An Efficient Catalyst Prepared from Residual Kaolin for the Esterification of Distillate from the Deodorization of Palm Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Time on the Esterification Reaction of DDPO
2.2. Influence of Temperature on DDPO Esterification Reaction
2.3. Influence of the Molar Ratio of DDPO and Ethanol in the Esterification Reaction
2.4. Influence of Amount of Catalyst on DDPO Esterification
2.5. Comparison with Data from Literature
2.6. Catalyst Deactivation and Recyclability
3. Experimental Section
3.1. Materials
3.2. Characterization of Fresh and Reused Catalyst
3.3. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kresge, C.T.; Roth, W.J. The Discovery of Mesoporous Molecular Sieves from the Twenty Year Perspective. Chem. Soc. Rev. 2013, 42, 3663–3670. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.-W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 27, 10834–10843. [Google Scholar] [CrossRef]
- Carmo, A.C.; de Souza, L.K.C.; da Costa, C.E.F.; Longo, E.; Zamian, J.R.; da Rocha Filho, G.N. Production of Biodiesel by Esterification of Palmitic Acid over Mesoporous Aluminosilicate Al-MCM-41. Fuel 2009, 88, 461–468. [Google Scholar] [CrossRef]
- Pires, L.H.O.; Oliveira, A.N.; Monteiro Junior, O.V.; Angélica, R.S.; Costa, C.E.F.; Zamian, J.R.; Nascimento, L.A.S.; Rocha Filho, G.N. Esterification of a Waste Produced from the Palm Oil Industry over 12-Tungstophosforic Acid Supported on Kaolin Waste and Mesoporous Materials. Appl. Catal. B Environ. 2014, 160–161, 122–128. [Google Scholar] [CrossRef]
- Sayari, A. Catalysis by Crystalline Mesoporous Molecular Sieves. Chem. Mater. 1996, 8, 1840–1852. [Google Scholar] [CrossRef]
- Fontes, M.S.B.; Melo, D.M.A.; Costa, C.C.; Braga, R.M.; Melo, M.A.F.; Alves, J.A.B.L.R.; Silva, M.L.P. Effect of Different Silica Sources on Textural Parameters of Molecular Sieve MCM-41. Cerâmica 2016, 62, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Da Lacerda Júnior, O.S.; Cavalcanti, R.M.; de Matos, T.M.; Venâncio, J.D.B. Synthesis of MCM-41 Mesoporous Material Using Freshwater Sponge as a Source of Silica. Química Nova 2013, 36, 1348–1353. [Google Scholar] [CrossRef] [Green Version]
- Ciesla, U.; Schüth, F. Ordered Mesoporous Materials. Microporous Mesoporous Mater. 1999, 27, 131–149. [Google Scholar] [CrossRef]
- Du, C.; Yang, H. Investigation of the Physicochemical Aspects from Natural Kaolin to Al-MCM-41 Mesoporous Materials. J. Colloid Interface Sci. 2012, 369, 216–222. [Google Scholar] [CrossRef]
- Kumar, P.; Mal, N.; Oumi, Y.; Yamana, K.; Sano, T. Mesoporous Materials Prepared Using Coal Fly Ash as the Silicon and Aluminium Source. J. Mater. Chem. 2001, 11, 3285–3290. [Google Scholar] [CrossRef]
- Yang, H.; Deng, Y.; Du, C.; Jin, S. Novel Synthesis of Ordered Mesoporous Materials Al-MCM-41 from Bentonite. Appl. Clay Sci. 2010, 47, 351–355. [Google Scholar] [CrossRef]
- Kang, F.; Wang, Q.; Xiang, S. Synthesis of Mesoporous Al-MCM-41 Materials Using Metakaolin as Aluminum Source. Mater. Lett. 2005, 59, 1426–1429. [Google Scholar] [CrossRef]
