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Abstract: CO2-derived methanol and dimethyl ether can play a very important role as fuels, energy
carriers, and bulk chemicals. Methanol production from CO2 and renewable hydrogen is considered
to be one of the most promising pathways to alleviate global warming. In turn, methanol could be
subsequently dehydrated into DME; alternatively, one-step CO2 conversion to DME can be obtained
by hydrogenation on bifunctional catalysts. In this light, four oxide catalysts with the same Cu
and Zn content (Cu/Zn molar ratio = 2) were synthesized by calcining the corresponding CuZnAl
LDH systems modified with Zr and/or Ce. The fresh ex-LDH catalysts were characterized in terms
of composition, texture, structure, surface acidity and basicity, and reducibility. Structural and
acid–base properties were also studied on H2-treated samples, on which specific metal surface area
and dispersion of metallic Cu were determined as well. After in situ H2 treatment, the ex-LDH
systems were tested as catalysts for the hydrogenation of CO2 to methanol at 250 ◦C and 3.0 MPa. In
the same experimental conditions, CO2 conversion into dimethyl ether was studied on bifunctional
catalysts obtained by physically mixing the ex-LDH hydrogenation catalysts with acid ferrierite or
ZSM-5 zeolites. For both processes, the effect of the Al/Zr/Ce ratio on the products distribution
was investigated.

Keywords: CO2 hydrogenation; methanol synthesis; DME synthesis; ex-LDH; bifunctional catalysts

1. Introduction

Clean fuel production from carbon dioxide and the excess of renewable electricity
is attracting the interest of the scientific and industrial community [1] since it allows for
solving two problems at the same time: first of all, it allows for storing the overproduc-
tion of electricity in chemical form [2], with the subsequent stabilization of the electrical
grid, and promoting a further exploitation of renewable sources [3]; in parallel, it uses
carbon dioxide as a feedstock, generating a circular economy based on carbon, seen as a
resource instead of a problem [4,5]. This approach is not limited to the power generation
sector, but can also be applied to several kinds of industrial plants (steel and cement in
particular) [6].

In this scenario, CO2-derived methanol and dimethyl ether (DME) can play a very
important role as e-fuels (commonly defined as fuels produced using renewable energy),
energy carriers, and building blocks in the chemical industry [7].

Methanol is commonly produced from syngas using commercial CuO/ZnO/Al2O3
catalysts [8]. However, its production from CO2 and renewable hydrogen is now considered
as one of the most promising pathways to alleviate the global warming and result in
production of renewable fuels and valuable chemicals [9].
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DME can be synthesized from CO2 via two sequential steps: catalytic hydrogenation
of CO2 to methanol and methanol dehydration to DME. However, the severe limitations
of thermodynamic equilibrium in methanol synthesis are the bottleneck of this process.
To overcome this drawback, the one-step hydrogenation of CO2 to DME over a bifunctional
catalyst can be considered as a near-term perspective process. In the synthesis of DME
from CO2, three main reactions take place:

CO2 + 3 H2 � CH3OH + H2O ∆H = −49.4 kJ mol−1 (methanol synthesis) (1)

2 CH3OH � CH3OCH3 + H2O ∆H = −23.4 kJ mol−1 (methanol dehydration) (2)

CO2 + H2 � CO + H2O ∆H = +41.2 kJ mol−1 (reverse water gas shift) (3)

Catalysts for the direct CO2-to-DME process should be able to efficiently catalyze both
methanol synthesis and methanol dehydration reactions, while the yield to CO, formed via
the reverse water gas shift side reaction, should be kept to a minimum.

Besides the conventional CuO/ZnO/Al2O3, different Cu-based catalytic systems have
been investigated for the methanol synthesis from CO2 [10–13]. Among them, the ZrO2-
containing catalysts have been recently claimed to be very active and selective due to the
versatile properties and weak hydrophilic character of zirconia [12].

On the other hand, methanol dehydration reaction takes place rapidly over a solid
acid component. Thus, due to the high activity and easy preparation of the Cu-ZnO-based
systems, bifunctional catalysts for directly converting CO2 into DME can be obtained by com-
bining such redox systems with solid acid catalysts [14], among which H-ZSM-5 [8,15–22],
ferrierite [17,19,20,23,24], mordenite [17,19,20], and γ-Al2O3 [25,26].

Particle size, surface area, metallic Cu0 surface area, and composition of the catalyst
are important factors that affect catalytic performance; in turn, they are influenced by the
catalyst synthesis method. Preparation methods usually involve the co-precipitation of
the metal precursors from the liquid phase through sodium carbonate and the subsequent
aging step for the formation of crystalline hydroxycarbonate precursors [27,28]. By using a
well-controlled co-precipitation method, a Cu/Zn/Al/Zr catalytic system with excellent
performance for CO2 hydrogenation to methanol can be obtained [29,30]. As a result,
considerable attention has been recently paid to hydrotalcite-like compounds as catalyst
precursors with the general formula of [M2+

1-xM3+
x(OH)2]x+(An−)x/n·mH2O. Such layered

double hydroxide (LDH) materials are characterized by a homogeneous dispersion of
metal cations at an atomic level, high stability against sintering, high specific surface area,
and appropriate basic properties [31,32]. However, to the best of the authors’ knowledge,
very few papers dealing with the use of redox catalysts obtained by calcination of LDH
systems (ex-LDH) for the CO2 hydrogenation to dimethyl ether have been published so far.
This ex-LDH system is peculiar, probably associated to the coordination requirements of
Cu2+ to form distorted octahedra, introducing the Jahn–Teller effect into the layers and,
thereby, destabilizing the hydrotalcite-like structure [30,33]. Therefore, this work aims to
probe the ex-LDH compounds for the preparation of ternary and multicomponent redox
catalysts for the methanol synthesis and the physical mixture with different acidic catalysts
for the CO2 hydrogenation to dimethyl ether.

2. Results and Discussion
2.1. Characterization of As-Prepared Ex-LDH Catalysts

The chemical composition of the mixed oxides obtained by calcination of the LDH
systems is reported in Table 1, in terms of both metal molar ratios and weight percentages
of the oxides. It can be observed that the experimental values of the molar ratios are
comparable with the nominal ones for all the catalysts and that the CuZnAl sample shows
a notably higher amount of copper oxide.
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Table 1. Chemical composition of the as-prepared ex-LDH catalysts determined by ICP-AES.

