Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions
Abstract
:1. Introduction
2. Evaluation of Electrocatalysts
3. Earth-Abundant HER Electrocatalysts
4. Earth-Abundant OER Electrocatalysts
5. Summary, Challenges, and Future
5.1. Summary
5.2. Challenges in Electrocatalysts for Water Splitting
5.3. Possible Research Directions
- The implementation of better, facile, and cost-effective methods for developing highly efficient electrocatalysts for OER and HER based on non-noble metals. New electrocatalysis approaches require either template or template-less systems. However, they also need to be cheap and contain catalysts with diverse properties with highly active surface areas supporting fast reaction kinetics. Besides this, new techniques for the processing of catalysts are required, regulating catalyst morphology.
- The knowledge of the fundamental processes that generate new OER and HER catalysts. Future studies are expected to establish the catalytic reaction mechanisms of transition metal-based catalysts under various parameters such as pH and temperature conditions. Currently, the pathways of water electrolysis reactions remain unresolved in alkaline conditions, as well as the active center cannot be reliably established. Enhancements in efficiency may be achieved with more excellent knowledge of the compound’s comprehensive interpretation mechanism, which would contribute to the improvement in developing effective doping strategies and fabrication methods. Since theoretical simulations and experimental verifications of catalytic processes, such as DFT calculations on atomic levels, should be worked out to better understand the catalyst effect.
- The studies on the use of low- or non-noble metal-based electrocatalysts in electrolysis are required. Hence, it is required to establish low-/non-noble metal catalysts, which are good enough to work efficiently in neutral to highly acidic environments. The prepared electrocatalysts should have better electrocatalytic efficiency compared to the best noble metal catalysts.
- The review of low-cost, earth-abundant catalysts for OER and HER in SOECs are required. Because electrode degradation is the biggest issue faced by SOECs, understanding the processes behind the degradation of these catalysts is essential to know in detail for the improvement. This awareness will provide new possibilities for synthesizing an efficient catalytic material for renewable energy production via SOECs.
- Ultimately, these suggestions for future research will help overcome the existing obstacles in producing successful and broadly available techniques for earth-abundant non-noble metal-based electrocatalysts for water electrolysis.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Armaroli, N.; Balzani, V. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. Chem. A Eur. J. 2016, 22, 32–57. [Google Scholar] [CrossRef] [PubMed]
- Styring, S. Artificial photosynthesis for solar fuels. Faraday Discuss. 2012, 155, 357–376. [Google Scholar] [CrossRef] [PubMed]
- Le Formal, F.; Bourée, W.S.; Prévot, M.S.; Sivula, K. Challenges towards economic fuel generation from renewable electricity: The need for efficient electrocatalysis. Chimia 2015, 69, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Joya, K.S.; Joya, Y.F.; Ocakoglu, K.; van de Krol, R. Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move. Angew. Chem. Int. Ed. 2013, 52, 10426–10437. [Google Scholar] [CrossRef]
- Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jun, A.; Gwon, O.; Yoo, S.; Liu, M.; Shin, J.; Lim, T.H.; Kim, G. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production. Nano Energy 2018, 44, 121–126. [Google Scholar] [CrossRef]
- Faber, M.S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Javed, F.; Akram, A.; Qazi, U.Y.; Masood, Z.; Ahmed, T.; Arshad, Z.; Khalid, S.; Qi, F. Treatment of leachate through constructed wetlands using Typha angustifolia in combination with catalytic ozonation on Fe-zeolite A. Int. J. Phytoremediation 2020, 1–9. [Google Scholar] [CrossRef]
- Javaid, R.; Tanaka, D.A.P.; Kawanami, H.; Suzuki, T.M. Silica Capillary with Thin Metal (Pd and Pt) Inner Wall: Application to Continuous Decomposition of Hydrogen Peroxide. Chem. Lett. 2009, 38, 146–147. [Google Scholar] [CrossRef]
- Javaid, R.; Kawanami, H.; Chatterjee, M.; Ishizaka, T.; Suzuki, A.; Suzuki, T.M. Fabrication of microtubular reactors coated with thin catalytic layer (M=Pd, Pd-Cu, Pt, Rh, Au). Catal. Commun. 2010, 11, 1160–1164. [Google Scholar] [CrossRef]
- Javaid, R.; Kawanami, H.; Chatterjee, M.; Ishizaka, T.; Suzuki, A.; Suzuki, T.M. Sonogashira C-C coupling reaction in water using tubular reactors with catalytic metal inner surface. Chem. Eng. J. 2011, 167, 431–435. [Google Scholar] [CrossRef]
- Javaid, R.; Kawasaki, S.I.; Suzuki, A.; Suzuki, T.M. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Beilstein J. Org. Chem. 2013, 9, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Javaid, R.; Kawasaki, S.; Ookawara, R.; Sato, K.; Nishioka, M.; Suzuki, A.; Suzuki, T.M. Continuous Dehydrogenation of Aqueous Formic Acid under Sub-Critical Conditions by Use of Hollow Tubular Reactor Coated with Thin Palladium Oxide Layer. J. Chem. Eng. JAPAN 2013, 46, 751–758. [Google Scholar] [CrossRef]