- Madhusoodana, C.D.; Kameshima, Y.; Nakajima, A.; Okada, K.; Kogure, T.; MacKenzie, K.J.D. Synthesis of High Surface Area Al-Containing Mesoporous Silica from Calcined and Acid Leached Kaolinites as the Precursors. J. Colloid Interface Sci. 2006, 297, 724–731. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Liu, Y.; Liu, Z.; Guo, Y.; Liu, G.; Yang, Z.; Xu, M.; Wang, L. Synthesis of Highly Regular Mesoporous Al-MCM-41 from Metakaolin. Appl. Clay Sci. 2009, 44, 185–188. [Google Scholar] [CrossRef]
- De Oliveira, A.N.; Lima, E.T.L.; Oliveira, D.T.; Andrade, E.H.A.; Angélica, R.S.; Costa, C.E.F.; Rocha Filho, G.N.; Costa, F.F.; Luque, R.; Nascimento, L.A.S. Acetylation of Eugenol over 12-Molybdophosphoric Acid Anchored in Mesoporous Silicate Support Synthesized from Flint Kaolin. Materials 2019, 12, 2995. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.T.L.; Queiroz, L.S.; de Pires, L.H.O.; Angélica, R.S.; Costa, C.E.F.; Zamian, J.R.; Rocha Filho, G.N.; Luque, R.; Nascimento, L.A.S. Valorization of Mining Waste in the Synthesis of Organofunctionalized Aluminosilicates for the Esterification of Waste from Palm Oil Deodorization. ACS Sustain. Chem. Eng. 2019, 7, 7543–7551. [Google Scholar] [CrossRef]
- De Oliveira, A.N.; Lima, E.T.L.; de Andrade, E.H.A.; Zamian, J.R.; da Rocha Filho, G.N.; da Costa, E.F.; de Píres, L.H.O.; Luque, R.; do Nascimento, L.A.S. Acetylation of Eugenol on Functionalized Mesoporous Aluminosilicates Synthesized from Amazonian Flint Kaolin. Catalysts 2020, 10, 478. [Google Scholar] [CrossRef]
- De Oliveira, A.N.; de Oliveira, D.T.; Angélica, R.S.; de Andrade, E.H.A.; do Silva, J.K.R.; da Roca Filho, G.N.; Coral, N.; de Pires, L.H.O.; Luque, R.; do Nascimento, L.A.S. Efficient Esterification of Eugenol Using a Microwave-Activated Waste Kaolin. React. Kinet. Mech. Catal. 2020, 130, 633–653. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, F.; Wang, X.; Cheng, F. Facile Preparation of Ammonium Molybdophosphate/Al-MCM-41 Composite Material from Natural Clay and Its Use in Cesium Ion Adsorption. Eur. J. Inorg. Chem. 2015, 2015, 2125–2131. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, F.; Li, S.; Cheng, F. Synthesis of SBA-15 Encapsulated Ammonium Molybdophosphate Using Qaidam Natural Clay and Its Use in Cesium Ion Adsorption. RSC Adv. 2015, 5, 35453–35460. [Google Scholar] [CrossRef]
- Rocha Junior, C.A.F.; Angélica, R.S.; Neves, R.F. Sinthesis of Faujasite-type Zeolite: Comparison between Processed and Flint Kaolin. Cerâmica 2015, 61, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, L.A.S.; Tito, L.M.Z.; Angélica, R.S.; Costa, C.E.F.; Zamian, J.R.; Rocha Filho, G.N. Esterification of Oleic Acid over Solid Acid Catalysts Prepared from Amazon Flint Kaolin. Appl. Catal. B Environ. 