Supplementary Information for

Molecular Cage Promoted Aerobic Oxidation or Photo-Induced

Rearrangement of Spiroepoxy Naphthalenone

Pei-Ming Cheng^{1,2}, Li-Xuan Cai², Dan-Ni Yan², Li-Peng Zhou², Qing-Fu Sun² 1 College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China 2 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China Correspondence: qfsun@fjirsm.ac.cn;

Content

1. General	2
2. Synthesis procedure	2
3. Host-Guest studies	4
4. Procedure for cage catalyzed reaction from 2 to 3:	5
5. Procedure for LEDs/cage promoted rection from 2 to 4:	8
6. NMR Spectra of Products 3 and 4:	10
7. Proposed Mechanism	13
8. X-Ray Data	14
9. Mass spectrum	17
Reference:	17

1. General

Unless otherwise stated, all chemicals and solvents were purchased from commercial companies (Adamas, J&K Scientific, and Sigma-Aldrich. etc) and used without further purification. Anhydrous solvents were distilled according to standard procedures.^{S1} Deuterated solvents were purchased from Adamas and J&K. 1D and 2D-NMR were measured on a Bruker Biospin Avance III (400 MHz) spectrometer or JNM-ECZ600R/S1 (600 MHz) spectrometer. ¹H-NMR chemical shifts were determined with tetramethylsilane (TMS) or respect to residual signals of the deuterated solvents used (δ = 4.79 for D₂O in ¹H NMR). The photoreactors used in this research were bought from Wuhan Geao Instruments Science & Technology Co., Ltd (China) (Purple LEDs, light intensity = 37.4 mw/cm², λ_{max} = 390 nm; Blue LEDs, λ_{max} = 450 nm; 1 W for every light bulb; every Schlenk tube was irradiated by 6 light bulbs from the side). Gas chromatography mass spectrometry (GC-MS) analyses were performed on a Shimadzu GCMS-QP2010SE instrument. ESI-TOF-MS were recorded on Impact II UHR-TOF from Bruker. Data analysis was conducted with the Bruker Data Analysis software (Version 4.3) and simulations were performed with the Bruker Isotope Pattern software. UV-vis adsorption spectra were recorded on UV-2700 UV-Visible spectrophotometer from SHIMADZU Corporation. Stokes-Einstein equation:

$$\mathsf{D} = \frac{K_b \mathsf{T}}{6\pi\eta \mathsf{r}}$$

was applied to estimate the dynamic radius of complexes in solution. *D* is diffusion coefficient obtained from DOSY spectrum, K_b is Boltzmann constant, *T* is the absolute temperature, viscosity η , and *r* is the estimated dynamic radius.

2. Synthesis procedure

Ligand synthesis and cage **1** assembly were following previous reported procedures.^{S2}

Substrate **2** was prepared according to literature reported.^{S3} To a solution of 173.0 mg (1.0 mmol) of 1-hydroxy-2-hydroxymethylnaphthalene in 2.0 mL THF was added dropwise 5.0 mL (1.5 mmol) of a 0.3 M aqueous solution of NaIO₄. The reaction mixture was stirred for 12 h in room temperature, then partitioned between dichloromethane and water. The organic phase was dried over anhydrous Na₂SO₄, filtered and evaporated. Further purified on silica gel via column chromatography (EtOAc: Petroleum ether = 3:7).

Spiroepoxy Naphthalenone (2) was prepared following literature reported^{S3} as a white solid (115.2 mg, 0.35 mmol, 66.9 % yield). Analytical data: ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.8 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 7.5 Hz,

1H), 6.91 (d, J = 9.9 Hz, 1H), 5.93 (d, J = 9.9 Hz, 1H), 3.46 (d, J = 7.6 Hz, 1H), 3.17 (d, J = 7.6 Hz, 1H).; ¹³C NMR: (101 MHz, CDCl₃): δ 193.4, 137.5, 135.1, 131.4, 131.1, 129.4, 128.5, 128.1, 126.9, 57.7, 55.8;