Sample Molar Ratio Composition (wt%)

Cu/Zn/Al/Zr/Ce CuO ZnO Al2O3 ZrO2 CeO2

CuZnAl 2.1/1.0/0.98 56 27 17 - -
(nominal: 2/1/1)

CuZnAlZr 2.0/1.0/0.80/0.24 51 26 13 10 -
(nominal: 2/1/0.7/0.3)

CuZnAlCe 2.0/1.0/0.76/0.31 48 24 12 - 16
(nominal: 2/1/0.7/0.3)

CuZnAlZrCe 2.0/1.0/0.76/0.13/0.16 49 25 12 5 9
(nominal: 2/1/0.7/0.15/0.15)

The N2 adsorption/desorption isotherms of the as-prepared ex-LDH samples are
shown in Figure 1. All curves are of type IIb, typical for non-porous or macroporous
materials, that allow unrestricted multilayer formation at high p/p0 values [34]. The pres-
ence of narrow hysteresis loops is ascribable to the inter-particle capillary condensation.
Specific surface areas (SBET) and specific pore volumes (Vp) are summarized in Table 2.
Such values are comparable to those obtained for Cu/Zn-based catalysts synthesized by
the urea-nitrate combustion method [35], by co-precipitation [36], or from hydrotalcite-like
precursors [37–39].
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Table 2. Textural features of the as-prepared ex-LDH catalysts.

Sample SBET (m2 g−1) Vp (cm3 g−1)

CuZnAl 45 0.17
CuZnAlZr 64 0.38
CuZnAlCe 49 0.39

CuZnAlZrCe 66 0.41

The X-ray diffraction patterns of the as-prepared ex-LDH mixed oxides are reported
in Figure 2. For all the samples, the most definite signals (in particular, the reflections at
2θ = 35.5◦ and 38.7◦) are ascribable to the CuO phase (PDF card 80-1917) and are clearly
superimposed to wider signals, related to amorphous or highly dispersed aluminum,
zinc, cerium and/or zirconium oxides. Due to such superimposition, the crystallite size
calculated by the Scherrer equation in the 8–12 nm range can only be considered as a rough
estimate. For CuZnAlCe, wide signals ascribable to nanocrystalline (crystallite size ca.
3 nm) cubic CeO2 are noticeable at 2θ = 28.5◦ and 47.5◦ (PDF card 75-151). For CuZnAlZrCe
similar signals are present, but they are shifted to higher angles, most likely due to the
formation of a CeO2-ZrO2 solid solution.

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 18 
 

 

Table 2. Textural features of the as-prepared ex-LDH catalysts. 

Sample SBET (m2 g−1) Vp (cm3 g−1) 

CuZnAl 45 0.17 
CuZnAlZr 64 0.38 
CuZnAlCe 49 0.39 

CuZnAlZrCe 66 0.41 

The X-ray diffraction patterns of the as-prepared ex-LDH mixed oxides are reported 
in Figure 2. For all the samples, the most definite signals (in particular, the reflections at 
2θ = 35.5° and 38.7°) are ascribable to the CuO phase (PDF card 80-1917) and are clearly 
superimposed to wider signals, related to amorphous or highly dispersed aluminum, 
zinc, cerium and/or zirconium oxides. Due to such superimposition, the crystallite size 
calculated by the Scherrer equation in the 8–12 nm range can only be considered as a 
rough estimate. For CuZnAlCe, wide signals ascribable to nanocrystalline (crystallite size 
ca. 3 nm) cubic CeO2 are noticeable at 2θ = 28.5° and 47.5° (PDF card 75-151). For 
CuZnAlZrCe similar signals are present, but they are shifted to higher angles, most likely 
due to the formation of a CeO2-ZrO2 solid solution. 

 
Figure 2. XRD patterns of the as-prepared ex-LDH catalysts. 

The surface acidity and basicity of the ex-LDH mixed oxides were investigated by 
adsorption microcalorimetry of NH3 and CO2, respectively. From the combination of the 
data of the adsorption isotherm (quantity adsorbed as a function of pressure) and of the 
calorimetric isotherm (integral heat of adsorption as a function of pressure), the curves of 
the differential heat of adsorption (Qdiff) as a function of the amount of adsorbing sites (n) 
can be obtained, from which it is possible to get information both on the concentration of 
the sites and on their strength. The results are shown in Figures S1 and S2 and summarized 
in Table 3. Qdiff values of 60 and 40 kJ mol−1, corresponding to about three times the NH3 
and CO2 condensation heats at 80 °C (20.2 and 13.7 kJ mol−1, respectively), have been 
considered as the threshold values between chemical and physical or non-specific 
adsorption: sites with lower adsorption heats have hence been neglected when assessing 
the acid–base properties of the surface. Thus, the total amount of acid and base sites was 

Figure 2. XRD patterns of the as-prepared ex-LDH catalysts.

The surface acidity and basicity of the ex-LDH mixed oxides were investigated by
adsorption microcalorimetry of NH3 and CO2, respectively. From the combination of the
data of the adsorption isotherm (quantity adsorbed as a function of pressure) and of the
calorimetric isotherm (integral heat of adsorption as a function of pressure), the curves of
the differential heat of adsorption (Qdiff) as a function of the amount of adsorbing sites (n)
can be obtained, from which it is possible to get information both on the concentration of
the sites and on their strength. The results are shown in Figures S1 and S2 and summarized
in Table 3. Qdiff values of 60 and 40 kJ mol−1, corresponding to about three times the
NH3 and CO2 condensation heats at 80 ◦C (20.2 and 13.7 kJ mol−1, respectively), have
been considered as the threshold values between chemical and physical or non-specific
adsorption: sites with lower adsorption heats have hence been neglected when assessing
the acid–base properties of the surface. Thus, the total amount of acid and base sites was
obtained (nA,tot: Qdiff ≥ 60 kJ mol−1; nB,tot: Qdiff ≥ 40 kJ mol−1), whereas the strength
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distribution of the sites was evaluated by roughly ranking the sites as strong (nA,s, nB,s:
Qdiff ≥ 150 kJ mol−1), medium (nA,m, nB,m: 100 ≤ Qdiff < 150 kJ mol−1), and weak (nA,w:
60 ≤ Qdiff < 100 kJ mol−1; nB,w: 40 ≤ Qdiff < 100 kJ mol−1) (Table 3).