- Javaid, R.; Urata, K.; Furukawa, S.; Komatsu, T. Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Appl. Catal. A Gen. 2015, 491, 100–105. [Google Scholar] [CrossRef]
- Javaid, R.; Matsumoto, H.; Nanba, T. Influence of Reaction Conditions and Promoting Role of Ammonia Produced at Higher Temperature Conditions in Its Synthesis Process over Cs-Ru/MgO Catalyst. ChemistrySelect 2019, 4, 2218–2224. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Javaid, R.; Nanba, T. MgFe2O4-Supported Ru Catalyst for Ammonia Synthesis: Promotive Effect of Chlorine. ChemistrySelect 2020, 5, 4312–4315. [Google Scholar] [CrossRef]
- Javaid, R.; Nanba, T. Effect of reaction conditions and surface characteristics of Ru/CeO2 on catalytic performance for ammonia synthesis as a clean fuel. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Javaid, R.; Aoki, Y.; Nanba, T. Highly efficient Ru/MgO–Er2O3 catalysts for ammonia synthesis. J. Phys. Chem. Solids 2020, 146, 109570. [Google Scholar] [CrossRef]
- Nanba, T.; Nagata, Y.; Kobayashi, K.; Javaid, R.; Atsumi, R.; Nishi, M.; Mochizuki, T.; Manaka, Y.; Kojima, H.; Tsujimura, T.; et al. Explorative Study of a Ru/CeO2 Catalyst for NH3 synthesis from renewable hydrogen and demonstration of NH3 synthesis under a range of reaction conditions. J. Japan Pet. Inst. 2021, 64, 1–9. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Kajimoto, S.; Fukumura, H. Effect of Sodium Dodecyl Sulfate on the Formation of Silver Nanoparticles by Biphotonic Reduction of Silver Nitrate in Water. Chem. Lett. 2014, 43, 1693–1695. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y.; Kawasaki, S.-I. Efficient and Continuous Decomposition of Hydrogen Peroxide Using a Silica Capillary Coated with a Thin Palladium or Platinum Layer. Bull. Chem. Soc. Jpn. 2015, 88, 976–980. [Google Scholar] [CrossRef] [Green Version]
- Qazi, U.Y.; Javaid, R. A Review on Metal Nanostructures: Preparation Methods and Their Potential Applications. Adv. Nanoparticles 2016, 05, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Javaid, R.; Qazi, U.Y.; Kawasaki, S.I. Highly efficient decomposition of Remazol Brilliant Blue R using tubular reactor coated with thin layer of PdO. J. Environ. Manag. 2016, 180, 551–556. [Google Scholar] [CrossRef]
- Ullah, N.; Imran, M.; Liang, K.; Yuan, C.Z.; Zeb, A.; Jiang, N.; Qazi, U.Y.; Sahar, S.; Xu, A.W. Highly dispersed ultra-small Pd nanoparticles on gadolinium hydroxide nanorods for efficient hydrogenation reactions. Nanoscale 2017, 9, 13800–13807. [Google Scholar] [CrossRef]
- Imran, M.; Zhou, X.; Ullah, N.; Liu, Y.-N.; Zeb, A.; Jiang, N.; Qazi, U.Y.; Yuan, C.-Z.; Xu, A.-W. Catalytic Conversion of Biomass into Hydrocarbons over Noble-Metal-Free VO-Substituted Potassium Salt of Phosphotungstic Acid. ChemistrySelect 2017, 2, 8625–8631. [Google Scholar] [CrossRef]
- Zeb, A.; Sahar, S.; Qazi, U.Y.; Odda, A.H.; Ullah, N.; Liu, Y.N.; Qazi, I.A.; Xu, A.W. Intrinsic peroxidase-like activity and enhanced photo-Fenton reactivity of iron-substituted polyoxometallate nanostructures. Dalt. Trans. 2018, 47, 7344–7352. [Google Scholar] [CrossRef]
- Yaqub Qazi, U.; Shervani, Z.; Javaid, R. Green Synthesis of Silver Nanoparticles by Pulsed Laser Irradiation: Effect of Hydrophilicity of Dispersing Agents on Size of Particles. Front. Nanosci. Nanotechnol. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Javaid, R.; Qazi, U.Y. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int. J. Environ. Res. Public Health 2019, 16, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.; Zulfiqar, S.; Haq, A.U.; Alsafari, I.A.; Qazi, U.Y.; Warsi, M.F.; Shahid, M. Cd-Gd-doped nickel spinel ferrite nanoparticles and their nanocomposites with reduced graphene oxide for catalysis and antibacterial activity studies. Ceram. Int. 2020. [Google Scholar] [CrossRef]
- Ahmad Abuilaiwi, F.; Awais, M.; Qazi, U.Y.; Ali, F.; Afzal, A. Al3+ doping reduces the electron/hole recombination in photoluminescent copper ferrite (CuFe2−AlO4) nanocrystallites. Boletín la Soc. Española Cerámica y Vidr. 2020. [Google Scholar] [CrossRef]
- Tabasum, A.; Alghuthaymi, M.; Qazi, U.Y.; Shahid, I.; Abbas, Q.; Javaid, R.; Nadeem, N.; Zahid, M. UV-Accelerated Photocatalytic Degradation of Pesticide over Magnetite and Cobalt Ferrite Decorated Graphene Oxide Composite. Plants 2020, 10, 6. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1. [Google Scholar] [CrossRef]
- Nocera, D.G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Y.; Jiang, H.; Chen, Y.; Wan, P.; Fan, M.; Zhang, R.; Ullah, S.; Pan, L.; Zou, J.J.; et al. 2020 Roadmap on gas-involved photo- and electro- catalysis. Chin. Chem. Lett. 2019, 30, 2089–2109. [Google Scholar] [CrossRef]
- Dong, H.; Ji, Y.; Ding, L.; Li, Y. Strategies for computational design and discovery of two-dimensional transition-metal-free materials for electrocatalysis applications. Phys. Chem. Chem. Phys. 2019, 21, 25535–25547. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Yamada, Y.; Suenobu, T.; Ohkubo, K.; Kotani, H. Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy Environ. Sci. 2011, 4, 2754–2766. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Mater. Solar Cells 2014. [Google Scholar] [CrossRef]
