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Abstract: Hydrocarbon traps for exhaust emissions control adsorb hydrocarbons in low temperature
exhaust and release them as the exhaust warms up. In this work, a Pd/BEA hydrocarbon trap was
tested under lean exhaust conditions using ethylene and dodecane as model hydrocarbons. Ethylene
uptake was partially inhibited by CO and H2O when fed separately. When both were added, the
loss in ethylene uptake was 90% relative to the condition with no H2O or CO. Dodecane uptake
was unchanged under all conditions tested. During a temperature ramp, ethylene desorbed and
was combusted to CO2 and H2O over active Pd centers. Further, oxidation light-off of dodecane
generated an exotherm which caused rapid desorption of the remaining hydrocarbon species from
the zeolite. For both hydrocarbons, CO co-feed led to a decreased oxidation light-off temperature,
and therefore lower desorption temperature. By pretreating the catalyst in CO and H2O at 80 ◦C,
and even after removing CO from the feed, the enhanced oxidation light-off behavior was observed.
DRIFTS characterization shows that some form of oxidized Pd was reducible to Pd0 by CO at 80 ◦C
only in the presence of H2O. Further, this reduction appears reversible by high temperature oxygen
treatment. We speculate that this reduced Pd phase serves as the active site for low temperature
hydrocarbon oxidation.

Keywords: palladium zeolite; hydrocarbon trap; emissions control; cold start emissions

1. Introduction

Emerging combustion technologies present new challenges for emissions control.
Low temperature combustion (LTC) diesel engines, of interest due to their increased fuel
economy, create a different pollutant profile which is higher in hydrocarbon and CO
emissions, but lower in NOx and soot, than their traditional standard combustion mode
counterparts [1]. The combination of lower exhaust temperatures and increased CO and
hydrocarbon emissions will test current diesel oxidation catalyst (DOC) technologies, which
require temperatures above 250 ◦C for adequate conversion of unburned hydrocarbons [2].
Additionally, it is estimated that between 60–80% of total hydrocarbon emissions occur
during the cold-start period [2,3]. With the onset of Tier 3 standards from the Environmental
Protection Agency (EPA), which reduce the allowed amount of non-methane organic
(NMOG) + NOx emissions from light and medium duty vehicles to below 0.30 mg/mi
by 2025, additional consideration for cold-start hydrocarbon emissions is required. These
trends and regulations point to the need for new aftertreatment technologies.

A proposed solution to reduce hydrocarbon emissions is the hydrocarbon trap. A
hydrocarbon trap selectively adsorbs hydrocarbons during low temperature periods. As
the exhaust warms up, the hydrocarbons are then released from the trap. An effective
hydrocarbon trap would release the stored molecules after reaching a temperature appro-
priate for oxidation by the DOC (>250 ◦C) or by an integrated oxidation catalyst within
the trap itself. Although the hydrocarbons should be released after the DOC is active, they
should not be retained to too high of a temperature so that the hydrocarbon trap can be
regenerated before the next cold-start cycle.
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Zeolites have received the majority of the attention for this application due to their
properties as molecular sieves, hydrothermal stability, and solid acid behavior [4–11]. For
diesel exhaust applications, zeolite beta (BEA) is often studied. This is due to its large
diameter pores (5.95 Å) [12] which allow for physisorption of larger molecules typical
of diesel exhaust such as dodecane (4.3 Å) and toluene (5.85 Å) [13]. More recently,
metal ion-exchanged zeolite hydrocarbon traps have been studied due to their increased
effectiveness in adsorbing unsaturated hydrocarbons such as ethylene, propylene, and
toluene via chemisorption onto the metals [10,14–19]. Due to competition by water, alkenes
are generally not appreciably adsorbed over the H+ form of most zeolites under wet
conditions [8]. Kang et al. found that the addition of Ag to the framework could enhance the
trapping capacity of BEA towards ethylene, however these improvements were completely
lost in the presence of water [15]. The addition of Pd to the framework however gives some
resistance to water inhibition of ethylene adsorption, as reported by Xu et al. [20].