For all the as-prepared mixed oxides, the differential heat of adsorption of ammo-
nia continuously decreases as the amount adsorbed increases (Figure S1), indicating the
presence of energetically heterogeneous acid sites. The existence of a small amount of
very strong acid sites can also be inferred from the extremely high initial values of Qdiff
(>300 kJ mol−1). After addition of the fourth component to the CuZnAl mixed oxide, a
manifest increase in the number of weak acid sites is observed, which is more pronounced
in the case of the CuZnAlCe sample. The simultaneous presence of Zr and Ce, together
with the increase in the amount of weak acid sites, also determines an increase in the
number of the strong sites at the expense of the medium strength ones (Table 3).

Concerning basicity, a very fast decrease in the differential heat of adsorption is visible
for all the samples, with values corresponding to physical adsorption that are reached at
very low CO2 adsorbed amount (Figure S2). Despite the high initial value of Qdiff, which
indicates the presence of an exiguous number of strong sites, the CuZnAl sample has a total
amount of basic sites that is one order of magnitude lower than for the other samples in the
series (Table 3). However, although remaining fairly limited, the surface basic properties
are positively affected by the addition of ZrO2 and/or CeO2, as demonstrated by the
increase in the number of medium and weak sites.

Table 3. Acid and base sites strength distribution for the as-prepared ex-LDH catalysts.

Sample
nA (µmol g−1) nB (µmol g−1)

nA,w
(a) nA,m

(b) nA,s
(c) nA,tot

(d) nB,w
(e) nB,m

(f) nB,s
(g) nB,tot

(h)

CuZnAl 23 15 15 53 0.2 0.2 1.8 2.2
CuZnAlZr 38 13 19 70 10 6 - 16
CuZnAlCe 47 17 20 84 19 10 - 29
CuZnAlZrCe 47 6 33 86 16 9 - 25

(a) 60 ≤ Qdiff < 100 kJ mol−1; (b) 100 ≤ Qdiff < 150 kJ mol−1; (c) Qdiff ≥ 150 kJ mol−1; (d) Qdiff ≥ 60 kJ mol−1. (e) 40 ≤ Qdiff < 100 kJ mol−1;
(f) 100 ≤ Qdiff < 150 kJ mol−1; (g) Qdiff ≥ 150 kJ mol−1; (h) Qdiff ≥ 40 kJ mol−1.

To investigate the reducibility of the oxide catalysts, H2 temperature programmed
reduction analyses were carried out, and the obtained results are shown in Figure 3. As can
be seen, the TPR profiles are quite complex and indicate the presence of different reducible
species. According to the literature, ZnO [40], Al2O3 [41], and ZrO2 [42] do not undergo
reduction processes in the adopted operating conditions. Therefore, the reducible species
are reasonably constituted by different copper species, such as highly dispersed and bulk-
like CuO phases, whose reducibility might also be affected by the interactions with the
other component oxides. However, in the case of the CuZnAlCe and CuZnAlZrCe samples,
a minor contribution ascribable to the surface reduction process of ceria at temperatures
higher than 300 ◦C cannot be excluded [43]. The TPR curve of CuZnAl shows three distinct
peaks of hydrogen consumption, with maxima between 260 and 325 ◦C; such a sample
appears to be the most difficult to reduce, as its reduction process starts around 170 ◦C
(Tonset) and is complete at 350 ◦C. The addition of ZrO2 and/or CeO2 seems to positively
influence the reducibility of the CuO species, as indicated by the decrease in Tonset (<150 ◦C)
and in the temperatures of maximum hydrogen consumption (in the range 210–260 ◦C).
These results are in agreement with those reported in the literature [44], where a shift of
the reduction peaks towards higher temperatures was observed after addition of alumina
to a CuO-ZnO reference sample and ascribed to the strong interactions between Al2O3 and
CuO; conversely, the further addition of ZrO2 to the catalyst formulation was found to
promote the reducibility of the copper oxide phase. The reduction extent for the samples,
calculated by determining the amount of H2 consumed in the reduction process from the
area under the TPR curve and considering a Cu2+:H2 stoichiometry of 1:1, was found to be
≥90%, the lowest value being obtained for the CuZnAl sample.



Catalysts 2021, 11, 615 6 of 18

Catalysts 2021, 11, x FOR PEER REVIEW 6 of 18 
 

 

consumed in the reduction process from the area under the TPR curve and considering a 
Cu2+:H2 stoichiometry of 1:1, was found to be ≥90%, the lowest value being obtained for 
the CuZnAl sample. 

 
Figure 3. H2-TPR profiles of the as-prepared ex-LDH catalysts: (a) CuZnAl; (b) CuZnAlZr; (c) 
CuZnAlCe; (d) CuZnAlZrCe. 

2.2. Characterization of the H2-Treated Ex-LDH Catalysts 
In order to investigate the effect of the H2 treatment typically undergone by the 

catalysts prior to the catalytic tests, the ex-LDH mixed oxides were treated in H2 
atmosphere at 250 °C and characterized. 

The XRD patterns of the H2-treated ex-LDH samples are reported in Figure 4. For all 
the samples, besides the same wide signals already observed for the calcined samples (cf. 
Figure 2), reflections at 2θ = 43.3° and 50.4° are present. The latter are ascribable to metallic 
copper (PDF card 4-836), which clearly derives from the reduction of CuO, whose signals 
are no more visible. Metallic copper crystallite size, calculated by the Scherrer equation, 
is in the range 10–13 nm. 

Figure 3. H2-TPR profiles of the as-prepared ex-LDH catalysts: (a) CuZnAl; (b) CuZnAlZr;
(c) CuZnAlCe; (d) CuZnAlZrCe.

2.2. Characterization of the H2-Treated Ex-LDH Catalysts

In order to investigate the effect of the H2 treatment typically undergone by the
catalysts prior to the catalytic tests, the ex-LDH mixed oxides were treated in H2 atmosphere
at 250 ◦C and characterized.