2011, 101, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, B.S.; Angélica, R.S.; Scheller, T.; de Castro, E.A.S.; de Neves, R.F. Mineralogical and Geochemical Characterization of the Hard Kaolin from the Capim Region, Pará, Northern Brazil. Cerâmica 2003, 49, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, L.A.S.; Angélica, R.S.; Costa, C.E.F.; Zamian, J.R.; Rocha Filho, G.N. Comparative Study between Catalysts for Esterification Prepared from Kaolins. Appl. Clay Sci. 2011, 51, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.N.; da Costa, L.R.S.; Pires, L.H.O.; Nascimento, L.A.S.; Angélica, R.S.; da Costa, C.E.F.; Zamian, J.R.; da Rocha Filho, G.N. Microwave-Assisted Preparation of a New Esterification Catalyst from Wasted Flint Kaolin. Fuel 2013, 103, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, L.A.S.; Angélica, R.S.; Costa, C.E.F.; Zamian, J.R.; Rocha Filho, G.N. Conversion of Waste Produced by the Deodorization of Palm Oil as Feedstock for the Production of Biodiesel Using a Catalyst Prepared from Waste Material. Bioresour. Technol. 2011, 102, 8314–8317. [Google Scholar] [CrossRef] [Green Version]
- Lacerda Júnior, O.S.; Cavalcanti, R.M.; de Matos, T.M.; Angélica, R.S.; da Rocha Filho, G.N.; Barros, I.D.C.L. Esterification of Oleic Acid Using 12-Tungstophosphoric Supported in Flint Kaolin of the Amazonia. Fuel 2013, 108, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.A.B.; Saldanha, E.; Angélica, R.S.; Souza, C.A.G.; Neves, R.F. The Use of Kaolin Wastes from the Amazon Region on the Synthesis of Zeolite A. Cerâmica 2007, 53, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Moraes, C.G.; Rodrigues, E.C.; Neves, R.F. Analcime Zeolite Production from Amazon Kaolin. Cerâmcia 2013, 59, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Khayoon, M.S.; Hameed, B.H. Single-Step Esterification of Crude Karanj (Pongamia Pinnata) Oil to Fatty Acid Methyl Esters over Mesostructured SBA-16 Supported 12-Molybdophosphoric Acid Catalyst. Fuel Process. Technol. 2013, 114, 12–20. [Google Scholar] [CrossRef]
- Oliveira, A.N.; Lima, M.A.B.; Pires, L.H.O.; Silva, M.R.; Luz, P.T.S.; Angélica, R.S.; Rocha Filho, G.N.; Costa, C.E.F.; Luque, R.; Nascimento, L.A.S. Bentonites Modified with Phosphomolybdic Heteropolyacid (HPMo) for Biowaste to Biofuel Production. Materials 2019, 12, 1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, L.; Gong, S. Esterification of Oleic Acid to Biodiesel over a 12-Phosphotungstic Acid-Based Solid Catalyst. J. Fuel Chem. Technol. 2017, 45, 303–310. [Google Scholar] [CrossRef]
- Carvalho, A.K.F.; Conceição, L.R.V.; Silva, J.P.V.; Perez, V.H.; de Castro, H.F. Biodiesel Production from Mucor Circinelloides Using Ethanol and Heteropolyacid in One and Two-step Transesterification. Fuel 2017, 202, 503–511. [Google Scholar] [CrossRef]
- Conceição, L.R.V.; Carneiro, L.M.; Giordani, D.S.; de Castro, H.F. Synthesis of Biodiesel from Macaw Palm Oil Using Mesoporous Solid Catalyst Comprising 12-Molybdophosphoric Acid and Niobia. Renew. Energy 2017, 113, 119–128. [Google Scholar] [CrossRef]