Palladium-doped zeolites seem to provide unique advantages over other metals. First,
Pd ions are adsorption centers for unsaturated hydrocarbons which expands the trapping
capabilities of the zeolite [21]. Additionally, Pd serves as an oxidation catalyst which can
oxidize the incoming and trapped hydrocarbons and can impact the desorption properties
due to the exotherm generated when hydrocarbons are oxidized [16]. Additionally, in the
high oxygen environment of diesel exhaust, the catalytic oxidation supports regeneration
of the hydrocarbon trap, oxidizing residual hydrocarbon species. This can be important,
as for example ethylene and propylene are known to undergo oligomerization reactions
involving zeolite Brønsted acid sites which can lead to catalyst deactivation [20,22].

The hydrocarbon trap must be active when exposed to the wide variety of species
that comprise diesel exhaust. This includes ppm levels of pollutants such as CO, short
and long chain olefins and paraffins, aromatics, SOx, NOx, and others. Additionally,
H2O and CO2 are present in percent levels. Prior work shows that NO and H2O adsorb
competitively with olefins and aromatics to both Brønsted acid sites and ion-exchanged
Cu, Fe, and Pd sites [5,7,23]. Literature also suggests that competition between different
hydrocarbon classes may not always be significant, for example dodecane does not compete
with ethylene adsorption, due to different uptake mechanisms [16].

CO is also known to adsorb to the Pd species which exist in a zeolite. Prior diffuse
reflectance Fourier transform infrared spectroscopy (DRIFTS) studies on Pd/BEA exposed
to CO indicate that at 80 ◦C, CO is bound as CO–Pd0, CO–Pd+, and CO on two Pd2+ forms,
Z−–Pd2+–Z− and Z−–Pd(OH)+ where Z− is a cation exchange site [24,25]. CO–Pd+ and
CO–Pd0 species may stem from reduction of Pd2+ by the probe molecule [25–27]. In studies
with Pd/BEA and Pd/SSZ-13, bridging CO-Pd2

0 was also observed indicating the presence
of particles [24,28]. In the context of a zeolite passive NOx adsorber (PNA), when CO
was co-fed with NO to Pd/BEA, it has been proposed that a stable mixed palladium(II)
carbonyl-nitrosyl complex, (NO)(CO)–Pd2+, formed, which was found to change NOx
storage characteristics [29]. In addition to adsorbing to and altering the chemical state of
Pd, several studies have shown that CO exposure induces degradation of exchanged Pd in
zeolite PNAs [26,30,31] which has been attributed to Pd reduction [26,31] and Pd particle
formation [26]. Such an effect was not seen with other reductants, such as C2H4 or H2 [31].

In this work, the adsorption-desorption properties of a 1% by weight Pd/BEA hy-
drocarbon trap were examined under a simulated diesel exhaust gas mixture. The role
of CO was investigated using in situ DRIFTS and adsorption-temperature programmed
oxidation (TPO) studies, while the catalyst was further characterized by H2 temperature
programmed reduction (TPR). The results indicate that during adsorption, CO inhibits
hydrocarbon uptake over ionic Pd active sites. CO in the presence of H2O also led to
the formation of reduced Pd species which enhanced hydrocarbon oxidation during the
TPO phase.
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2. Results and Discussion
2.1. H2 TPR

Hydrogen TPR is commonly used to characterize the initial state of the Pd species in
Pd-exchanged zeolites and was used here to describe the distribution of Pd particles vs.
ions. Figure 1 shows the H2 TPR plot for the 1% Pd/BEA sample used in this study.
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Figure 1. Hydrogen TPR for 1% Pd/BEA (5% H2/He, Ramp rate = 10 ◦C/min) Pretreatment: 500 ◦C in 10% O2/He for 60 min.

The negative peak at 50–80 ◦C represents H2 production and originates from the
decomposition of PdH, which is formed during the initial H2 exposure at 50 ◦C before the
temperature ramp. The PdH phase forms when H2 reacts with particulate Pd and is thus
an indicator of its presence [32]. The peak at 80–150 ◦C and the high temperature peak at
450 ◦C correspond to different forms of ionic Pd [26,30]. The H2 TPR results demonstrate
that this catalyst is not completely ion-exchanged and contains both ionic and particulate
Pd. This sample is representative of the expected Pd/BEA state after several engine cycles.
This is because recent literature has indicated that a catalyst which has been exposed to
CO at high temperatures will experience partial Pd agglomeration to an irreversible extent,
resulting in a mix between cationic Pd and agglomerated particulate Pd [26,30,31].