The XRD patterns of the H2-treated ex-LDH samples are reported in Figure 4. For all
the samples, besides the same wide signals already observed for the calcined samples
(cf. Figure 2), reflections at 2θ = 43.3◦ and 50.4◦ are present. The latter are ascribable to
metallic copper (PDF card 4-836), which clearly derives from the reduction of CuO, whose
signals are no more visible. Metallic copper crystallite size, calculated by the Scherrer
equation, is in the range 10–13 nm.
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The values of the dispersion of metallic Cu (DCu0 ) and of the metallic Cu surface area
per mass of catalyst (Acat

Cu0) are shown in Table 4. The obtained values indicate a slightly
higher copper dispersion in the CuZnAlCe and CuZnAlZrCe samples, possibly due to
a lower copper content (wt%) owing to the replacement of Al2O3 and/or ZrO2 with the
heavier CeO2.

Table 4. Dispersion of metallic copper and specific surface area determined on the H2-treated ex-LDH
catalysts by N2O adsorptive decomposition at controlled temperature followed by H2-TPR.

Sample Cu Content (a) (wt%) DCu0 (%) Acat
Cu0 (m2 g−1)

CuZnAl 45 6.4 19
CuZnAlZr 41 6.8 18
CuZnAlCe 38 8.1 20

CuZnAlZrCe 39 8.0 20
(a) Calculated from ICP-AES results (cf. Table 1).

The adsorption microcalorimetry data of the H2-treated samples are shown in
Figures S1 and S2. The curves of Qdiff vs. the NH3 adsorbed amount still present a continu-
ous decrease, confirming the heterogeneity of the surface acid sites from the energetic point
of view (Figure S1). It can be noted that, though significantly lower than for the as-prepared
samples, the initial values of Qdiff for the H2-treated ones are still higher than 150 kJ mol−1,
suggesting that a small number of strong acid sites are still present. By looking at data
reported in Table 5, it can be seen that the H2 treatment leads to an increase in the total num-
ber of acid sites, principally due to the increase in the number of weak sites. However, by
calculating the fraction of medium and strong sites with respect to the total ones, a general
decrease in the acid properties upon H2 treatment can be highlighted; in fact, these sites
together account for percentages in the range 44–57% for the as-prepared oxides, which
decrease to values between 29% and 38% for the samples subjected to the H2 treatment
(Table S1).

By looking at the curves of Qdiff as a function of CO2 adsorbed amount (Figure S2),
it can be noted that the initial values of Qdiff are significantly higher than those of the
as-prepared oxides, except for the CuZnAl sample. In addition, all the curves of the H2-
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treated samples lie above those of the as-prepared ones, suggesting an increase in the basic
surface properties. For the CuZnAlCe sample, the presence of a family of homogeneous
weak base sites is also revealed by a well-defined plateau observable at ca. 70 kJ mol−1.
Interestingly, the increase in basicity is largely due to the increase in the number of strong
sites (Table 5). Except for CuZnAl (which shows a much lower amount of basic sites than
the other samples in the series), the percentages of medium and strong sites increase in
comparison with those of the as-prepared oxides, confirming their higher basicity after the
H2 treatment.

Notably, by comparing the acidic and basic properties of the reduced catalysts,
it appears that, for CuZnAl, the number of total acid sites is more than ten times greater
than that of the basic ones. In the case of the other catalysts, the value of the nA,tot/nB,tot
ratio is much lower, being in the order CuZnAlZr > CuZnAlZrCe > CuZnAlCe (Table
S1). In addition, in the case of the Zr- and/or Ce-containing samples also the value of
nA,(m+s)/nB,(m+s) is significantly lower than that of CuZnAl and is the lowest for the CuZ-
nAlCe, pointing out the former as the most acidic catalyst and the latter as the most basic
one.

Table 5. Acid and base sites strength distribution for the H2-treated LDH samples.

Sample
nA (µmol g−1) nB (µmol g−1)

nA,w
(a) nA,m

(b) nA,s
(c) nA,tot

(d) nB,w
(e) nB,m

(f) nB,s
(g) nB,tot

(h)

CuZnAl 53 17 12 82 3 1 3 7
CuZnAlZr 67 23 19 109 18 3 8 29
CuZnAlCe 102 29 12 143 20 13 16 49
CuZnAlZrCe 72 20 17 109 14 6 14 34

(a) 60 ≤ Qdiff < 100 kJ mol−1; (b) 100 ≤ Qdiff < 150 kJ mol−1; (c) Qdiff ≥ 150 kJ mol−1; (d) Qdiff ≥ 60 kJ mol−1. (e) 40 ≤ Qdiff < 100 kJ mol−1;
(f) 100 ≤ Qdiff < 150 kJ mol−1; (g) Qdiff ≥ 150 kJ mol−1; (h) Qdiff ≥ 40 kJ mol−1.

2.3. Characterization of the Zeolite Catalysts

The bifunctional catalysts used for DME synthesis were obtained by physically mix-
ing the ex-LHD oxides with three acid zeolites (obtained by calcining the commercial
ammonium form): one ferrierite with SiO2/Al2O3 ratio of 20:1 (FER_20) and two ZSM-5,
with SiO2/Al2O3 molar ratios of 350:1 and 23:1 (ZSM5_350 and ZSM5_23, respectively).
The surface acidity of the zeolite samples was investigated by adsorption microcalorimetry
of ammonia and the curves of Qdiff as a function of the adsorbed amount of NH3 are shown
in Figure 5. After a very high initial value (> 275 kJ mol−1), indicative of the presence of
a low number of very strong acid sites, the adsorption heat decreases at increasing NH3
adsorbed amount. Such a decrease is particularly fast for the ZSM5_350 sample, for which
heat values typical for non-specific adsorption are achieved at extremely low ammonia
adsorption. In the case of FER_20 and ZSM5_23 a quasi-plateau is observable in the range
100–150 kJ mol−1, which is more evident for the former catalyst and suggests the existence
of energetically homogeneous sites.
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The surface acid properties are summarized in Table 6 in terms of sites strength
distribution. FER_20 and ZSM5_23 show similar acid properties, both in terms of sites
concentration and strength distribution, while the ZSM5_350 sample possesses a number
of sites that is one order of magnitude lower than for the other two samples. This result,
as well as the remarkable increase in the fraction of strong acid sites (Table 6), is expected
as a consequence of dealumination.

Table 6. Acid sites strength distribution for the zeolite samples.

Sample
nA (µmol g−1) nA Distribution (%)

nA,w
(a) nA,m

(b) nA,s
(c) nA,tot

(d) nA,w/nA,tot nA,m/nA,tot nA,s/nA,tot

FER_20 1292 681 83 2056 63 33 4
ZSM5_23 1293 555 56 1904 68 29 3
ZSM_350 96 45 33 174 55 26 19

(a) 60 ≤ Qdiff < 100 kJ mol−1; (b) 100 ≤ Qdiff < 150 kJ mol−1; (c) Qdiff ≥ 150 kJ mol−1; (d) Qdiff ≥ 60 kJ mol−1.

