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Abstract: Iridium(NHC)-catalyzed transfer hydrogenation (TH) of CO2 and inorganic carbonates
with glycerol were conducted, demonstrating excellent turnover numbers (TONs) and turnover
frequencies (TOFs) for the formation of formate and lactate. Regardless of carbon sources, excel-
lent TOFs of formate were observed (CO2: 10,000 h−1 and K2CO3: 10,150 h−1). Iridium catalysts
modified with the triscarbene ligand showed excellent catalytic activity at 200 ◦C and are a suitable
choice for this transformation which requires a high temperature for high TONs of formate. On the
basis of the control experiments, the transfer hydrogenation mechanism of CO2 was proposed.

Keywords: carbon dioxide; inorganic carbonate; transfer hydrogenation; iridium(NHC)

1. Introduction

The transition-metal-catalyzed hydrogenation of CO2 has received great attention
for its potential to contribute to the resolution of global warming by converting CO2 to
valuable chemicals, thus reducing the CO2 concentration in the air [1–9]. The resulting
hydrogenated CO2 product, formate, is a sustainable and safe chemical for hydrogen gas
storage. Since the pioneering work by Inoue et al. in 1976 [10], a variety of homogeneous
catalysts have shown excellent catalytic activity for the hydrogenation of CO2 to form
formic acid/formate with high TONs and TOFs [11–18]. In parallel with the hydrogena-
tion of CO2, transfer hydrogenation using sustainable hydrogen sources has been used
to further increase the environmental benefits of CO2 utilization. Glycerol, a sustainable
hydrogen source, increases the sustainability and economic value of the transfer hydro-
genation of CO2 because glycerol is the by-product of the biodiesel process, and glycerol
provides hydrogen as well as useful C3 feedstocks, such as lactic acid in the transfer hydro-
genation reaction [19–21]. The transfer hydrogenation of CO2 and CO2-derived inorganic
carbonates with glycerol are relatively less well-studied compared to the glycerol-mediated
transfer hydrogenation of aldehydes and ketones, largely due to the gaseous nature of
CO2 and the low reactivity of carbonates compared to aldehydes and ketones [22–27].
The transfer hydrogenation of CO2 has also been studied using isopropanol as a hydrogen
source [28–30], but advantages of glycerol such as sustainability and useful C3 product
(lactic acid) generation increase the value of glycerol-mediated transfer hydrogenation
of CO2.

In recently reported transfer hydrogenation reactions of CO2 with glycerol, including
our work, iridium catalysts modified with carbene ligands formed formate and lactate
with high TONs and TOFs [22–25]. The electron-donating property of NHC ligands in
the iridium catalysts plays a key role along with the oxidation state of iridium ions and
the coordination mode of NHC ligands (mono- or bidentate coordination) in the iridium
catalyzed-transfer hydrogenation [31]. Based on our previous report, including theoretical
calculations of the iridium-catalyzed transfer hydrogenation of carbonate in glycerol,
the energy barrier of the reduction of CO2 with Ir-H was much higher compared to other
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steps, implying that more thermal energy is required to improve the CO2 reduction [24].
Accordingly, multidentate carbene ligand-modified iridium catalysts showing stability at
high temperatures (e.g., 200 ◦C) were considered to increase TONs and TOFs of the transfer
hydrogenation of CO2 and carbonate. Because we found that the triscarbene-modified
iridium complexes exhibited excellent catalytic activities in the dehydrogenation of glycerol
at high temperatures [32], we posit that triscarbene based-iridium catalysts are good
candidates for the transfer hydrogenation of C1 sources, including CO2 and carbonates at
high temperatures. In this study, we present the highly efficient, sustainable, and versatile
iridium(NHC)-catalyzed transfer hydrogenation of CO2 and inorganic carbonates using
biomass-derived glycerol, resulting in excellent TONs and TOFs (Scheme 1).
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2. Results and Discussion