3. Host-Guest studies

3.1 Encapsulation

Excess amount of **2** were directly added into the solution of cage **1** in D₂O, the mixture was stirred for 30 min before subjected to NMR measurement. All the NMR spectra were tested after insoluble substrates removed by filtration. ([**1**] = 2.5×10^{-3} mM) **Physical data of** (**2**)₄ \subset **1**: ¹H NMR (400 MHz, D₂O) δ 9.45 (d, *J* = 6.0 Hz, 8H), 9.41 (d, *J* = 6.4 Hz, 8H), 9.32 (d, *J* = 6.0 Hz, 8H), 8.91 (d, *J* = 6.4 Hz, 8H), 8.67 (d, *J* = 5.8 Hz, 8H), 8.62 (d, *J* = 5.8 Hz, 7H), 8.03 (s, 8H), 6.18 (m, 4H), 6.02 (m, 16H), 5.71 (d, *J* = 7.5 Hz, 4H), 5.32 (d, *J* = 9.7 Hz, 4H), 4.44 (d, *J* = 9.7 Hz, 4H), 3.12 (m, 16H), 2.65(m, 48H), 2.03 (m, 8H).

Figure S3 ¹H NMR spectrum of (2)₄⊂1. (400 MHz, D₂O, 298 K, [1] = 2.5 × 10⁻³ mM)

4. Procedure for cage catalyzed reaction from 2 to 3:

An excess amount of **2** was suspended in a D₂O solution (1.0 mL) of cage **1** (2.5×10^{-3} mmol; 2.5 mM), and the solution was stirred at room temperature for 30 min. After filtration, the quantitative formation of inclusion complex (**2**)₄ \subset **1** was confirmed by ¹H NMR. Host-guest complex solution was stirred for 2 h at 50°C. After extraction with CDCl₃ for three times, product **4** was obtained with > 99% yield, as determined by NMR analysis with inner standard (1,3,5-Trimethoxybenzene, 1×10⁻³ mM).

Figure S6 ¹H NMR (600 MHz, 298 K, CDCl₃) spectrum of extraction solution from (2)₄ \subset 1 after heating at 50 °C for 2 h. (1,3,5-Trimethoxybenzene, 1×10⁻³ mM)

Figure S7 Overlay of GC-MS spectra for indication of 3 promoted by cage 1 (CHCl₃).

Figure S8 ¹H NMR spectra of the mixture of $(BPh_4^-) \subset 1$ and 2 in D₂O. (600 MHz, D₂O, 328 K, \bigcirc : 2, \Box : BPh₄⁻, *: 1,4-Dioxane)

Inhibitor competition:

Figure S9 ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of extraction solution from mixture of (BPh₄⁻) \subset **1** and **2** after heating at 50 °C for 2 h. (1,3,5-Trimethoxybenzene, 1×10⁻³ mM)

5. Procedure for LEDs/cage promoted rection from 2 to 4:

Procedure A: **2** (1.7 mg; 1.0×10^{-2} mmol) was solved into CHCl₃ and irradiated by purpure LEDs for two hours. Product 4 was obtained almost quantitatively detected by ¹H NMR.

Procedure B: **2** (1.7 mg; 1.0×10^{-2} mmol) was suspended in a D₂O solution (1.0 mL) of cage **1** (2.5 × 10⁻³ mmol; 2.5 mM), and the solution was stirred at room temperature for 30 min under an atmosphere of N₂. After mixture solution became clear, host-guest complex solution was stirred for 8 h at r.t. in a schlenk tube with blue-LED (6W) irradiation under an N₂ atmosphere. The color of solution changed gradually from yellow to orange. After extraction with CDCl₃, product **4** was obtained in 90% yield, as determined by NMR analysis with inner standard (1,3,5-Trimethoxybenzene, 1×10⁻³ mM).

Figure S11 ¹H NMR of (2)₄ \subset 1 after irradiation by blue-LEDs for 8 h under N₂ atmosphere. (400 MHz, 298 K, D₂O)

Figure S12 ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of extraction solution from previous solution. (1,3,5-Trimethoxybenzene, 1×10^{-3} mM)

Figure S13 Overlay of GC-MS spectra for indication of 4 promoted by cage 1 (CHCl₃).

6. NMR Spectra of Products 3 and 4:

brown solid, ¹H NMR (600 MHz, CDCl₃) δ 2.34 (br s,1H), 4.67 (s, 2H), 6.99 (t, *J* = 1.8 Hz, 1H), 7.73 (m, 2H), 8.06 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 60.0, 126.3, 132.0, 133.4, 133.8, 134.1, 149.0, 185.0, 185.4. NMR Data is corresponding to previous literature.^{S4} HRMS (ESI): calcd for $C_{11}H_8O_3$ (M-H)⁻ 187.0405,

found 187.0401.