2.4. Catalytic Results for CO2 Conversion to Methanol

The ex-LDH oxide samples were tested as catalysts for the CO2 hydrogenation to
methanol in 24-h runs. CO2 conversion (XCO2 ) as a function of time on stream are reported
in Figure S3. Very similar and almost constant XCO2 values were obtained for all samples
with the exception of CuZnAlCe, for which conversion is somewhat lower and slightly
decreasing with time on stream. Average values (over 24 h on stream) of CO2 conversion
(XCO2 ), selectivity to different products (Si), as well as methanol yield (YCH3OH) and space
time yield (STYCH3OH), are reported in Table 7 and Figure S4. Under the conditions of
the catalytic tests, the main products of CO2 hydrogenation were methanol and carbon
monoxide, water being coproduced in both reactions. Light hydrocarbons (methane, ethane,
and propane) were also monitored during the reaction and detected in very low amounts.
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Table 7. Catalytic results (average values over 24 h on stream) for CO2 hydrogenation to methanol
on ex-LDH oxides. Reaction conditions: T = 250 ◦C; P = 3.0 MPa; H2/CO2 = 3 mol mol−1;
GHSV = 12,000 Ncm3 gcat

−1 h−1.

Catalyst XCO2

(mol%)
SCO

(mol%)
SCH3OH
(mol%)

SDME
(mol%)

SCnH(2n+2)

(mol%)
YCH3OH
(mol%)

STYCH3OH
(mgCH3OH
gcat−1 h−1)

CuZnAl 18.6 65.3 27.7 6.9 0.1 5.2 205
CuZnAlZr 18.7 66.3 33.7 traces traces 6.3 250
CuZnAlCe 14.2 61.6 37.8 0.6 traces 5.4 213
CuZnAlZrCe 17.9 64.7 32.5 2.6 0.2 5.8 230

The non-negligible value of the DME selectivity for the CuZnAl catalyst can be
reasonably explained by considering its surface acid–base properties, which highlight the
definite predominance of acidic sites compared to basic ones (cf. Table 5 and Table S1).

As expected, the catalytic performance is affected by the presence of zirconium and/or
cerium. The partial substitution of aluminum with zirconium in the CuZnAlZr catalyst,
while retaining the same conversion of the CuZnAl catalyst despite the lower Cu content,
enhances the selectivity to methanol at the expense of the formed amount of DME, thus
leading to a manifest increase in the productivity of methanol (Table 7). Though the
synergistic effects induced by ZrO2 have been extensively investigated, its multiple roles in
the catalytic process are still under debate. ZrO2 is known to enhance the Cu/Zn dispersion
and the redox properties of the Cu species [12]. In the present case, the positive effect of Zr
addition on the textural properties of CuZnAlZr in comparison with CuZnAl is proved by
the increase in the SBET and Vp values (cf. Table 2); conversely, no appreciable differences
are observed between the two catalysts with regard to dispersion and specific surface
area of Cu (cf. Table 4). Thus, the improvement of the catalytic performance in terms of
STYCH3OH is reasonably ascribable to the changes in the acid-base properties, in that the
decrease in DME formation would be due to the remarkable decrease in the nA,tot/nB,tot
ratio (cf. Table S1). Notably, the present CuZnAlZr catalyst shows better performance than
a similar sample (CHT-Al0.9 in [38]), which—despite the higher Cu dispersion and the
higher operating pressure—presented a lower space time yield (0.19 gCH3OH gcat

−1 h−1).
In fact, the main difference in the composition of the two systems is the higher Zr content
in the present CuZnAlZr sample, which is in line with the already observed beneficial
effect of zirconium.

For the CuZnAlCe catalyst, where Zr is completely replaced by cerium, a lower
conversion is observed, which is, however, accompanied by a notably higher SCH3OH,
compared to the CuZnAl catalyst and also to both the Zr-containing samples. In the
literature, decreasing trends in CO2 conversion in the presence of ceria were already
observed for Cu-ZnO systems supported on ZrxCe(1−x)O2 (0 ≤ x ≤ 1) [45] or for CuZnMOx
oxides (M = Al, Zr, Ce, Ce-Zr) [46] and were ascribed to its lower efficiency in improving
the textural properties and metal surface area of the catalyst in comparison with zirconia.
On the other hand, the increase in methanol selectivity was attributed to the promoting
effect of ceria in adsorbing and activating the CO2 molecule. For M-promoted CuZnAl
catalysts (M = Mn, La, Ce, Zr, Y), the selectivity to CH3OH was found to be correlated with
the increase in the strength of the surface basic sites, which were classified as weak (α),
moderate (β), and strong (γ) ones by temperature programmed desorption of CO2 [47].
It was proposed that CO2 is adsorbed on the basic sites in different forms depending
on their strength: bicarbonates species, which easily desorb without giving rise to the
reactive event, arise from the interaction with the α sites, whereas carbonate intermediates
are formed on stronger sites and can be hydrogenated by hydrogen activated on the Cu
sites. Formaldehyde was proposed as a common intermediate, which can lead to the
formation of CH3OH or CO depending on whether it is adsorbed on γ or β basic sites,
respectively. According to the literature, the enhanced value of CH3OH selectivity shown
by the CuZnAlCe catalyst can hence be explained in light of its higher basic character.
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Concerning CO2 conversion and methanol space–time yield, no significant differences are
observed in the Acat

Cu0 values between CuZnAlZr and CuZnAlCe (cf. Table 4), although
the latter has a lower SBET (cf. Table 2); therefore, the worsening of its catalytic activity
might tentatively be explained by an unbalanced ratio between the Cu and the basic sites
responsible for the activation of H2 and CO2, respectively.

The partial substitution of Zr with Ce in the CuZnAlZrCe catalyst does not improve
either CO2 conversion or methanol selectivity compared to CuZnAlZr; on the contrary it
leads to a decrease in the STYCH3OH value (cf. Table 7). The lack of a synergistic effect might
be due to a non-optimal Ce/Zr molar ratio. Indeed, it was observed in the literature [48,49]
that the catalytic behavior is positively affected by the simultaneous presence of Ce and Zr
for Ce/Zr ratios up to 1 and worsens for higher values.