- Brahmkhatri, V.; Patel, A. An Efficient Green Catalyst Comprising 12-Tungstophosphoric Acid and MCM-41: Synthesis Characterization and Diesterification of Succinic Acid, a Potential Bio-platform Molecule. Green Chem. Lett. Rev. 2012, 5, 161–171. [Google Scholar] [CrossRef]
- Clemente, M.C.H.; Martins, G.A.V.; de Freitas, E.F.; Dias, J.A.; Dias, S.C.L. Ethylene Production via Catalytic Ethanol Dehydration by 12-Tungstophosphoric Acid@ceria-Zirconia. Fuel 2019, 239, 491–501. [Google Scholar] [CrossRef]
- Patel, A.; Brahmkhatri, V. Kinetic Study of Oleic Acid Esterification over 12-Tungstophosphoric Aacid Catalyst Anchored to Different Mesoporous Silica Supports. Fuel Process. Technol. 2013, 113, 141–149. [Google Scholar] [CrossRef]
- Brahmkhatri, V.; Patel, A. 12-Tungstophosphoric Acid Anchored to SBA-15: An Efficient, Environmentally Benign Reusable Catalysts for Biodiesel Production by Esterification of Free Fatty Acids. Appl. Catal. A Gen. 2011, 403, 161–172. [Google Scholar] [CrossRef]
- Mongkolbovornkij, P.; Champreda, V.; Sutthisripok, W.; Laosiripojana, N. Esterification of Industrial-Grade Palm Fatty Acid Distillate over Modified ZrO2 (with WO3-, SO4 -and TiO2-): Effects of Co-solvent Adding and Water Removal. Fuel Process. Technol. 2010, 91, 1510–1516. [Google Scholar] [CrossRef]
- Da Conceição, R.L.V.; Carneiro, L.M.; Rivaldi, J.D.; de Castro, H.F. Solid Acid as Catalyst for Biodiesel Production via Simultaneous Esterification and Transesterification of Macaw Palm Oil. Ind. Crop. Prod. 2016, 89, 416–424. [Google Scholar] [CrossRef]
- Akinfalabi, S.I.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Synthesis of Biodiesel from Palm Fatty Acid Distillate Using Sulfonated Palm Seed Cake Catalyst. Renew. Energy 2017, 111, 611–619. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H. Production of Biodiesel from Palm Fatty Acid Distillate Using Sulfonated-Glucose Solid Acid Catalyst: Characterization and Optimization. Chin. J. Chem. Eng. 2015, 23, 1857–1864. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Biodiesel Production in the Presence of Sulfonated Mesoporous ZnAl2O4 Catalyst via Esterification of Palm Fatty Acid Distillate (PFAD). Fuel 2016, 178, 253–262. [Google Scholar] [CrossRef]
- Embong, N.H.; Maniam, G.P.; Mohd, M.H.; Lee, K.T.; Huisingh, D. Utilization of Palm Fatty Acid Distillate in Methyl Esters Preparation Using SO42−/TiO2-SiO2 as a Solid Acid Catalyst. J. Clean. Prod. 2016, 116, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Pantoja, S.S.; de Mescouto, V.A.; da Costa, C.E.F.; Zamian, J.R.; Zamian, J.R.; da Rocha Filho, G.N.; do Nascimento, L.A.S. High-Quality Biodiesel Production from Buriti (Mauritia Flexuosa) Oil Soapstock. Molecules 2019, 24, 94. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.P.; da Luz, P.T.S.; Braga, M.; dos Batista, P.R.S.; da Costa, C.E.F.; Zamian, J.R.; do Nascimento, L.A.S.; da Rocha Filho, G.N. Murumuru (Astrocaryum Murumuru Mart.) Butter and Oils of Buriti (Mauritia Flexuosa Mart.) and Pracaxi (Pentaclethra Macroloba (Willd.) Kuntze) can be Used for Biodiesel Production: Physico-Chemical Properties and Thermal and Kinetic Studies. Ind. Crop. Prod. 2017, 97, 536–544. [Google Scholar] [CrossRef]