- Parent, A.R.; Sakai, K. Progress in base-metal water oxidation catalysis. ChemSusChem 2014, 7, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J. Recent Progresses in Electrocatalysts for Water Electrolysis Electrochem. Energ. Rev. 2018, 1, 483–530. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, D.L. Production of Chlorine. In Comprehensive Treatise of Electrochemistry; Springer: New York, NY, USA, 1981; pp. 105–166. [Google Scholar]
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Blasi, A.; Fiorenza, G.; Freda, C.; Calabrò, V. Steam reforming of biofuels for the production of hydrogen-rich gas. In Membranes for Clean and Renewable Power Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 145–181. ISBN 9780857095459. [Google Scholar]
- Serban, M.; Lewis, M.A.; Marshall, C.L.; Doctor, R.D. Hydrogen production by direct contact pyrolysis of natural gas. Energy Fuels 2003, 17, 705–713. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific Publishing Co.: London, UK, 2010; pp. 265–270. ISBN 9789814317665. [Google Scholar]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Choi, P.; Bessarabov, D.G.; Datta, R. A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ion. 2004, 175, 535–539. [Google Scholar] [CrossRef]
- Ursúa, A.; Gandía, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.J.; Wang, Z.L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157. [Google Scholar] [CrossRef]
- Yue, Y.; Zhu, Y.; Li, F.; Xue, T. Fabrication and Characterization of Controlled-Morphology Self-Supported Fe/Co Layered Double Hydroxides as Catalysts for the Oxygen Evolution Reaction. Catal. Lett. 2020, 151, 507–516. [Google Scholar] [CrossRef]
- Liu, H.; Xi, C.; Xin, J.; Zhang, G.; Zhang, S.; Zhang, Z.; Huang, Q.; Li, J.; Liu, H.; Kang, J. Free-standing nanoporous NiMnFeMo alloy: An efficient non-precious metal electrocatalyst for water splitting. Chem. Eng. J. 2021, 404, 126530. [Google Scholar] [CrossRef]
- Li, R.-Q.; Liu, Q.; Zhou, Y.; Lu, M.; Hou, J.; Qu, K.; Zhu, Y.; Fontaine, O. 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2021. [Google Scholar] [CrossRef]
- Yu, F.; Yu, L.; Mishra, I.K.; Yu, Y.; Ren, Z.F.; Zhou, H.Q. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 2018, 7, 121–138. [Google Scholar] [CrossRef]
- Anantharaj, S.; Noda, S.; Jothi, V.R.; Yi, S.; Driess, M.; Menezes, P.W. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew. Chemie Int. Ed. 2021. [Google Scholar] [CrossRef]
- Panda, C.; Menezes, P.W.; Driess, M. Nano-Sized Inorganic Energy-Materials by the Low-Temperature Molecular Precursor Approach. Angew. Chemie Int. Ed. 2018, 57, 11130–11139. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.; Zheng, L.; Yan, Y.; Zhang, Y.; Chen, G.; Sun, S.; Zhang, J. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 2450–2458. [Google Scholar] [CrossRef]
- Lima, D.W.; Fiegenbaum, F.; Trombetta, F.; de Souza, M.O.; Martini, E.M.A. PtNi and PtMo nanoparticles as efficient catalysts using TEA-PS.BF4 ionic liquid as electrolyte towards HER. Int. J. Hydrog. Energy 2017, 42, 5676–5683. [Google Scholar] [CrossRef]
- Ma, R.; Zhou, Y.; Wang, F.; Yan, K.; Liu, Q.; Wang, J. Efficient electrocatalysis of hydrogen evolution by ultralow-Pt-loading bamboo-like nitrogen-doped carbon nanotubes. Mater. Today Energy 2017, 6, 173–180. [Google Scholar] [CrossRef]
- Luo, B.; Yan, X.; Chen, J.; Xu, S.; Xue, Q. PtFe nanotubes/graphene hybrid: Facile synthesis and its electrochemical properties. Int. J. Hydrog. Energy 2013, 38, 13011–13016. [Google Scholar] [CrossRef]
- Gabler, A.; Müller, C.I.; Rauscher, T.; Gimpel, T.; Hahn, R.; Köhring, M.; Kieback, B.; Röntzsch, L.; Schade, W. Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrog. Energy 2018, 43, 7216–7226. [Google Scholar] [CrossRef]
- Zheng, J. Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting. Appl. Surf. Sci. 2017, 413, 72–82. [Google Scholar] [CrossRef]
- Ren, F.; Zhou, W.; Du, Y.; Yang, P.; Wang, C.; Xu, J. High efficient electrocatalytic oxidation of formic acid at Pt dispersed on porous poly(o-methoxyaniline). Int. J. Hydrog. Energy 2011, 36, 6414–6421. [Google Scholar] [CrossRef]
- Fang, M.; Gao, W.; Dong, G.; Xia, Z.; Yip, S.; Qin, Y.; Qu, Y.; Ho, J.C. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 2016, 27, 247–254. [Google Scholar] [CrossRef]
- Sun, T.; Xu, L.; Yan, Y.; Zakhidov, A.A.; Baughman, R.H.; Chen, J. Ordered Mesoporous Nickel Sphere Arrays for Highly Efficient Electrocatalytic Water Oxidation. ACS Catal. 2016, 6, 1446–1450. [Google Scholar] [CrossRef]
- Zhang, J.; Baró, M.D.; Pellicer, E.; Sort, J. Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu-Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale 2014, 6, 12490–12499. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Chen, F. A facile electrochemical fabrication of hierarchically structured nickel-copper composite electrodes on nickel foam for hydrogen evolution reaction. J. Power Sources 2014, 265, 273–281. [Google Scholar] [CrossRef]
- Hong, S.H.; Ahn, S.H.; Choi, J.; Kim, J.Y.; Kim, H.Y.; Kim, H.J.; Jang, J.H.; Kim, H.; Kim, S.K. High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Appl. Surf. Sci. 2015, 349, 629–635. [Google Scholar] [CrossRef]