2.5. Catalytic Results for CO2 Conversion to Dimethyl Ether

Some fundamental aspects are considered to play a key role for developing catalytic
systems with high DME productivity: (i) the stability in the presence of water should be
high; (ii) the formation of olefins should be avoided; (iii) the acidic sites should be well
distributed and of suitable strength [19,50]. A study on syngas to dimethyl ether conversion
using different zeolites (Theta-1, ZSM-23, ferrierite, ZSM-5) in mixture with a commercial
Cu/ZnO/Al2O3 redox catalyst reported a superior catalytic performance in the presence
of ferrierite, which was ascribed to its topology that limits the formation of hydrocarbons
owing to a preferential path for the diffusion of small reactants and products [17].

Bifunctional catalysts were then prepared by mixing the acid ferrierite zeolite (FER_20)
and the redox ex-LDH synthesized systems and tested for the direct CO2 hydrogenation to
DME. The two components were mixed in a 1:1 weight ratio, since it was reported as the
most performing [17,51]. CO2 conversion (XCO2 ) as a function of time on stream (Figure
S5) showed that all the catalysts are stable within the investigated reaction time except
for the bifunctional system containing CuZnAlCe, which confirms the presence of a slight
deactivation, as already observed for such sample during the synthesis of methanol (cf.
Figure S3). Table 8 and Figure S6 summarize the catalytic performance in terms of average
values (over 24 h on stream) of CO2 conversion, selectivity to different products (Si), DME
yield (YDME) and space time yield (STYDME). Under the employed reaction conditions, the
only products of the CO2 hydrogenation are DME, methanol, and carbon monoxide, water
being coproduced in all the three reactions. Traces of light hydrocarbons (methane, ethane
and propane) were also detected.

Table 8. Catalytic results (average values over 24 h on stream) for CO2 hydrogenation to DME on ex-LDH/zeolite
bifunctional systems. Reaction conditions: T = 250 ◦C; P = 3.0 MPa; H2/CO2 = 3 mol mol−1; GHSV = 6000 Ncm3 gcat

−1 h−1.

Catalyst XCO2

(mol%)
SCO

(mol%)
SCH3OH
(mol%)

SDME
(mol%)

SCnH(2n+2)

(mol%)
YDME

(mol%)

STYDME
(mgDME

gcat−1 h−1)

CuZnAl/FER_20 17.3 61.4 10.5 28.1 - 4.9 139
CuZnAlZr/FER_20 17.0 58.7 9.1 32.0 0.2 5.4 161
CuZnAlCe/FER_20 13.4 63.0 10.6 26.4 traces 3.5 100

CuZnAlZrCe/FER_20 15.8 62.4 9.9 27.6 0.1 4.4 124
CuZnAlZr/ZSM5_23 15.4 59.0 9.1 31.8 0.1 4.9 140

CuZnAlZr/ZSM5_350 18.9 56.9 9.9 33.2 traces 6.3 179

Compared to the results obtained for the methanol synthesis (cf. Table 7) on the
corresponding ex-LDH components, a decrease in CO2 conversion (in the range 6–12%)
can be observed for all the catalysts; such a decrease is particularly low for the CuZ-
nAlCe/FER_20 sample, which, however, shows the lowest XCO2 value. Unlike what
observed for the corresponding single redox components in the CO2 hydrogenation reac-
tion, the CO selectivity for the CuZnAlCe/FER_20 bifunctional system is similar to that of
CuZnAl/FER_20. Conversely, compared to the results previously obtained with CuZnAlZr,
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the CuZnAlZr/FER_20 catalyst shows an evident decrease (ca. 11%) in SCO, also exhibiting
the highest values of DME selectivity and yields (Table 8). The superior performance of
this bifunctional catalyst is in agreement with the higher methanol productivity formerly
shown by the redox CuZnAlZr component (cf. Table 7).

The influence of the different zeolite framework and of the SiO2/Al2O3 molar ratio
was also checked. For this purpose, two more bifunctional systems were obtained by
mixing the CuZnAlZr sample with two ZSM-5 zeolites having different SiO2/Al2O3 ratios
(ZSM5_23 and ZSM5_350). CO2 conversion (XCO2 ) as a function of time on stream, obtained
on the two ZSM-5-containing bifunctional systems, is reported in Figure S7, where the
results for CuZnAlZr/FER_20 are also reported for comparison. The catalytic behavior of
the CuZnAlZr/FER_20 and CuZnAlZr/ZSM5_23 catalysts, where the acidic components
have 2-D and 3-D pore channel systems, respectively, but similar SiO2/Al2O3 molar ratios,
was compared to verify the effect of the zeolite microstructure. The pertinent results, re-
ported in Table 8 and Figure S8, show that the ZSM-5-containing catalyst performs slightly
worse (10% less CO2 converted) than the one with ferrierite, leading to lower YDME and
STYDME values. Concerning the synthesis of DME from syngas [17] or from methanol in
vapor phase [22] using different zeolites (1-D, 2-D, and 3-D channel structures), it was
found that the 2-D porous system of ferrierite ensures a high resistance to deactivation by
inhibiting the deposition of coke. However, in the present case, no deactivation occurs
within the investigated time on stream (Figure S7), the better performance of the CuZ-
nAlZr/FER_20 catalyst being possibly related to its somewhat higher number of medium
and strong acid sites.

It is well known that for reactions in which water participates as a reactant or as a
product, a drawback in using solid acids is the poisoning of acid sites by water; therefore,
the use of water-tolerant catalysts should allow better results in terms of activity and
stability. Indeed, due to the hydrophobic character of the surface, which increases with the
increase in the Si/Al ratio, high-silica zeolites were found to be very efficient in the case of
esterification reactions [52]. In the present case, by comparing the same ZSM-5 structure
with different SiO2/Al2O3 molar ratios (Table 8), it appears that the CuZnAlZr/ZSM5_350
catalyst, which contains the high-silica zeolite, shows a better catalytic activity, with YDME
and STYDME values higher by approximately 29% in comparison with CuZnAlZr/ZSM5_23.
According to reference [52], this result can be explained taking into account the hydrophobic
character of the ZSM5_350 surface, which would favor the adsorption of methanol instead
of water, favoring its transformation into DME, provided that the number of the available
acid sites is sufficient.