- Aboim, J.B.; de Oliveira, D.T.; Ferreira, J.E.; Siqueira, A.S.; Dall’Agnol, L.T.; da Rocha, G.N.; Gonçalves, E.C.; Nascimento, L.A.S. Determination of Biodiesel Properties Based on a Fatty Acid Profile of Eight Amazon Cyanobacterial Strains Grown in Two Different Culture Media. RSC Adv. 2016, 6, 109751–109758. [Google Scholar] [CrossRef]
- De Oliveira, D.T.; Vasconcelos, C.; Feitosa, A.M.T.; Aboim, J.B.; de Oliveira, A.N.; Xavier, L.P.; Santos, A.S.; Gonçalves, E.C.; da Rocha Filho, G.N.; do Nascimento, L.A.S. Lipid Profile Analysis of Three New Amazonian Cyanobacteria as Potential Sources of Biodiesel. Fuel 2018, 234, 785–788. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; Souza, S.L.; Langone, M.A.P. Study of Immobilized Lipase Lipozyme RM IM in Esterification Reactions for Biodiesel Synthesis. Quim. Nova 2013, 36, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Bastos, R.R.C.; da Luz Corrêa, A.P.; da Luz, P.T.S.; da Rocha Filho, G.N.; Zamian, J.R.; da Conceição, L.R.V. Optimization of Biodiesel Production Using Sulfonated Carbon-Based Catalyst from an Amazon Agro-Industrial Waste. Energy Convers. Manag. 2020, 205, 112457. [Google Scholar] [CrossRef]
- Da Corrêa, A.P.L.; Bastos, R.R.C.; da Rocha Filho, G.N.; Zamian, J.R.; da Conceição, L.R.V. Preparation of Sulfonated Carbon-Based Catalysts from Murumuru Kernel Shell and Their Performance in the Esterification Reaction. RSC Adv. 2020, 10, 20245–20256. [Google Scholar] [CrossRef]
- Wan, Z.; Lim, J.K.; Hameed, B.H. Chromium-Tungsten Heterogeneous Catalyst for Esterification of Palm Fatty Acid Distillate to Fatty Acid Methyl Ester. J. Taiwan Inst. Chem. Eng. 2015, 54, 64–70. [Google Scholar] [CrossRef]
- Da Conceição, L.R.V.; Reis, C.E.R.; de Lima, R.; Cortez, D.V.; de Castro, H.F. Keggin-Structure Heteropolyacid Supported on Alumina to be Used in Trans/Esterification of High-Acid Feedstocks. RSC Adv. 2019, 9, 23450–23458. [Google Scholar] [CrossRef] [Green Version]
- Aranda, D.A.G.; Santos, R.T.P.; Tapanes, N.C.O.; Ramos, A.L.D.; Antunes, O.A.C. Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catal. Lett. 2008, 122, 20–25. [Google Scholar] [CrossRef]
- Peruzzolo, T.M.; Stival, J.F.; Baika, L.M.; Ramos, L.P.; Grassi, M.T.; Rocco, M.L.M.; Nakagaki, S. Efficient Esterification Reaction of Palmitic Acid Catalyzed by WO3−x/Mesoporous Silica. Biofuels 2020, 1–11. [Google Scholar] [CrossRef]
- Wan, Z.; Hameed, B.H. Chromium-Tungsten-Titanium Mixed Oxides Solid Catalyst for Fatty Acid Methyl Ester Synthesis from Palm Fatty Acid Distillate. Energy Convers. Manag. 2014, 88, 669–676. [Google Scholar] [CrossRef]