2.2. Ethylene and Dodecane Adsorption

Ethylene and dodecane were used as surrogate hydrocarbons to test the adsorption
capacity and desorption characteristics of the Pd/BEA hydrocarbon trap. Ethylene was
chosen to represent short chain olefins, which are a considerable portion of hydrocarbon
emissions, even from a diesel engine [33].

Figure 2 displays the transient uptake of ethylene over Pd/BEA under four experi-
mental conditions. The hydrocarbon-containing gas stream was switched from the bypass
to the reactor at t = 50 s. The summarized uptake capacities are listed in Table 1. The
trend with respect to H2O is in good agreement with Xu et al. [20], as we observe some
ethylene uptake in the presence of H2O, however less than that observed in the dry case.
Ethylene uptake occurs over both Brønsted acid sites and cationic Pd. In the absence of
H2O, Brønsted acid sites are free to interact with π-electrons in unsaturated hydrocarbons,
however when H2O is present in such a high concentration it outcompetes ethylene for
these sites [8,34].
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Figure 2. Ethylene uptake over 1% Pd/BEA with and without CO co-feed in wet and dry conditions. Adsorption begins at
T = 50 s. (200 ppm ethylene, 0 or 500 ppm CO, 0 or 6% H2O, 12% O2, balance N2).

Table 1. Ethylene uptake and ethylene/Pd ratio for each experiment.

Experiment Ethylene Uptake (µmol) Ethylene/Pd Ratio
Ethylene Dry 47 3.6

Ethylene + H2O 24 1.8
Ethylene + CO Dry 31 2.4

Ethylene + H2O + CO 3.5 0.27

The addition of CO also led to loss of ethylene uptake at 80 ◦C, with a loss of ethy-
lene/Pd ratio by about ~1.2. We speculate that inclusion of CO in dry conditions results
in competitive adsorption over the Pd sites responsible for ethylene uptake. Further, we
found that the addition of H2O and CO lead to almost complete loss of ethylene uptake.
According to Table 1, under CO and H2O co-feed, the catalyst displays ~7.5% of the ethy-
lene uptake compared with the experiment with no H2O and no CO. By combining the
effects of H2O and CO separately, these account for a loss of ~83% of ethylene storage. The
remaining discrepancy, roughly 10% of total ethylene storage, is left unaccounted for.

Dodecane displays a different response to CO co-feed. We reported previously that
while H2O does affect dodecane uptake, it is only a slight effect, and the overall capacity
remains high [16]. As shown in Figure 3, dodecane uptake displays no appreciable response
to CO. This is reasonable as we expect that CO should have no effect on dodecane uptake
since there is no interaction between dodecane and the Pd active sites. The dodecane
uptake mechanism relies on its condensation within the zeolite pores, with only Van der
Waals forces between dodecane and the pore walls.
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Figure 3. Dodecane uptake over 1% Pd/BEA with and without CO co-feed. (58 ppm C12H26, 0 or 500 ppm CO, 6% H2O,
12% O2, balance N2).

2.3. Temperature Programmed Oxidation

TPO studies were conducted to simulate the warmup of the exhaust due to engine
load. Figure 4 shows the outlet ethylene concentration during the temperature ramp under
several feed conditions. When H2O is included, but CO absent, ethylene oxidation light-off
occurred at the highest temperature, with the temperature at 50% inlet ethylene conversion
(T50) near 320 ◦C. Additionally, a sustained low level of conversion can be observed. This
corresponds to the formation of acetaldehyde, shown in Figure S1, demonstrating that
catalytic partial oxidation occurs, potentially through Wacker chemistry involving ionic Pd
and H2O. Recent work on Pd-Cu/Y zeolites found that Wacker chemistry is feasible under
similar conditions. In our work however, the rate of acetaldehyde formation is hindered by
the lack of Cu2+. Although molecular O2 can oxidize Pd in these conditions, Pd oxidation
by Cu2+ was highlighted as an important step in recent Wacker chemistry literature [35,36].
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Figure 4. Ethylene conversion during a temperature ramp with and without CO under wet and dry conditions (200 ppm
ethylene, 0 or 500 ppm CO, 0 or 6% H2O, 12% O2, balance N2).
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When including CO with the ethylene and H2O, ethylene oxidation follows a non-
standard light-off profile, with a non-monotonic change around 140 ◦C. This feature is likely
due to additional ethylene uptake over Pd sites as CO desorbs. Zheng et al. performed
a CO TPD over 0.92% Pd/BEA, taking IR spectra every 50 ◦C. They found that bands
representing CO adsorbed to various Pd species began to rapidly diminish starting at
150 ◦C [25]. Their result is in agreement with our observation of ethylene adsorbing to the
sites which were freed up by CO desorption around 150 ◦C. The overlaid CO concentration
profiles are plotted in Figure S2, showing CO oxidation light-off occurs just before this
reuptake feature. After this reuptake feature, ethylene conversion follows the standard
light-off profile, with a T50 = 210 ◦C, but does not reach complete conversion until 400 ◦C,
higher than under the ethylene and H2O, absent CO, feed conditions.