3. Materials and Methods
3.1. Materials

All the chemicals (analytical grade), used as received without any further purification,
were purchased from Sigma-Aldrich (St. Louis, Missouri, MI, USA).

3.2. Preparation of Catalysts
3.2.1. Preparation of Hydrogenation Catalysts for Methanol Synthesis

One CuZnAl LDH system and three modifications obtained through incorporation of
Zr and/or Ce were prepared at room temperature by co-precipitation at low supersatura-
tion [53]. The samples were synthesized with different Al/Zr/Ce molar ratios, but keeping
the value of the Cu/Zn/(Al + Zr + Ce) molar ratio of 2:1:1. For a typical synthesis, two
solutions were prepared, the first (100 cm3) containing the desired precursor metal nitrates
in appropriate amounts (total cation concentration equal to 1.5 M) and the second obtained
by dissolving 13.95 g of NaOH and 7.15 g of Na2CO3 in 100 cm3 of distilled water. The two
solutions were then mixed under stirring, adjusting the flow rates in order to keep the pH
constant (pH = 11). The final suspension was aged under stirring at 60 ◦C for 20 h and then
cooled down to room temperature. The precipitate was filtered off, repeatedly washed



Catalysts 2021, 11, 615 13 of 18

with distilled water, and dried in oven at 80 ◦C overnight. The LDH systems were finally
calcined at 500 ◦C for 4 h to obtain the corresponding mixed oxide catalysts (ex-LDH).

3.2.2. Preparation of Bifunctional Catalysts for DME Synthesis

Commercial zeolites were used to prepare physical mixtures with the aforementioned
ex-LDH redox catalysts. One ferrierite (SiO2/Al2O3 = 20:1, surface area = 400 m2 g−1) and
two ZSM-5 (with SiO2/Al2O3 molar ratios of 23:1 and 350:1 and surface areas of 425 m2 g−1

and 400 m2 g−1, respectively) zeolites were purchased from Alfa Aesar (Kandel, Germany)
in the ammonium form. The zeolites were transformed into the protonic form by calcination
at 550 ◦C for 5 h (heating rate, 3 ◦C min−1).

3.3. Characterization of Catalysts

The chemical composition of the ex-LDH mixed oxides was determined by inductively
coupled plasma atomic emission spectroscopy (ICP-AES). Samples (ca. 0.015 g) were
dissolved in 2 cm3 of a mixture of HCl (37%) and HNO3 (70%) (3:1 by volume). After
24 h, the solutions were diluted to 250 cm3 with Milli-Q water and analyzed with a Liberty
200 spectrophotometer (Varian, Palo Alto, California, CA, USA).

Textural analyses were performed on a Sorptomatic 1990 System (Fisons Instrument,
Glasgow, UK) by determining the nitrogen adsorption/desorption isotherms at −196 ◦C.
Prior to the analysis, the samples were heated overnight under vacuum up to 220 ◦C
(heating rate 1 ◦C min−1). The Brunauer–Emmett–Teller (BET) specific surface area and the
specific pore volume were assessed from the adsorption data [34].

The X-ray diffraction (XRD) analysis was performed on the as-prepared and on the
H2-treated (5 vol% H2 in N2; flow rate, 15 cm3 min−1 at 250 ◦C for 2 h) samples. XRD
patterns were recorded on a X’pert Pro diffractometer (Panalytical, Malvern, UK) with θ-θ
Bragg-Brentano geometry, Cu-Kα1 wavelength radiation (λ = 1.54060 Å) and X’Celerator
detector, operating at 40 kV and 40 mA. The crystallite size was estimated by the Scherrer
equation using the Warren correction [54].

Adsorption microcalorimetry measurements were performed with a Tian–Calvet heat
flow microcalorimeter (Setaram, Caluire, France), equipped with a volumetric vacuum line.
Each sample (0.1 g, 40–80 mesh), as prepared or previously H2-treated (5 vol% H2 in N2;
flow rate, 15 cm3 min−1) at 250 ◦C for 2 h, was thermally pretreated at 220 ◦C for 12 h under
vacuum (5·10−3 Pa). Adsorption was carried out by admitting successive doses of the
probe gas (NH3 or CO2) at 80 ◦C in order to limit physisorption. The equilibrium pressure
relative to each adsorbed amount was measured by means of a differential pressure gauge
and the thermal effect was recorded. The run was stopped at a final equilibrium pressure
of about 133 Pa.

Temperature-programmed reduction (TPR) profiles were recorded on a TPD/R/O
1100 apparatus (Thermo Fisher Scientific, Waltham, Massachussets, MA, USA) under the
following conditions: sample weight, 0.030 g; heating rate (from 40 to 400 ◦C), 10 ◦C min−1;
flow rate, 30 cm3 min−1; H2 concentration, 5 vol% in N2. Prior to the experiment, samples
were pretreated in nitrogen (20 cm3 min−1) at 350 ◦C for 2 h. The hydrogen consumption
was monitored by a thermal conductivity detector (TCD).

The copper dispersion and the specific metal surface area were evaluated by N2O
adsorptive decomposition at controlled temperature (N2O reacts with metallic Cu on
the catalyst surface to form Cu2O and N2), followed by H2 temperature-programmed-
reduction of the Cu2O surface layers formed [55]. Analyses were performed on a TPD/R/O
1100 apparatus (Thermo Fisher Scientific) using the following procedure: ca. 0.1 g of fresh
catalyst was first exposed to a H2/N2 mixture (H2, 5 vol% in N2; flow rate, 15 cm3 min−1)
at 250 ◦C for 2 h for reducing copper oxide to metallic copper; then, pulses of N2O (0.347
cm3) were admitted to the sample at 40 ◦C using He as the gas carrier (100 cm3 min−1).
The oxidation of the surface metallic copper to Cu(I) was considered complete when the
area of the N2O pulses remained constant, indicating that the reactant was no longer
consumed in the reaction. Finally, a H2-TPR run (H2, 5 vol% in N2; flow rate, 20 cm3 min−1)
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was performed from 40◦ to 400 ◦C (heating rate, 10 ◦C min−1). The copper dispersion
(DCu0 ) and the Cu specific metal surface area per mass of catalyst (Acat

Cu0) were calculated
by the following equations:

DCu0 =
ncat

H2
× αCu/H2 × MCu

WCu
× 100 (4)

Acat
Cu0 =

ncat
H2

× αCu/H2 × NA

ρs
Cu0

(5)

where ncat
H2

is the number of moles of H2 consumed per mass of catalyst, αCu/H2 is the
stoichiometric ratio (αCu/H2 = νCu/νH2 = 2 molCu molH2

−1), MCu is the copper molar
mass, WCu is the bulk copper content (weight fraction), NA is the Avogadro constant
(6.022 × 1023 atoms mol−1), and ρs

Cu0 is the copper surface density (1.46 × 1019 atoms m−2).
Calibration of the H2 amount consumed was previously carried out by using a copper
oxide standard.