- Araujo, R.O.; da Chaar, J.S.; Queiroz, L.S.; da Rocha Filho, G.N.; da Costa, C.E.F.; da Silva, G.C.T.; Landers, R.; Costa, M.J.F.; Gonçalves, A.A.S.; de Souza, L.K.C. Low Temperature Sulfonation of Acai Stone Biomass Derived Carbons as Acid Catalysts for Esterification Reactions. Energy Convers. Manag. 2019, 196, 821–830. [Google Scholar] [CrossRef]
- Olutoye, M.A.; Wong, C.P.; Chin, L.H.; Hameed, B.H. Synthesis of FAME from the Methanolysis of Palm Fatty Acid Distillate Using Highly Active Solid Oxide Acid Catalyst. Fuel Process. Technol. 2014, 124, 54–60. [Google Scholar] [CrossRef]
- Chabukswar, D.D.; Heer, P.K.K.S.; Gaikar, V.G. Esterification of Palm Fatty Acid Distillate Using Heterogeneous Sulfonated Microcrystalline Cellulose Catalyst and Its Comparison with H2SO4 Catalyzed Reaction. Eng. Chem. Res. 2013, 52, 7316–7326. [Google Scholar] [CrossRef]
- Wimonrat, T. Supported Cesiun Polyoxotungstates as Catalysts for the Esterification of Palm Fatty Acid Distillate. Mendeleev Commun. 2013, 23, 46–48. [Google Scholar] [CrossRef]
- Oliveira, C.F.; Dezaneti, L.M.; Garcia, F.A.C.; de Macedo, J.L.; Dias, J.A.; Dias, S.C.L.; Alvim, K.S.P. Esterification of Oleic Acid with Ethanol by 12-Tungstophosphoric Acid Supported on Zirconia. Appl. Catal. A Gen. 2010, 372, 153–161. [Google Scholar] [CrossRef]
- Méndez, F.J.; Llanos, A.; Echeverría, M.; Jáuregui, R.; Villasana, Y.; Díaz, Y.; Liendo-Polanco, G.; Ramos-García, M.A.; Zoltan, T.; Brito, J.L. Mesoporous Catalysts Based on Keggin-Type Heteropolyacids Supported on MCM-41 and Their Application in Thiophene Hydrodesulfurization. Fuel 2013, 110, 249–258. [Google Scholar] [CrossRef]
- Morey, M.S.; Bryan, J.D.; Schwarz, S.; Stucky, G.D. Pore Surface Functionalization of MCM-48 Mesoporous Silica with Tungsten and Molybdenum Metal Centers: Perspectives on Catalytic Peroxide Activation. Chem. Mater. 2000, 12, 3435–3444. [Google Scholar] [CrossRef]
- Pacula, A.; Pamin, K.; Krysciak-Czerwenka, J.; Olejniczak, Z.; Gil, B.; Bielanska, E.; Dula, R.; Serwicka, E.M.; Drelinkiewicz, A. Physicochemical and Catalytic Properties of Hybrid Catalysts Derived from 12-Molybdophosphoric Acid and Montmorillonites. Appl. Catal. A Gen. 2015, 498, 192–204. [Google Scholar] [CrossRef]
- Vazquez, P.G.; Blanco, M.N.; Caceres, C.V. Catalysts Based on Supported 12-Molybdophosphoric Acid. Catal. Lett. 1999, 60, 205–215. [Google Scholar] [CrossRef]
- Melero, J.A.; Bautista, L.F.; Morales, G.; Iglesias, J.; Sánchez-Vázquez, R. Biodiesel Production from Crude Palm Oil Using Sulfonic Acid-Modified Mesostructured Catalysts. Chem. Eng. J. 2010, 161, 323–331. [Google Scholar] [CrossRef]
- Melero, J.A.; Bautista, L.F.; Iglesias, J.; Morales, G.; Sánchez-Vázquez, R.; Wilson, K.; Lee, A.F. New Insights in the Deactivation of Sulfonic Modified SBA-15 Catalysts for Biodiesel Production from Low-Grade Oleaginous Feedstock. Appl. Catal. A Gen. 2014, 488, 111–118. [Google Scholar] [CrossRef]
Catalyst | FFAs | Alcohol | M: R a | (°C) b | (h) c | (%) d | Ref. |
---|---|---|---|---|---|---|---|
Al-MCM-41Si/Al = 8 | Palmitic | MeOH | 1:60 | 130 | 2 | 79 | [3] |
25%HPW/MK700 | DDPO | EtOH | 1:10 | 200 | 2 | 83 | [4] |
