, respectively.

3.4. Synthesis of Bifunctional Catalysts (Pt@HZSM-5NS(one), Pt/HZSM-5NS(imp), and
Pt/HZSM-5CON(imp))

The Pt nanoparticles supported on hierarchical HZSM-5 nanosheets gained by a
hydrothermal synthesis (Pt@HZSM-5NS(one)), Pt dispersed on hierarchical surfaces of
HZSM-5 nanosheets via an impregnation method (Pt/HZSM-5(imp)), and Pt on typical
HZSM-5 using an impregnation method (Pt/HZSM-5CON(imp)) were prepared with the
similar above-mentioned procedure as shown in Sections 3.2 and 3.3. However, in these
cases, alumina sources were added in the tetraethyl orthosilicate solution mixture in order
to generate aluminum sites, on which Brønsted acid sites are formed. After the calcination
step to get rid of the organic template, the zeolite powder was treated with the solution
of 1 M NH4NO3 for 2 h at 353 K with calcination in a static air atmosphere for 2 h at
temperature of 773 K.
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3.5. Characterization

To confirm the crystalline structure, X-ray powder diffraction (XRD) patterns were
typically collected with a scan rate and a step size of 1 min−1 and 0.02◦, respectively,
on a Bruker D8 ADVANCE model (Bruker, Billerica, MA, USA). To calculate the relative
crystallinity of synthesized samples, the % XRD relative crystallinity using the 2θ range
of 22.5–25.0◦ was obtained by (Sx/Sr) × 100 and Sx and Sr correspond to the integrated
peak area of the synthesized zeolite and the standard zeolite, respectively. To obtain the
morphology of the samples, a JEOL-JSM-7610F and JEOL-JEM-ARM200F microscopes
(Jeol Ltd., Tokyo, Japan) were utilized for scanning electron micrograph images (SEM) and
transmission electron micrograph images (TEM), respectively. To observe the elemental dis-
tribution, TEM-EDS was performed. In addition, wavelength-dispersive X-ray fluorescence
spectrometer (WDXRF) was used to investigate the elemental composition using Bruker
model S8 TIGER sequential (Bruker, Billerica, MA, USA). The textural characteristics of
all the synthesized samples were measured by a N2 adsorption/desorption technique at
the temperature of 77 K, operated on a BEL SORP MAX instrument (Bel Japan Inc., Tokyo,
Japan), using the following methods: the BET, namely Brunauer-Emmett-Teller, t-plot,
and BJH methods, namely Barrett-Joyner-Halenda to calculate the SBET specific surface
area, micropore surface area, and pore volume, together with mesopore size distribution,
respectively. Ultraviolet-visible spectroscopy (UV-Vis) was performed on PerkinElmer
lambda 1050 (PerkinElmer, Waltham, MA, USA) to confirm the interaction between Pt
nanoparticles and thiol probe molecules. Prior to UV-Vis measurement, a zeolite was
immersed in biphenyl-4-thiol solution for 1 min at room temperature. To observe the acid
properties of catalysts, the ammonia temperature-programmed desorption (NH3-TPD) by
using a BELCAT II analyzer (Bel Japan Inc., Tokyo, Japan), together with a TCD detector
was performed. To study the oxidation state of Pt, X-ray absorption near-edge structure or
XANES was performed by transmission mode supported by Synchrotron Light Research
Institute (Public Organization), Nakhon Ratchasima, Thailand at the BL5.2 station.

3.6. Catalytic Study in Hydrodeoxygenation (HDO) of 4-Propylphenol

To demonstrate the benefit of the synthesized catalysts, the mild hydrodeoxygenation
of 4-propylphenol was performed using a batch glass reactor under an atmospheric H2
pressure with pure H2. Prior to reaction testing, the catalysts were dried at 373 K overnight.
Subsequently, 0.10 g of sample, and 1.4 mL of 4-propylphenol was charged to the reactor
together with decane and octane of 20 µL and 5 mL for an internal standard, and solvent,
respectively. The highly dispersed solution was stirred at 383 K under hydrogen environ-
ment. To analyze the reaction mixture as a function of time, a gas/mass chromatography
using a mass spectrometer as a detector (Agilent, GC system 7890 B, system 5977A MSD)
(Agilent Technologies, Palo Alto, CA, USA) was performed. The calculated mass balance is
approximately in the range of 95 ± 2%.

4. Conclusions

The ultra-small Pt nanoparticles dispersed on hierarchical silicalite-1 and HZSM-5
have been effectively fabricated via a one-pot hydrothermal synthesis using ethylenedi-
aminetetraacetic acid (EDTA) as a ligand precursor to stabilize the metals dispersed in
the zeolite matrix. To demonstrate the benefits of ultra-small metal nanoparticles on a
hierarchical zeolite surface as a bifunctional catalyst with respect to the one with a larger
metal clusters supported on a hierarchical zeolite and the one supported on a conventional
zeolite, a great catalytic behavior of almost 100% of cycloalkane product can be achieved in
the consecutive mild hydrodeoxygenation (HDO) of 4-phopylphenol as a model reaction
under the mild condition when using the ultra-small metal nanoparticles on a hierarchical
zeolite. These observations demonstrate that the presence of ultra-small Pt nanoparticles
positioned at the adjacent distance with Brønsted acid site in the hierarchical structure
could improve diffusion limitation of substrates, together with facilitate the intermediates
between these two sites, eventually resulting in enhancing the catalytic performance. This
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instance opens up perspectives to improve the efficiency of a bifunctional catalyst for
bio-oil upgrading application in the biomass-derived compounds conversion to fuels.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/3/333/s1, Figure S1. SEM images and particle size distribution of the synthesized Pt supported
on silicalite-1 samples, Figure S2. TEM images, EDS elemental mapping for Pt on STEM images, and
Pt particle size distribution of the synthesized Pt supported on silicalite-1 samples, Figure S3. XRD
patterns N2 adsorption–desorption isotherms of the synthesized bifunctional Pt supported on HZSM-
5 samples, Figure S4. SEM images and particle size distribution of the synthesized bifunctional Pt
supported on HZSM-5 samples, Figure S5. TEM images of the synthesized bifunctional Pt supported
on HZSM-5 samples, Figure S6. Pt particle size distribution of the synthesized bifunctional Pt
supported on HZSM-5 samples, Figure S7. XANE of various Pt supported zeolite samples, Figure S8.
NH3–TPD profiles of the synthesized bifunctional Pt supported on HZSM-5 samples, Table S1. Pt
content and the relative crystallinity of the synthesized Pt supported on zeolites, Table S2. Textural
properties of the synthesized Pt supported on HZSM-5 samples, Table S3. Summary data of the
conversion and selectivity over Pt@HZSM-5NS(one) obtained at various reaction times, Table S4.
Summary data of the conversion and selectivity over various catalysts.
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