Under dry conditions, we do not observe the reuptake feature, and the effect of CO on
ethylene oxidation is not as significant as observed under wet conditions. With dry ethylene
feed, the acetaldehyde formation no longer occurs, since Wacker chemistry reactant H2O is
absent. Instead, conversion remains near zero until 250 ◦C, when a typical oxidation curve
forms, with T50 near 300 ◦C. When CO is added to the dry ethylene feed, oxidation activity
improves slightly. This may be due to an exotherm effect from the CO conversion. It also
may be due to reduced ethylene uptake, as high ethylene coverage may self-inhibit the
oxidation reaction [37,38].

Similar experiments were conducted with dodecane as the model hydrocarbon. Re-
sults are shown in Figure 5. Intermediate smaller chain hydrocarbons are observed during
the temperature ramp, which is due to dodecane undergoing a cracking reaction within
the zeolite as the temperature rises. The hydrocarbons which we observed include ethy-
lene, propylene, and isobutylene, but here we group them together and labeled them as
‘Cracking Products’. We speculate that alkenes produced by this reaction bond to Pd2+ via
π-electron interactions, resulting in a degree of retention via chemisorption. Previously,
we reported that over a Pd/BEA hydrocarbon trap, the desorption temperature of the
remaining trapped hydrocarbons is coupled with the exotherm produced during oxida-
tion [16]. Therefore, the oxidation ability of the hydrocarbon trap contributes to the overall
performance in low temperature hydrocarbon abatement.

In Figure 5a, cracking products can be observed starting at 190 ◦C. The appearance of
these species, plotted on a C12 basis, mirrors the decrease in dodecane signal until oxidation
occurs and the exotherm generated results in desorption of the remaining hydrocarbons,
with some being oxidized in the process. Under CO co-feed conditions, Figure 5b, this
exotherm occurs 50 ◦C lower, at 200 ◦C instead of 250 ◦C. The decreased oxidation light-off
temperature is unlikely to be due to an exotherm generated solely by CO oxidation since
the adiabatic temperature rise for 500 ppm CO is about 5 ◦C. This is the same behavior
observed during ethylene uptake and TPO.
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Figure 5. TPO Profiles of (a) Dodecane, (b) Dodecane + CO (58 ppm C12H26, 0 or 500 ppm CO, 6% H2O, 12% O2, balance N2).

2.4. CO Pretreatment

In an effort to further isolate the effects of CO and H2O, we subjected the catalyst
to two pretreatments. The first was a 30-min 500 ppm CO pretreatment in 12% O2 and
balance N2. The second was a 30-min 500 ppm CO pretreatment in 6% H2O, 12% O2, and
balance N2. After each individual pretreatment, we performed the ethylene adsorption
and TPO experiment. Figure 6 shows the ethylene oxidation light-off curves after each
pretreatment and compares these results to the oxidation light-off curves for ethylene in
wet and dry conditions without any pretreatment.
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There are differences in these data at temperatures below 130 ◦C, which are due to des-
orption of H2O and the resulting uptake of ethylene which leads to an apparent conversion.
Above 130 ◦C, the changes are due to oxidation. The dashed red line, which represents the
ethylene oxidation curve in the presence of H2O, but after a dry CO pretreatment, overlaps
almost completely above 130 ◦C with the solid black line representing the ethylene TPO in
the presence of H2O. A dry CO pretreatment has no effect on the oxidation behavior of the
Pd catalyst.