AM41-2H-O | DDPO | MeOH | 1:30 | 130 | 2 | 98 | [16] |
MF9S4 | Oleic | MeOH | 1:60 | 160 | 4 | 98.9 | [22] |
MF8S4M4W15 | Oleic | MeOH | 1:60 | 115 | 2/3 | 96.5 | [25] |
MF9S4 | DDPO | MeOH | 1:60 | 160 | 4 | 92.8 | [26] |
MP-S-16 (15) | CKO | MeOH | 1:8 | 140 | 5 | 82 | [30] |
BLMW | DDPO | EtOH | 1:30 | 160 | 2 | 93.3 | [31] |
H2SO4 | Soapstock | MeOH | 1:18 | 50 | 14 | 99.9 | [45] |
CrWO2 | PFAD | MeOH | 1:2 | 170 | 3 | 86 | [52] |
CrWTiO2 | PFAD | MeOH | 1:2 | 170 | 3 | 80 | [56] |
H2SO4 | PFAD | MeOH | 1:3 | 60 | 3 | 62 | [59] |
H2SO4 | DDPO | MeOH | 1:3 | 130 | 1 | 90 | [54] |
CsHPW/MCM | PFAD | MeOH | 1:15 | 85 | 4 | 92 | [60] |
10HPMo/AlSiM | DDPO | EtOH | 1:30 | 140 | 2.5 | 94 | Present work |
Cycles | (g) a | (mmol H+g−1) b | %MoO3 c | (mg) d | (μg) e | (%) f | (%) g | (min−1) h |
---|---|---|---|---|---|---|---|---|
10HPMo/AlSiM | - | 5.84 | 7.40 | 20.8 | 0.60 | 2.88 | 94 | 244 |
10HPMo/AlSiM R1 | 2.34 | 5.41 | 7.37 | 20.2 | 0.55 | 2.72 | 90 | 221 |
10HPMo/AlSiM R2 | 2.17 | 5.21 | 7.36 | 19.7 | 0.58 | 2.95 | 84 | 217 |
10HPMo/AlSiM R3 | 1.93 | 5.05 | 7.36 | 19.1 | 0.58 | 3.01 | 79 | 216 |
10HPMo/AlSiM R4 | 1.88 | 4.58 | 6.93 | 18.5 | 0.70 | 3.08 | 75 | 216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Nazaré de Oliveira, A.; Ferreira, I.M.; Jimenez, D.E.Q.; Neves, F.B.; Soares da Silva, L.; Farias da Costa, A.A.; Lima, E.T.L.; de Oliveira Pires, L.H.; Ferreira da Costa, C.E.; Narciso da Rocha Filho, G.; et al. An Efficient Catalyst Prepared from Residual Kaolin for the Esterification of Distillate from the Deodorization of Palm Oil. Catalysts 2021, 11, 604. https://doi.org/10.3390/catal11050604
de Nazaré de Oliveira A, Ferreira IM, Jimenez DEQ, Neves FB, Soares da Silva L, Farias da Costa AA, Lima ETL, de Oliveira Pires LH, Ferreira da Costa CE, Narciso da Rocha Filho G, et al. An Efficient Catalyst Prepared from Residual Kaolin for the Esterification of Distillate from the Deodorization of Palm Oil. Catalysts. 2021; 11(5):604. https://doi.org/10.3390/catal11050604
Chicago/Turabian Stylede Nazaré de Oliveira, Alex, Irlon Maciel Ferreira, David Esteban Quintero Jimenez, Fernando Batista Neves, Linéia Soares da Silva, Ana Alice Farias da Costa, Erika Tallyta Leite Lima, Luíza Helena de Oliveira Pires, Carlos Emmerson Ferreira da Costa, Geraldo Narciso da Rocha Filho, and et al. 2021. "An Efficient Catalyst Prepared from Residual Kaolin for the Esterification of Distillate from the Deodorization of Palm Oil" Catalysts 11, no. 5: 604. https://doi.org/10.3390/catal11050604
APA Stylede Nazaré de Oliveira, A., Ferreira, I. M., Jimenez, D. E. Q., Neves, F. B., Soares da Silva, L., Farias da Costa, A. A., Lima, E. T. L., de Oliveira Pires, L. H., Ferreira da Costa, C. E., Narciso da Rocha Filho, G., & Santos do Nascimento, L. A. (2021). An Efficient Catalyst Prepared from Residual Kaolin for the Esterification of Distillate from the Deodorization of Palm Oil. Catalysts, 11(5), 604. https://doi.org/10.3390/catal11050604