- He, X.D.; Xu, F.; Li, F.; Liu, L.; Wang, Y.; Deng, N.; Zhu, Y.W.; He, J.B. Composition-performance relationship of NixCuy nanoalloys as hydrogen evolution electrocatalyst. J. Electroanal. Chem. 2017, 799, 235–241. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Song, J.; Wang, W.; Yue, F.; Ma, Q. Microstructure and hydrogen evolution catalytic properties of Ni-Sn alloys prepared by electrodeposition method. Appl. Catal. A Gen. 2015, 500, 51–57. [Google Scholar] [CrossRef]
- Wang, X.; Su, R.; Aslan, H.; Kibsgaard, J.; Wendt, S.; Meng, L.; Dong, M.; Huang, Y.; Besenbacher, F. Tweaking the composition of NiMoZn alloy electrocatalyst for enhanced hydrogen evolution reaction performance. Nano Energy 2015, 12, 9–18. [Google Scholar] [CrossRef]
- Yang, Q.; Lv, C.; Huang, Z.; Zhang, C. Amorphous film of ternary Ni–Co–P alloy on Ni foam for efficient hydrogen evolution by electroless deposition. Int. J. Hydrog. Energy 2018, 43, 7872–7880. [Google Scholar] [CrossRef]
- Yüce, A.O.; Döner, A.; Kardaş, G. NiMn composite electrodes as cathode material for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 2013, 38, 4466–4473. [Google Scholar] [CrossRef]
- Rauscher, T.; Müller, C.I.; Schmidt, A.; Kieback, B.; Röntzsch, L. Ni-Mo-B alloys as cathode material for alkaline water electrolysis. Int. J. Hydrog. Energy 2016, 41, 2165–2176. [Google Scholar] [CrossRef]
- Schalenbach, M.; Speck, F.D.; Ledendecker, M.; Kasian, O.; Goehl, D.; Mingers, A.M.; Breitbach, B.; Springer, H.; Cherevko, S.; Mayrhofer, K.J.J. Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochim. Acta 2018, 259, 1154–1161. [Google Scholar] [CrossRef]
- Guo, H.; Youliwasi, N.; Zhao, L.; Chai, Y.; Liu, C. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media. Appl. Surf. Sci. 2018, 435, 237–246. [Google Scholar] [CrossRef]
- Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals. III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 1972, 39, 163–184. [Google Scholar] [CrossRef]
- Sheng, W.; Myint, M.; Chen, J.G.; Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef] [Green Version]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Nørskov, J.K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef]
- Jaegermann, W.; Tributsch, H. Interfacial properties of semiconducting transition metal chalcogenides. Prog. Surf. Sci. 1988, 29, 1–167. [Google Scholar] [CrossRef]
- Wijtmans, R.; Vink, M.K.; Schoemaker, H.E.; van Delft, F.L.; Blaauw, R.H.; Rutjes, F.P. libro blanco para la minimización de residuos y emisiones. Synthesis 2004, 2004, 641–662. [Google Scholar]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Wang, Y.; He, R.; Yu, F.; Sun, J.; Wang, F.; Lan, Y.; Ren, Z.; Chen, S. One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 2016, 20, 29–36. [Google Scholar] [CrossRef]
- Kiran, V.; Mukherjee, D.; Jenjeti, R.N.; Sampath, S. Active guests in the MoS2/MoSe2 host lattice: Efficient hydrogen evolution using few-layer alloys of MoS2(1-x)Se2x. Nanoscale 2014, 6, 12856–12863. [Google Scholar] [CrossRef]
- Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D.C.B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.D.; Chiam, S.Y.; Boix, P.P.; Ren, Y.; Pramana, S.S.; Fize, J.; Artero, V.; Barber, J. Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 2013, 6, 2452–2459. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Grauer, D.C.; Yano, J.; Long, J.R.; Yang, P.; Chang, C.J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, 17699–17702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, M.S.; Dziedzic, R.; Lukowski, M.A.; Kaiser, N.S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS 2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tsai, C.; Koh, A.L.; Cai, L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F.; et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef] [Green Version]
- Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water Splitting: From Electrode to Green Energy System. Nano Micro Lett. 2020, 12, 1–29. [Google Scholar] [CrossRef]
- Mohammed-Ibrahim, J.; Xiaoming, S. Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting—A review. J. Energy Chem. 2019, 34, 111–160. [Google Scholar] [CrossRef]
- Popczun, E.J.; McKone, J.R.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. Available online: https://pubs.acs.org/doi/10.1021/ja403440e (accessed on 21 February 2021). [CrossRef] [PubMed]
- Popczun, E.J.; Read, C.G.; Roske, C.W.; Lewis, N.S.; Schaak, R.E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 5427–5430. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A.M.; Sun, X. A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angew. Chem. Int. Ed. 2014, 53, 12855–12859. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Jaramillo, T.F. Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 14433–14437. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Ni, B.J. Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398. [Google Scholar] [CrossRef]
- Boppella, R.; Tan, J.; Yun, J.; Manorama, S.V.; Moon, J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coord. Chem. Rev. 2021, 427, 213552. [Google Scholar] [CrossRef]