Above 130 ◦C, the oxidation curve after a wet CO pretreatment, red solid line, mimics
the exact behavior as the wet CO co-feed experiment, Figure 4 solid blue line, with the
exception of the uptake feature peaking at 140 ◦C, which is absent here because CO is not
in the feed during the uptake and TPO. By replicating the same oxidation light-off curve,
even with no CO present during the hydrocarbon adsorption and TPO, we hypothesize
that a wet CO co-feed alters the Pd/BEA hydrocarbon trap in some way which enhances
hydrocarbon oxidation activity. These changes in oxidation activity however are reversible
by O2 treatment at 600 ◦C. Each experiment could be replicated regardless of the order in
which they were conducted.

If we pretreat the catalyst with CO and H2O and then remove both from the feed,
the blue oxidation light-off curve is generated. Compared with the dry ethylene feed
experiment (Figure 4), the T50 is 140 ◦C lower. These results suggest that the altered
Pd phase responsible for the enhanced oxidation is inhibited by H2O. Curiously, the
removal of H2O from the feed in experiments without the CO/H2O pretreatment, Figure 4
dashed lines, did not lead to as severe an increase in oxidation activity. The overall
oxidation activity based on reaction conditions can be summarized in ascending order of
T50 as follows:

Ethylene (CO/H2O pretreatment) > Ethylene/H2O (CO/H2O pretreatment) = Ethy-
lene/CO/ H2O > Ethylene/CO > Ethylene > Ethylene/H2O.

Clearly, the coexistence of CO and H2O at 80 ◦C changes the oxidation activity of
the Pd catalyst, because ethylene single feed improves from nearly the worst in ethylene
oxidation performance to the best after pretreatment in CO/H2O. The changes made by
this pretreatment are of importance to study, as under normal engine conditions, these
components will be part of the gas mixture at these temperatures.

2.5. CO DRIFTS

To further investigate the changes on the catalyst by co-feeding CO and H2O, we used
DRIFTS with CO as the probe molecule. Four experiments were conducted consecutively in
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the following sequence, Dry 1→Wet 2→Dry 3→Wet 4, with ‘Dry’ experiments containing
no H2O in the feed. The results, shown in Figure 7, indicate that many CO–Pd species
exist on the Pd/BEA catalyst at 80 ◦C. The first dry spectrum, labeled ‘Dry 1′, displays
features at 2214 and 2194 cm−1 which correspond to CO bound to ‘super electrophilic’
Pd2+ [39]. These features, seemingly unstable, appear and grow very quickly upon CO
exposure then slowly decrease after 10 min CO exposure (Figure S3). Additional features,
which have been assigned to CO–Pd2+, appear at 2180, 2173, 2153, and 2140 cm−1. The
feature appearing at 2120 cm−1 is often attributed to CO–Pd+ [24,25,40–42]. Finally, two
peaks at 2098 and 2080 cm−1, which correspond to linearly bound CO–Pd0, appear after
approximately 30 min exposure. These are likely formed upon reduction by the probe
molecule, CO, during exposure and thus not indicative of isolated Pd0 in the oxidized
sample [25,41]. Under dry conditions no peaks appear in the range of 1800–2000 cm−1.
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Under wet conditions, fewer ionic Pd2+ peaks appear. In the ‘Wet 2′ spectrum, the only
remaining peaks which correspond to Pd2+ are at 2153 and 2140 cm−1. A peak emerges
at 2125 cm−1 which may correspond to a blue shifted 2120 cm−1 peak. Peaks at 2098 and
2080 cm−1 remain, but again do not populate until much later times, after 30 min exposure
to CO and H2O. Most interestingly, peaks at 1920 and 1950 cm−1 emerge and grow over
the course of the experiment (Figure S4). These correspond to bridging CO–Pd0

2 which can
only occur over Pd particles [28,41–44]. The following two spectra, “Dry 3” and “Wet 4”,
demonstrate the ability to replicate the same CO–Pd environment after multiple cycles.