3.4. Catalytic Testing

The catalytic activity was investigated in a customized Microactivity Effi (PID Eng&Tech,
Madrid, Spain) benchscale plant, employing a high-pressure fixed bed stainless steel reactor
(length 304.8 mm, inner diameter 9.1 mm). A porous plate (made of Hastelloy C, 20 µm) and
quartz wool were used to support the catalytic bed inside the isothermal temperature zone
of the reactor [56,57].

For methanol synthesis experiments, the reactor was loaded with 1.00 g of catalyst,
previously diluted with 2.50 g of α-Al2O3, in order to obtain a total bed volume of ca. 3 cm3.

DME synthesis tests were performed using a physical mixture obtained combining
1.00 g of the methanol synthesis catalyst and 1.00 g of the one containing the acidic func-
tionality; the obtained bifunctional catalytic system was diluted with 1.00 g of α-Al2O3,
in order to reach a total bed volume of ca. 3 cm3.

Prior to catalytic tests, all fresh catalysts were reduced in situ in a stream of a H2/N2
mixture (H2, 15 vol% in N2) at 250 ◦C for 2 h at atmospheric pressure. Upon completion of
the reduction process, the system was maintained at 250 ◦C, and the reaction gas mixture
containing H2 and CO2 (molar ratio of 3:1) and 10 vol% of N2 (used as internal standard
for gas chromatographic analysis) was fed. The hydrogenation of CO2 to methanol and
DME was carried out at 3.0 MPa and gas hourly space velocity (GHSV) of 12,000 and
6000 Ncm3 gcat

−1 h−1, respectively. After allowing the system to reach the steady state
in 1 h on stream, analysis was periodically performed within the 24-hour runs. The reaction
stream was analyzed by a 7890B (Agilent, Santa Clara, California, CA, USA) gas chromato-
graph equipped with a flame ionized detector (FID) for carbon-containing compounds and
a thermal conductivity detector (TCD) for permanent gases. Two columns connected in
series were used to identify the components of the outlet gas mixture. In particular, CO2,
methanol, dimethyl ether, ethane, and propane were separated by a HP-Plot Q (Agilent)
column (length 30 m, inner diameter 0.53 mm, film thickness 40 µm), while a HP-PLOT
Molesieve (Agilent) column (length 30 m, inner diameter 0.53 mm, film thickness 50 µm)
was used for H2, N2, CH4, and CO. To avoid condensation of condensable products,
the connection lines between the plant gas outlet and gas chromatograph inlet were heated
at 180 ◦C. CO2 conversion (XCO2 ), products selectivity (SP, with P: CH3OH, DME, or CO),
and products yield (YP, with P: CH3OH or DME), were calculated as follows:

XCO2 =
nin

CO2
− nout

CO2

nin
CO2

× 100 (6)

SP =
νCO2

νP
×

nout
P

nin
CO2

− nout
CO2

× 100 (7)
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YP =
νCO2

νP
×

nout
P

nin
CO2

× 100 (8)

where nin
i and nout

i are the number of moles of the i-th species in the feed or in the gas
mixture exiting from the reactor, respectively, and νi is the stoichiometric coefficient of the
i-th species in the corresponding balanced equation.

The space–time yield of methanol and DME (STYP, with P: CH3OH or DME), i.e.,
the amount of product formed per gram of catalyst per hour (mgP gcat

−1 h−1) was deter-
mined by the formula:

STYP =
YP
100 × ϕCO2 × MP

mcat
× 1000 (9)

where Y is the product yield, ϕCO2 is the inlet CO2 molar flow rate (mol h−1), MP is the
product molar mass (g mol−1), and mcat is the catalyst mass (g). Each catalytic run was
performed three times with standard deviations in the range 2–5% for both conversion and
selectivity.

4. Conclusions

Four oxide catalysts with the same Cu and Zn content (Cu/Zn = 2 mol/mol) were
obtained by calcining the corresponding CuZnAl LDH systems, also modified with Zr
and/or Ce. The ex-LDH oxides were tested, after in situ H2 treatment, as catalysts for
the hydrogenation of CO2 to methanol. The presence of Zr showed a beneficial effect,
which could be related to the influence on the acid-base properties, assessed by means
of adsorption microcalorimetry. The observation of a positive effect of zirconium was
supported by the superior catalytic performance showed by the CuZnAlZr system with
respect to a similar catalyst, reported in the literature, characterized by a lower Zr content.

By mixing the CuZnAlZr redox catalyst with a ferrierite zeolite, a good bifunctional
system for the one-step CO2 conversion into DME was also obtained, further confirming the
favorable influence of Zr on the catalytic performance. Comparing two catalysts containing
ZSM-5 zeolites with different Si/Al ratio revealed that, besides the acid–base properties,
the surface hydrophobicity also significantly affects DME formation.
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sites of different strength with respect to the total number and nA/nB ratios for the mixed oxides
catalysts as-prepared and after H2 treatment, Figure S3: CO2 conversion as a function of time on
stream for the CO2 hydrogenation to methanol on the ex-LDH catalysts, Figure S4: Catalytic results
for CO2 hydrogenation to methanol on ex-LDH oxides, Figure S5: CO2 conversion as a function
of time on stream for the CO2 conversion into DME on the ex-LDH/FER_20 bifunctional catalysts,
Figure S6: Catalytic results for CO2 hydrogenation to DME on ex-LDH/FER_20 bifunctional systems,
Figure S7: CO2 conversion as a function of time on stream for the CO2 conversion into DME on the
CuZnAlZr/FER_20 and CuZnAlZr/ZSM5 bifunctional catalysts, Figure S8: Catalytic results for CO2
hydrogenation to DME on the CuZnAlZr/FER_20 and CuZnAlZr/ZSM5 bifunctional systems.
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