- Jin, D.; Johnson, L.R.; Raman, A.S.; Ming, X.; Gao, Y.; Du, F.; Wei, Y.; Chen, G.; Vojvodic, A.; Gogotsi, Y.; et al. Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. J. Phys. Chem. C 2020, 124, 10584–10592. [Google Scholar] [CrossRef]
- Hu, W.; Shi, Q.; Chen, Z.; Yin, H.; Zhong, H.; Wang, P. Co2N/Co2Mo3O8 Heterostructure as a Highly Active Electrocatalyst for an Alkaline Hydrogen Evolution Reaction. Acs Appl. Mater. Interfaces 2021, acsami.0c20271. [Google Scholar] [CrossRef]
- Cao, B.; Veith, G.M.; Neuefeind, J.C.; Adzic, R.R.; Khalifah, P.G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192. [Google Scholar] [CrossRef]
- Chen, W.-F.; Sasaki, K.; Ma, C.; Frenkel, A.I.; Marinkovic, N.; Muckerman, J.T.; Zhu, Y.; Adzic, R.R. Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets. Angew. Chem. Int. Ed. 2012, 51, 6131–6135. [Google Scholar] [CrossRef]
- Liang, H.W.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jiao, M.; Chen, Z.; Zhang, X.; Mou, K.; Liu, L. Multicomponent N doped graphene coating Co@Zn heterostructures electrocatalysts as high efficiency HER electrocatalyst in alkaline electrolyte. Int. J. Hydrog. Energy 2020, 45, 16326–16336. [Google Scholar] [CrossRef]
- Ge, R.; Huo, J.; Liao, T.; Liu, Y.; Zhu, M.; Li, Y.; Zhang, J.; Li, W. Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction. Appl. Catal. B Environ. 2020, 260, 118196. [Google Scholar] [CrossRef]
- Das, D.; Nanda, K.K. One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy 2016, 30, 303–311. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X.; Chen, M.; Yang, B.; Lei, L.; et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-N x Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 2019, 12, 149–156. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A.M.; Sun, X. Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angew. Chem. Int. Ed. 2014, 53, 6710–6714. [Google Scholar] [CrossRef] [PubMed]
- Li, D.J.; Maiti, U.N.; Lim, J.; Choi, D.S.; Lee, W.J.; Oh, Y.; Lee, G.Y.; Kim, S.O. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, H.; Guo, W.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q.; Zou, R. Hydrogen Evolution: Metal-Organic Frameworks Derived Cobalt Phosphide Architecture Encapsulated into B/N Co-Doped Graphene Nanotubes for All pH Value Electrochemical Hydrogen Evolution (Adv. Energy Mater. 9/2017). Adv. Energy Mater. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Chen, X.; Zhong, X.; Li, S.; Liu, T.; Zhuang, G.; Li, X.; Deng, S.; Mei, D.; Wang, J.-G. Hierarchical Porous NC@CuCo Nitride Nanosheet Networks: Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting and Selective Electrooxidation of Benzyl Alcohol. Adv. Funct. Mater. 2017, 27, 1704169. [Google Scholar] [CrossRef]
- Xiong, W.; Guo, Q.; Guo, Z.; Li, H.; Zhao, R.; Chen, Q.; Liu, Z.; Wang, X. Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 4297–4304. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, W.; Shi, Z.; Che, M.; Yu, X.; Tang, Y.; Gao, Q. Electrospinning Hetero-Nanofibers of Fe3C-Mo2C/Nitrogen-Doped-Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem 2017, 10, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hou, J.; Wu, Y.; Cao, S.; Li, Z.; Nie, X.; Gao, Z.; Sun, L. Tailoring Active Sites in Mesoporous Defect-Rich NC/V o -WON Heterostructure Array for Superior Electrocatalytic Hydrogen Evolution. Adv. Energy Mater. 2019, 9. [Google Scholar] [CrossRef]
- Wu, C.; Liu, D.; Li, H.; Li, J. Molybdenum Carbide-Decorated Metallic Cobalt@Nitrogen-Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution. Small 2018, 14, 1704227. [Google Scholar] [CrossRef]
- Zhou, M.; Weng, Q.; Popov, Z.I.; Yang, Y.; Antipina, L.Y.; Sorokin, P.B.; Wang, X.; Bando, Y.; Golberg, D. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions. ACS Nano 2018, 12, 4148–4155. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Javaid, R.; Tahir, N.; Jamil, A.; Afzal, A. Design of advanced self-supported electrode by surface modification of copper foam with transition metals for efficient hydrogen evolution reaction. Int. J. Hydrog. Energy 2020, 45, 33396–33406. [Google Scholar] [CrossRef]
- Jing, S.; Zhang, L.; Luo, L.; Lu, J.; Yin, S.; Shen, P.K.; Tsiakaras, P. N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2018, 224, 533–540. [Google Scholar] [CrossRef]
- Pu, Z.; Wei, S.; Chen, Z.; Mu, S. Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. Appl. Catal. B Environ. 2016, 196, 193–198. [Google Scholar] [CrossRef]
- Qian, X.; Ding, J.; Zhang, J.; Zhang, Y.; Wang, Y.; Kan, E.; Wang, X.; Zhu, J. Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale 2018, 10, 1766–1773. [Google Scholar] [CrossRef] [PubMed]
- Ansovini, D.; Jun Lee, C.J.; Chua, C.S.; Ong, L.T.; Tan, H.R.; Webb, W.R.; Raja, R.; Lim, Y.F. A highly active hydrogen evolution electrocatalyst based on a cobalt-nickel sulfide composite electrode. J. Mater. Chem. A 2016, 4, 9744–9749. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Pan, Y.; Zhang, J. CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochim. Acta 2017, 232, 561–569. [Google Scholar] [CrossRef]
