TiO₂ and TiO₂-carbon hybrid photocatalysts for diuron removal from water

Ana Amorós-Pérez^a, María Ángeles Lillo-Ródenas^{a*}, M. Carmen Román-Martínez^a, Patricia García-Muñoz^b, Nicolas Keller^b

^aMCMA Group, Department of Inorganic Chemistry and Materials Institute. Faculty of Sciences. University of Alicante, Ap. 99, E-03080, Alicante, Spain

^bInstitut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/Université d' Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France

*Corresponding author: e-mail: <u>mlillo@ua.es</u>; Tel.: +34 965 90 35 45; fax: +34 965 90 34 54

Supplementary Materials

Figure S1. (a) TG and (b) DTG curves for TiO₂ (350) and the TiO₂-ACx (350) samples.

Figure S2. Pore size distribution determined from the nitrogen adsorption isotherms by means of the BJH method.

T interval (°C) Sample	25-120	120-270	270-400	450-650	C content (wt. %)
TiO ₂ (350)	0.8	1.3	0.5	0.2	0.0
TiO ₂ -AC0.5 (350)	0.9	1.3	0.4	0.6	0.4
TiO ₂ -AC1 (350)	1.0	1.2	0.3	0.7	0.5
TiO ₂ -AC5 (350)	0.8	1.4	0.4	3.8	3.6
TiO ₂ -AC10 (350)	1.1	1.3	0.6	8.5	8.3

Table S1. Weight loss (wt. %) in the four temperature intervals observed in the TG-DTG profiles (Figure S2) and calculated carbon content.

Set	Server le	Sbet	Vdr N2	Vmeso	VT
	Sample	(m ² /g)	(cm ³ /g)	(cm ³ /g)	(cm ³ /g)
1	P25	57	0.02	0.12	0.17
	$TiO_2(nt)$	296	0.11	0.17	0.32
	TiO ₂ (350)	144	0.05	0.18	0.25
	TiO ₂ (400)	98	0.04	0.13	0.18
	TiO ₂ (450)	72	0.05	0.10	0.15
	TiO ₂ (500)	45	0.02	0.07	0.09
2	AC	491	0.25	0.02	0.27
	TiO ₂ (350)	144	0.05	0.18	0.25
	TiO ₂ -AC0.5 (350)	154	0.06	0.18	0.27
	TiO ₂ -AC1 (350)	151	0.06	0.15	0.25
	TiO ₂ -AC5 (350)	164	0.06	0.16	0.26
	TiO ₂ -AC10 (350)	173	0.07	0.15	0.25

Table S2. Textural properties for P25, TiO_2 (nt) and TiO_2 (T) samples (Set 1) and for AC, TiO_2 (350) and TiO_2 -ACx (350) samples (Set 2).

Figure S3. XRD pattern for AC.

Figure S4. $Ln(C_0/C)$ *vs.* irradiation time for: (**a**) P25, TiO₂ (nt) and TiO₂ (T) photocatalysts and (**b**) P25 and TiO₂-ACx (350) (x = 0, 0.5, 1, 5 and 10 wt. %) hybrid photocatalysts. Reaction: degradation of diuron under simulated solar light.

Figure S5. Diuron adsorption (as % respect to the initial diuron concentration) after 2h in dark and S_{BET} values for: (a) P25, TiO₂ (nt) and TiO₂ (T) photocatalysts and (b) TiO₂-ACx (350) (x = 0, 0.5, 1, 5 and 10 wt. %).

Figure S6. $Ln(C_0/C)$ *vs.* irradiation time for TiO₂-AC10 (350) sample after 1, 30, 120 or 360 min in dark conditions. Reaction: diuron degradation under simulated solar light.

Figure S7. Evolution of the relative diuron concentration *vs* time in dark and under illumination conditions for TiO_2 -AC10 (350) sample (1 min in darkness) and for TiO_2 (450) and TiO_2 (500) samples (2 h in darkness).

Figure S8. Relative diuron concentration *vs* time in darkness (2 h) and under illumination conditions (1 h) for TiO₂-AC1 (350) and TiO₂-AC10 (350) samples (after 1 h irradiation the complete removal of diuron was observed).

Figure S9. TOC values *vs* irradiation time determined during reuse of TiO₂-AC1 (350) and TiO₂-AC10 (350) hybrid photocatalysts. Reaction: diuron degradation under simulated solar light.

Figure S10. Spectral distribution of the simulated solar light. Measurements have been performed using a wideband RPS900-W rapid portable spectroradiometer from International Light Technology.