The H2 TPR experiment, Figure 1, indicated that a particulate phase exists on the
surface of the sample. After oxidative pretreatment at 500 ◦C, these particles would exist as
PdO, and thus would not be detected by CO adsorption DRIFTS. By reducing the sample
at 500 ◦C in H2 after O2 treatment, and subsequent adsorption by CO at 80 ◦C, we detected
bridging CO–Pd2 and three-fold CO–Pd3, Figure S5. Due to the heterogeneous nature of
our as-synthesized catalyst, that is the existence of particulate Pd and ionic Pd, it is unclear
whether the newly formed bridging CO–Pd2 sites stem from partially reduced PdO or the
formation of an agglomerated Pd phase within the zeolite pores. Further studies with a
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model Pd/BEA catalyst are required to understand the mechanism behind this change in
the Pd speciation.

3. Materials and Methods
3.1. Catalyst Synthesis

Zeolite beta with Si/Al = 19 was purchased in the ammonium cation form (CP814C,
Zeolyst International, Conshohocken, PA, USA). The catalyst powder was calcined at
500 ◦C for 4 h in air to obtain the H+ form. Pd/BEA was synthesized from the H+ form
catalyst by incipient wetness impregnation. An appropriate amount of Pd(NO3)2 (Sigma
Aldrich, St. Louis, MO, USA) was dissolved in water and mixed with the zeolite powder in a
dropwise fashion to achieve 1 wt% Pd by mass. The resulting catalyst was calcined at 600 ◦C
for 4 h in air. Cordierite monoliths (300 cells/in2) were washcoated with Pd/BEA. The
washcoat slurry was prepared by first mixing the catalyst powder, sieved to 60–80 mesh,
with a colloidal alumina binding agent (Nyacol Al20, Nyacol Nano Technologies Inc.,
Ashland, MA, USA) and water. The resulting slurry was then wash coated onto a ~4 cm
long by 0.75 cm diameter monolith substrate several times in an iterative process where
the monolith was dipped and dried several times until the desired loading of 1 g/in3 was
achieved. The monoliths were then dried at 120 ◦C for 2 h and calcined at 600 ◦C for 4 h in
air at a ramp rate of 1 ◦C/min.

3.2. Catalyst Characterization

Hydrogen temperature programmed reduction (TPR) was performed on an AutoChem
II 2920 chemisorption analyzer (Micromeritics Instruments Corporation, Norcross, GA,
USA). As-synthesized Pd/BEA powder was placed in a tube with a thermocouple inserted
directly on top of the powder. The catalyst was subjected to a 45-min pretreatment in
10% O2 in a balance of N2 at 500 ◦C before undergoing the TPR experiment in 5% H2 in a
balance of N2 starting at 50 ◦C and ramping to 600 ◦C at a rate of 10 ◦C/min. The resulting
thermal conductivity detector (TCD) signal correlates to the H2 consumption as a function
of temperature.

3.3. Reactor Tests

Catalysts were evaluated using a bench top reactor system. The monolith was placed
in a quartz tube (Quartz Scientific Inc., Fairport Harbor, OH, USA) with thermocouples
inserted into the upstream and downstream ends. The quartz tube was placed into a
programmable furnace (Thermo Fisher Scientific, Waltham, MA, USA) for heating and
temperature control. The reactor is equipped with a bypass line and two automated three-
way valves upstream and downstream of the catalyst. The bypass allows for verification
of the inlet gas concentrations. The automated valves provide instant introduction of
the simulated exhaust mixture to the reactor. Gas phase concentrations were measured
with Fourier transform infrared spectroscopy (FTIR) using an MKS 2030 series FTIR (MKS
Instruments Inc., Andover, MA, USA). Due to overlapping spectral features of some
hydrocarbon species, we combined ethylene, propylene, and isobutylene into one category
which we labeled ‘Cracking Products’ in the plots below. The plotted concentrations of
these cracking products are on a C12 basis to enable comparison to dodecane concentrations.

Gas phase reactants were all supplied using gas cylinders (Praxair Inc. Danbury, CT,
USA), except for water and dodecane. Water was introduced using a controlled evaporator
mixer (Bronkhorst, Ruulo, The Netherlands), while dodecane was added using a bubbler
with nitrogen as the carrier gas. The gas hourly space velocity was 30,000 hr−1 for all
experiments in the bench top reactor. Adsorption-desorption experiments followed the
protocol outlined in Figure 8.
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The monolith was pretreated in 12% O2 in balance N2 at 600 ◦C for 1 h to remove any
carbon from previous experiments and reoxidize the Pd in the zeolite. During the oxidizing
pretreatment, the simulated exhaust gas was established in the bypass line. Table 2 outlines
the gas phase species concentrations used in this work.