- Tao, K.; Gong, Y.; Lin, J. Low-temperature synthesis of NiS/MoS2/C nanowires/nanoflakes as electrocatalyst for hydrogen evolution reaction in alkaline medium via calcining/sulfurizing metal-organic frameworks. Electrochim. Acta 2018, 274, 74–83. [Google Scholar] [CrossRef]
- Mugheri, A.Q.; Ali, S.; Narejo, G.S.; Otho, A.A.; Lal, R.; Abro, M.A.; Memon, S.H.; Abbasi, F. Electrospun fibrous active bimetallic electrocatalyst for hydrogen evolution. Int. J. Hydrog. Energy 2020, 45, 21502–21511. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Liu, P.; Liu, S.; Dong, R.; Zhuang, X.; Chen, M.; Feng, X. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789–2793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Liu, J.; Wang, J.; Ruan, Y.; Ji, X.; Xu, K.; Chen, C.; Wan, H.; Miao, L.; Jiang, J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74–80. [Google Scholar] [CrossRef]
- Wang, C.; Tian, B.; Wu, M.; Wang, J. Revelation of the Excellent Intrinsic Activity of MoS2|NiS|MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium. ACS Appl. Mater. Interfaces 2017, 9, 7084–7090. [Google Scholar] [CrossRef]
- Meiron, O.E.; Kuraganti, V.; Hod, I.; Bar-Ziv, R.; Bar-Sadan, M. Improved catalytic activity of Mo1-: XWxSe2 alloy nanoflowers promotes efficient hydrogen evolution reaction in both acidic and alkaline aqueous solutions. Nanoscale 2017, 9, 13998–14005. [Google Scholar] [CrossRef]
- Zhao, G.; Li, P.; Rui, K.; Chen, Y.; Dou, S.X.; Sun, W. CoSe2/MoSe2 Heterostructures with Enriched Water Adsorption/Dissociation Sites towards Enhanced Alkaline Hydrogen Evolution Reaction. Chem. A Eur. J. 2018, 24, 11158–11165. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y.; Dou, S.X.; Sun, W. Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale 2018, 10, 19074–19081. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Sun, C.; Shang, B.; Li, Q.; Lei, J.; Li, N.; Pan, F. Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. J. Mater. Chem. A 2019, 7, 18003–18011. [Google Scholar] [CrossRef]
- Lin, J.; Yan, Y.; Li, C.; Si, X.; Wang, H.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Bifunctional Electrocatalysts Based on Mo-Doped NiCoP Nanosheet Arrays for Overall Water Splitting. Nano Micro Lett. 2019, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Li, J.; Yang, M.; Fang, Z.; Jian, J.; Yu, D.; Chen, X.; Dai, L. Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer. J. Am. Chem. Soc. 2019, 141, 4972–4979. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Liu, P.F.; Yan, X.; Gu, L.; Yang, Z.Z.; Yang, H.G.; Qiu, S.; Yao, X. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Hutchings, G.S.; Yu, W.; Zhou, Y.; Forest, R.V.; Tao, R.; Rosen, J.; Yonemoto, B.T.; Cao, Z.; Zheng, H.; et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrill, M.D.; Dougherty, R.C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 2008, 112, 3655–3666. [Google Scholar] [CrossRef]
- Li, X.; Walsh, F.C.; Pletcher, D. Nickel Based Electrocatalysts for Oxygen Evolution in High Current Density, Alkaline Water Electrolysers. Phys. Chem. Chem. Phys. 2011, 13, 1162–1167. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, D.A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. J. Electrochem. Soc. 1987, 134, 377–384. [Google Scholar] [CrossRef]
- Louie, M.W.; Bell, A.T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Wang, J.; Qi, R.; Hu, Y.; Zhang, J.; Zhao, H.; Zhang, J.; Zhao, Y. Enhanced Fe 3d delocalization and moderate spin polarization in Fe[sbnd]Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Appl. Catal. B Environ. 2021, 285, 119778. [Google Scholar] [CrossRef]
- Ying, M.; Tang, R.; Yang, W.; Liang, W.; Yang, G.; Pan, H.; Liao, X.; Huang, J. Tailoring Electronegativity of Bimetallic Ni/Fe Metal-Organic Framework Nanosheets for Electrocatalytic Water Oxidation. ACS Appl. Nano Mater. 2021. [Google Scholar] [CrossRef]
- Lambert, T.N.; Vigil, J.A.; White, S.E.; Davis, D.J.; Limmer, S.J.; Burton, P.D.; Coker, E.N.; Beechem, T.E.; Brumbach, M.T. Electrodeposited NixCo3-xO4 nanostructured films as bifunctional oxygen electrocatalysts. Chem. Commun. 2015, 51, 9511–9514. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, N.; Liu, Q.; Sun, X.; He, Y.; Asiri, A.M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056–20059. [Google Scholar] [CrossRef]
- Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Nickel-Iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. [Google Scholar] [CrossRef]
- Smith, A.M.; Trotochaud, L.; Burke, M.S.; Boettcher, S.W. Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chem. Commun. 2015, 51, 5261–5263. [Google Scholar] [CrossRef]
- Burke, M.S.; Kast, M.G.; Trotochaud, L.; Smith, A.M.; Boettcher, S.W. Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648. [Google Scholar] [CrossRef] [Green Version]
- Roger, I.; Symes, M.D. Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations. J. Am. Chem. Soc. 2015, 137, 13980–13988. [Google Scholar] [CrossRef]