7.36 (1H, d, *J*=8.3 Hz). ¹³C NMR (151 MHz, CDCl₃) δ 196.4, 161.9, 137.5, 130.6, 127.6, 126.5, 126.2, 124.5, 124.3, 119.4, 114.3.

7. Proposed Mechanism

Red-Shift to Visible-Light Region

Figure S19 Proposed mechanism of the conversion from 2 to 4 with LEDs irradiation.

8. X-Ray Data

X-ray crystallography analysis of single crystal was performed on a Bruker D8 VENTURE photon II diffractometer with Iµs 3.0 microfocus X-ray source diffractometer. Data reduction was performed with the APEX-III software. Structures were solved by direct methods and refined by full-matrix least squares on *F2* with anisotropic displacement using the SHELX software package.^{S5} In the structure of host-guest complex, solvent molecules were highly disordered and could not be reasonably located. These residual intensities were removed by PLATON/SQUEEZE routine.^{S6} Crystal data and final refinement details for the structures are reported in Table S3.

Crystal data for host-guest complex of product **3** and cage **1** (mo_cpm353d): Space group I_4 , a = 38.791(3) Å, b = 38.791(3); c = 32.719(3) Å, V = 49234(9) Å³, Z = 8, T = 200 K. Anisotropic least squares refinement based on 19292 independent merged reflections (R_{int} = 0.1052) converged at residual wR^2 = 0.2384 for all data; residual R_1 = 0.0708 for 59016 observed data [$I > 2\sigma$ (I)], and goodness of fit (GOF) =1.009. CCDC: 2065411.

	dideture rennement of mo_cpm000d
Identification code	mo_cpm353d
Empirical formula	C145 H152 B F4 N32 O9 Pd4
Formula weight	2999.40
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Tetragonal
Space group	14
Unit cell dimensions	a = 38.791(3) Å α= 90°.
	b = 38.791(3) Å β= 90°.
	c = 32.719(3) Å γ = 90°.
Volume	49234(9) Å ³
Z	8
Density (calculated)	0.809 Mg/m ³
Absorption coefficient	0.330 mm ⁻¹
F(000)	12344
Crystal size	0.5 x 0.3 x 0.3 mm ³
Theta range for data collection	2.206 to 18.847°.
Index ranges	-35<=h<=35, -34<=k<=34, -29<=l<=29
Reflections collected	59016
Independent reflections	19292 [R(int) = 0.1052]
Completeness to theta = 18.847°	99.6 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	19292 / 2260 / 1429
Goodness-of-fit on F^2	1.009
Final R indices [<i>I>2sigma(I)</i>]	$R_1 = 0.0708, wR^2 = 0.1713$
R indices (all data)	$R_1 = 0.1958, wR^2 = 0.2384$
Absolute structure parameter	0.58(7)
Extinction coefficient	n/a
Largest diff. peak and hole	0.573 and -0.353 e.Å ⁻³

Table S3. Crystal data and structure refinement of mo_cpm353d

Figure S20 Ortep drawing of the asymmetric unit in the crystal structure of host-guest complex of product **3** and cage **1** at 30% probability level.

9. Mass spectrum

Figure S21 ESI-TOF Mass spectrum of product 3.

Reference:

- [1] Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 1518-1520.
- [2] S.-C. Li, L.-X. Cai, L.-P. Zhou, F. Guo, Q.-F. Sun, Sci. China Chem. 2019, 713-718.
- [3] a) Tius, M. A.; Reddy, N. K., Syn. Comm. 1994, 859-869. b) McLaughlin, M. F.; Massolo, E.; Liu, S.; Johnson, J. S. J. Am. Chem. Soc. 2019, 2645-2651.
- [4] Balzer, B. L.; Cazanoue, M.; Finn, M., J. Am. Chem. Soc. 1992, 8735-8736.
- [5] Sheldrick, G. Acta Crystallogr. Sect. C 2015, 3-8.
- [6] Spek A. L. J. Appl. Crystallogr. 2003, 7-13.