Table 2. Feed gas concentration for each species.

Species Concentration
N2 Balance
O2 12%

H2O 6%
CO 500 ppm

C2H4 200 ppm
C12H26 58 ppm

After the oxygen pretreatment, the temperature was stabilized at 80 ◦C in the furnace.
When the temperature was stable, and the simulated exhaust was stable in the bypass, the
valves were switched and the exhaust mixture was flowed to the catalyst. The adsorption
phase was 30 min for ethylene and 2 h for dodecane, both times were well after the
hydrocarbon had fully saturated the catalyst based on the effluent concentration equaling
the inlet. Immediately after this period, the temperature ramp began, where the catalyst
was heated from 80 to 600 ◦C at a rate of 20 ◦C/min.

3.4. DRIFTS Studies

DRIFTS was used to investigate the Pd speciation upon introduction of CO with and
without the presence of H2O. The powder Pd/BEA was placed in a Harrick Scientific
Praying Mantis reaction chamber (Harrick Scientific Products Inc., Pleasantville, NY, USA)
with ZnSe windows. The instrument used was a Nicolet iS50 FT-IR (Thermo Fisher
Scientific, Waltham, MA, USA). Each experiment began with a 500 ◦C pretreatment in 10%
O2/He for 45 min. The cell was then cooled to 80 ◦C in the same mixture. For the hydrogen
reduced sample, the O2 pretreatment was followed by a 45-min treatment in a 2% H2/He
mixture at 500 ◦C. This sample was then cooled to 80 ◦C in He.

For the dry experiments a background spectrum was taken in He/O2 when stable. Un-
der wet conditions, 2% H2O was added to the mixture via a bubbler, with the concentration
confirmed with the MKS 2030 FTIR, and a background spectrum was taken when stable.
For the H2 reduced sample, the background spectrum was taken in He. Finally, 1000 ppm
CO was introduced to the mixture and sample spectra were taken initially every minute
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for 10 min followed by every 5 min until an hour elapsed. For each reported spectrum,
32 spectra were averaged.

4. Conclusions

In this work, we conducted hydrocarbon trap experiments over Pd/BEA and varied
the feed composition to test the effects of H2O and CO. Dodecane uptake was not inhibited
by H2O or CO co-feed, but ethylene uptake was significantly affected by both. In fact,
when H2O and CO both existed in the feed, ethylene uptake was decreased by over 90%
compared to the uptake with both absent. Ethylene uptake loss when CO is present is
likely due to competitive adsorption to ionic Pd sites, and ethylene uptake loss when H2O
is present is likely due to competitive adsorption to Brønsted acid sites. When CO and
H2O are co-fed, however, the larger decrease in ethylene uptake occurred which may result
from the formation of reduced Pd which is inactive in ethylene uptake.

Temperature programmed oxidation experiments revealed a similar effect of CO and
H2O on both ethylene and dodecane desorption and oxidation. When CO and H2O were
both present in the mixture, hydrocarbon oxidation occurred at much lower temperatures
than with any other combination of feed. When subjected to pretreatment in CO, differences
in TPO behavior only occurred when the pretreatment contained both CO and H2O.

CO-DRIFTS results show that under conditions that include H2O conditions, peaks
arise which indicate bridging CO–Pd2

0. These represent a reduced Pd phase which we
speculate led to the enhanced hydrocarbon oxidation activity.
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4/11/3/348/s1, Figure S1: Outlet gas concentrations during TPO for a wet ethylene feed mixture,
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CO DRIFTS spectra over 1% Pd/BEA of ‘Dry 1′ time resolved, Figure S4: CO DRIFTS spectra over
1% Pd/BEA of ‘Wet 2′ time resolved, Figure S5: CO DRIFTS spectra over 1% Pd/BEA after 500 ◦C
pretreatment in 2% H2, Figure S6: CO TPR under wet conditions, Figure S7: Ethylene TPR under wet
conditions, Figure S8: Ethylene co-fed with H2 under wet conditions.
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