- Zou, H.H.; Yuan, C.Z.; Zou, H.Y.; Cheang, T.Y.; Zhao, S.J.; Qazi, U.Y.; Zhong, S.L.; Wang, L.; Xu, A.W. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2017, 7, 1549–1555. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Yuan, C.Z.; Ullah, N.; Jiang, Y.F.; Imran, M.; Zeb, A.; Zhao, S.J.; Javaid, R.; Xu, A.W. One-Step Growth of Iron-Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. Acs Appl. Mater. Interfaces 2017, 9, 28627–28634. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Xiao, L.; Zhang, J.; Jiang, P.; Zou, X.; Yang, C.; Hao, X.; Ai, T. Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction. Int. J. Hydrog. Energy 2021. [Google Scholar] [CrossRef]
- Feng, H.; Sun, X.; Guan, X.; Zheng, D.; Tian, W.; Li, C.; Li, C.; Yan, M.; Yao, Y. Construction of interfacial engineering on CoP nanowire arrays with CoFe-LDH nanosheets for enhanced oxygen evolution reaction. FlatChem 2021, 26, 100225. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Zhong, M.; Wang, C.; Lu, X. Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction. Chem. Eng. J. 2021, 415, 128879. [Google Scholar] [CrossRef]
- Duan, H.; Chen, Z.; Xu, N.; Qiao, S.; Chen, G.; Li, D.; Deng, W.; Jiang, F. Non-stoichiometric NiOx nanocrystals for highly efficient electrocatalytic oxygen evolution reaction. J. Electroanal. Chem. 2021, 114966. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, N.; Yao, Z.; Zhao, X.; Du, M.; Zhou, Q. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Int. J. Hydrog. Energy 2021, 46, 5286–5295. [Google Scholar] [CrossRef]
- Shinde, P.; Rout, C.S.; Late, D.; Tyagi, P.K.; Singh, M.K. Optimized performance of nickel in crystal-layered arrangement of NiFe2O4/rGO hybrid for high-performance oxygen evolution reaction. Int. J. Hydrog. Energy 2021, 46, 2617–2629. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Y.; Wu, M.; Luo, B.; Hao, J.; Shi, W. Homogeneously dispersed cobalt/iron electrocatalysts with oxygen vacancies and favorable hydrophilicity for efficient oxygen evolution reaction. Int. J. Hydrog. Energy 2021. [Google Scholar] [CrossRef]
- Tang, J.; Xu, J.L.; Ye, Z.G.; Li, X.B.; Luo, J.M. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. J. Mater. Sci. Technol. 2021, 79, 171–177. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Liu, C.; Pandey, S.; Woo Joo, S.; Son, N.; Kang, M. Achieving a long-term stability by self-redox property between Fe and Mn ions in the iron-manganese spinel structured electrode in oxygen evolution reaction. Appl. Surf. Sci. 2021, 546, 149124. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Ma, W.; Xu, S.; Lu, Y.; Wei, W.; Zhu, J.; Jiang, D. Fe-doped NiCoP/Prussian blue analog hollow nanocubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2021, 367, 137492. [Google Scholar] [CrossRef]
- Yu, C.; Cao, Z.; Chen, S.; Wang, S.; Zhong, H.; Ma, X. In situ selenylation of molybdate ion intercalated Co-Al layered double hydrotalcite for high-performance electrocatalytic oxygen evolution reaction. J. Taiwan Inst. Chem. Eng. 2021. [Google Scholar] [CrossRef]
- Ma, F.; Wu, Q.; Liu, M.; Zheng, L.; Tong, F.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y.; et al. Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2021. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Zhou, P.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Whangbo, M.H.; Huang, B. Atomically dispersed cobalt-based species anchored on polythiophene as an efficient electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2021, 545, 148943. [Google Scholar] [CrossRef]
- Dong, Q.; Shuai, C.; Mo, Z.; Liu, N.; Liu, G.; Wang, J.; Pei, H.; Jia, Q.; Liu, W.; Guo, X. CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 2021, 296, 121967. [Google Scholar] [CrossRef]
- Huang, C.; Zhong, Y.; Chen, J.; Li, J.; Zhang, W.; Zhou, J.; Zhang, Y.; Yu, L.; Yu, Y. Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem. Eng. J. 2021, 403, 126304. [Google Scholar] [CrossRef]
- Ganesan, V.; Son, J.-H.; Kim, J. CoP2/Fe-CoP2 yolk-shell nanoboxes as efficient electrocatalysts for oxygen evolution reaction. Nanoscale 2021. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhao, X.; Liu, Z.-H. Surface selenium doped hollow heterostructure/defects Co-Fe sulfide nanoboxes for enhancing oxygen evolution reaction and supercapacitors. Electrochim. Acta 2021, 374, 137962. [Google Scholar] [CrossRef]
- Sadaqat, M.; Manzoor, S.; Nisar, L.; Hassan, A.; Tyagi, D.; Shah, J.H.; Ashiq, M.N.; Joya, K.S.; Alshahrani, T.; Najam-ul-Haq, M. Iron doped nickel ditelluride hierarchical nanoflakes arrays directly grown on nickel foam as robust electrodes for oxygen evolution reaction. Electrochim. Acta 2021, 371, 137830. [Google Scholar] [CrossRef]
- Dong, W.; Zhou, H.; Mao, B.; Zhang, Z.; Liu, Y.; Liu, Y.; Li, F.; Zhang, D.; Zhang, D.; Shi, W. Efficient MOF- derived V–Ni3S2 nanosheet arrays for electrocatalytic overall water splitting in alkali. Int. J. Hydrog. Energy 2021. [Google Scholar] [CrossRef]
- Yuan, C.-Z.; Sun, Z.-T.; Jiang, Y.-F.; Yang, Z.-K.; Jiang, N.; Zhao, Z.-W.; Qazi, U.Y.; Zhang, W.-H.; Xu, A.-W. One-Step in Situ Growth of Iron-Nickel Sulfide Nanosheets on FeNi Alloy Foils: High-Performance and Self-Supported Electrodes for Water Oxidation. Small 2017, 13, 1604161. [Google Scholar] [CrossRef]
- Wu, A.; Xie, Y.; Ma, H.; Tian, C.; Gu, Y.; Yan, H.; Zhang, X.; Yang, G.; Fu, H. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Li, A.; Zheng, X.; Peng, L.; Huang, J.; Deng, Z.; Chen, H.; Wei, Z. Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts. J. Mater. Chem. A 2019, 7, 17529–17535. [Google Scholar] [CrossRef]
- Sun, H.; Min, Y.; Yang, W.; Lian, Y.; Lin, L.; Feng, K.; Deng, Z.; Chen, M.; Zhong, J.; Xu, L.; et al. Morphological and Electronic Tuning of Ni2P through Iron Doping toward Highly Efficient Water Splitting. ACS Catal. 2019, 9, 8882–8892. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Liu, J. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2016, 4, 4686–4690. [Google Scholar] [CrossRef]
- Ming, F.; Liang, H.; Shi, H.; Xu, X.; Mei, G.; Wang, Z. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 2016, 4, 15148–15155. [Google Scholar] [CrossRef]
- Lin, J.; Wang, P.; Wang, H.; Li, C.; Si, X.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Defect-Rich Heterogeneous MoS2 /NiS2 Nanosheets Electrocatalysts for Efficient Overall Water Splitting. Adv. Sci. 2019, 6, 1900246. [Google Scholar] [CrossRef] [Green Version]
- Qin, Q.; Chen, L.; Wei, T.; Liu, X. MoS2 /NiS Yolk–Shell Microsphere-Based Electrodes for Overall Water Splitting and Asymmetric Supercapacitor. Small 2019, 15, 1803639. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, Y.; Jia, M.; Lv, X.; Li, X.; Li, R.; Ding, X.; Zheng, Y.Z.; Tao, X. 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 2019, 326, 134976. [Google Scholar] [CrossRef]
Catalysts | Electrolytes | ƞ for HER at j (mV@mA cm−2) | Tafel Slope for HER (mV·dec−1) | References |
---|---|---|---|---|
NG@Co@Zn@ NF-850 | 1.0 M KOH | 34@10 | 36 | [109] |
MoP@NPG | 1.0 M KOH | 126@10 | 56 | [110] |
Co2P@N, P-CNTs | 1.0 M KOH | 132@10 | 103 | [111] |
NiNx@porous carbon | 1.0 M KOH | 147@10 | 114 | [112] |
CoP@CNT | 1.0 M KOH | 67@10 | 54 | [113] |
MoS2@N-CNTs | 1.0 M KOH | 110@10 | 40 | [114] |
CoP@BCN | 1.0 M KOH | 215@10 | 52 | [115] |
NC@CuCo Nitride | 1.0 M KOH | 105@10 | 76 | [116] |
Ni3C@CNTs | 1.0 M KOH | 132@10 | 49 | [117] |
Fe3C@Mo2C@N-C | 1.0 M KOH | 116@10 | 43 | [118] |
NC@Vo-WON | 1.0 M KOH | 16@10 | 33 | [119] |
Mo/Co@N-C | 1.0 M KOH | 157@10 | 148 | [120] |
Ni3N@CQD | 1.0 M KOH | 69@10 | 108 | [121] |
Ni-Cr@CF | 1.0 M KOH | 144@10 | 88 | [122] |
N–Mo2C | 1.0 M KOH | 52@10 | 50 | [123] |
MoP NA/CC | 1.0 M KOH | 124@10 | 58 | [124] |
MoS2/C3N4 | 1.0 M KOH | 153@10 | 43 | [125] |
Co9S8–NiS | 1.0 M KOH | 163@10 | 83 | [126] |
Co2P NRs | 1.0 M KOH | 45@10 | 67 | [127] |
NiS/MoS/C | 1.0 M KOH | 117@10 | 58 | [128] |
Ni/Co–NC | 1.0 M KOH | 68@10 | 180 | [78] |
MoSx@NiO | 1.0 M KOH | 406@10 | 43 | [129] |
Co-MoS2 | 1.0 M KOH | 203@10 | 158 | [130] |
MoS2/NiCo-LDH | 1.0 M KOH | 78@10 | 77 | [131] |
MoS2/NiS/MoO3 | 1.0 M KOH | 91@10 | 55 | [132] |
MoSe2 | 1.0 M KOH | 310@10 | 93 | [133] |
CoSe2/MoSe2 | 1.0 M KOH | 218@10 | 76 | [134] |
Ni(OH)2/MoS2 | 1.0 M KOH | 227@10 | 105 | [135] |
Ni3S2/NF | 1.0 M KOH | 296@10 | 65 | [136] |
Mo–NiCoP | 1.0 M KOH | 269@10 | 77 | [137] |
EBP@NG | 1.0 M KOH | 265@10 | 89 | [138] |
Catalysts | Electrolytes | ƞ for OER at j (mV@mA cm−2) | Tafel Slope for OER (mV·dec−1) | References |
---|---|---|---|---|
(Ni0.62Fe0.38)P | 1.0 M KOH | 290@10 | 44 | [153] |
FeNi4.34@FeNi | 1.0 M KOH | 283@10 | 53 | [154] |
NiCo2O4/Ti | 1.0 M KOH | 353@10 | 61 | [155] |
(3D) CoP@CoFe-LDH | 1.0 M KOH | 240@40 | 69.2 | [156] |
Co-C@NiFe LDH | 1.0 M KOH | 249@10 | 58 | [157] |
NiOx NCs | 1.0 M KOH | 330@10 | 105 | [158] |
Co3O4 nanosheet | 1.0 M KOH | 367@10 | 65 | [159] |
NiFe2O4/rGO | 1.0 M KOH | 302@10 | 63 | [160] |
0.3 TA−Co/Fe-C | 1.0 M KOH | 284@10 | 86 | [161] |
CoCrFeNiMo HEAs | 1.0 M KOH | 220@10 | 59 | [162] |
MnFe2O4/NF | 1.0 M KOH | 310@10 | 65 | [163] |
Fe-NiCoP/PBA HNCs | 1.0 M KOH | 290@10 | 70 | [164] |
MoSe2-CoSe2/CoAl-LDH | 1.0 M KOH | 320@10 | 71 | [165] |
(NiFe-PBA)-F | 1.0 M KOH | 190@10 | 57 | [166] |
Co@PTh | 1.0 M KOH | 338@10 | 52 | [167] |
CeO2/NiFe-LDH | 1.0 M KOH | 246@10 | 67 | [168] |
Fe-CoNi-OH//CoP | 1.0 M KOH | 210@10 | 28 | [169] |
CoP2/Fe-CoP2 YSB | 1.0 M KOH | 266@10 | 68 | [170] |
Se-(CoFe)S2 | 1.0 M KOH | 281@10 | 52 | [171] |
Ni0.4Fe0.6Te2/NF | 1.0 M KOH | 190@10 | 26 | [172] |
MOF-V-Ni3S2/NF | 1.0 M KOH | 268@10 | 99 | [173] |
Fe-Ni3S2/FeNi | 1.0 M KOH | 282@10 | 54 | [174] |
Ni3N–NiMoN | 1.0 M KOH | 277@10 | 118 | [175] |
Ni3N–NiMoN | 1.0 M KOH | 198@10 | 42 | [176] |
NF@Fe2–Ni2P/C | 1.0 M KOH | 205@10 | 52 | [177] |
CoP2/RGO | 1.0 M KOH | 300@10 | 96 | [178] |
Co–Ni–Se/C/NF | 1.0 M KOH | 275@10 | 63 | [179] |
MoS2/NiS2 | 1.0 M KOH | 278@10 | 92 | [180] |
MoS2/NiS | 1.0 M KOH | 370@10 | 108 | [181] |
Ni3S2/NF | 1.0 M KOH | 296@10 | 65 | [136] |
MoSe2/MXene | 1.0 M KOH | 340@10 | 90 | [182] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibn Shamsah, S.M. Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions. Catalysts 2021, 11, 429. https://doi.org/10.3390/catal11040429
Ibn Shamsah SM. Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions. Catalysts. 2021; 11(4):429. https://doi.org/10.3390/catal11040429
Chicago/Turabian StyleIbn Shamsah, Sami M. 2021. "Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions" Catalysts 11, no. 4: 429. https://doi.org/10.3390/catal11040429
APA StyleIbn Shamsah, S. M. (2021). Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions. Catalysts, 11(4), 429. https://doi.org/10.3390/catal11040429