The reaction optimization for the iridium(NHC)-catalyzed transfer hydrogenation of
CO2 is shown in Table 1. The iridium(NHC) catalysts used in this reaction are shown in
Figure 1; their synthesis and characterization were reported in our previous publication [32].
The X-ray crystal structure of catalyst 3′ including dichloromethane is shown in Figure 2.
A single crystal of 3′ was obtained by slow evaporation of a dichloromethane/hexane
mixture at −20 ◦C. The reaction of CO2 (5 bar) and KOH (20 mmol) with catalyst 1
(3.5 × 10−4 mol%) in glycerol (purchased from Aldrich) at 180 ◦C formed formate and
lactate with TONs of 3360 and 3900 (TOFs of 168 and 195 h−1), respectively (entry 1).
Formate was formed by the reduction of CO2 using Ir-H, and lactate was formed from
dihydroxyacetone and glyceraldehyde which were derived from the dehydrogenation of
glycerol [33]. When the gaseous CO2 is added into the mixture, inorganic carbonates are
immediately formed in the presence of KOH, and resulting carbonates participate in the
transfer hydrogenation. This hypothesis is confirmed by the following observation and the
NMR spectrum. The CO2 pressure rapidly dropped from 5 to 1 bar, implying that gaseous
CO2 was converted to K2CO3 in the presence of KOH. Based on the 13C NMR analysis of
the reaction mixture after pressurizing CO2, the formation of K2CO3 was confirmed (see
Supporting Information, Figure S1). After running the reaction for 20 h, the residual gas
analysis showed only hydrogen generated from the dehydrogenation of glycerol without
residual CO2 (see Supporting Information, Figure S2). Considering the balanced chemical
equation of this reaction, 2 equivalents of bases are required. The addition of 40 mmol
of KOH to the reaction resulted in slightly reduced TONs of formate but much higher
TONs of lactate (entry 2). Because most transfer hydrogenations of CO2 with glycerol are
carried out at 150–180 ◦C [22–25], the iridium(NHC)-catalyzed transfer hydrogenation of
CO2 in glycerol began at 180 ◦C. As the reaction temperature was increased to 200 ◦C,
TONs of formate and lactate were dramatically increased (entry 3). The effect of CO2
pressure was evaluated (entries 4 and 5). Formate was formed with lower TONs under
1 bar of CO2, which provided less carbon than the reaction of CO2 at 5 bar (entry 3).
Although higher CO2 pressure (10 bar) provided more carbon, it also reduced the pH
of the solution. The initial pHs of the solutions for entries 4 and 5 were 14.0 and 10.3,
respectively. Because the transfer hydrogenation of CO2 in glycerol favors basic media,
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applying a higher CO2 pressure is not favorable for the formation of both formate and
lactate. Upon decreasing the catalyst loading (3.5 × 10−5 mol%), the TONs of formate and
lactate were increased to 200,000 (10,000 h−1) and 875,000 (43,800 h−1), respectively (entry 6).
Using the conditions of entry 6, mono and bimetallic iridium catalysts involving different
types of ligands were employed (entries 7–11). The reactions using monometallic catalysts
exhibited higher TONs and TOFs (entries 6, 8, and 10) than bimetallic complex-catalyzed
reactions, which is attributed to the higher reactivity of bidentate NHC-coordinated iridium
catalysts toward the CO2 reduction.[24] The bimetallic complex 1′ possesses bidentate
NHC-coordinated iridium ions (1.75 × 10−5 mol%) and monodentate NHC-coordinated
iridium ions (1.75 × 10−5 mol%), whereas the monometallic complex 1 has only bidentate
NHC-coordinated iridium ions (3.5 × 10−5 mol%). With catalyst 1, formate and lactate
were formed with the highest TOFs for formate (10,000 h−1) and lactate (43,800 h−1) to date
(entry 6), and catalysts 2 and 3 also exhibited high TOFs for formate and lactate (entries 8
and 10). In the absence of base, the reaction did not proceed (entry 12). The reaction
involving only KOH formed a small amount of formate and lactate (entry 13) [34,35].
The amounts of formate and lactate formed in entry 6 were 1.40 and 6.12 mmol, respectively,
while 0.06 mmol of formate and 0.4 mmol of lactate were formed in the absence of catalysts
(entry 13). In addition to glycerol, 1,2-propandiol was employed in the presence of catalyst 1,
exhibiting much lower TONs of formate (7800).

Table 1. Transfer hydrogenation of CO2 in glycerol.
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Entry Catalyst
(mol%)

CO2
(bar)

KOH
(mmol)

Temp
(◦C)

Formate
(TON, TOF

h−1)

Lactate
(TON, TOF

h−1)

1 1 (3.5 × 10−4) 5 20 180 3360, 168 3900, 195
2 1 (3.5 × 10−4) 5 40 180 1490, 74.5 23,800, 1190
3 1 (3.5 × 10−4) 5 40 200 15,800, 790 73,900, 3700
4 1 (3.5 × 10−4) 1 40 200 2110, 106 104,000, 5200
5 1 (3.5 × 10−4) 10 40 200 12,700, 635 14,400, 720
6 1 (3.5 × 10−5) 5 40 200 200,000, 10,000 875,000, 43,800
7 1′ (1.75 × 10−5) a 5 40 200 77,400, 3870 534,000, 26,700
8 2 (3.5 × 10−5) 5 40 200 176,000, 8800 753,000, 37,700
9 2′ (1.75 × 10−5) a 5 40 200 70,400, 3520 548,000, 27,400

10 3 (3.5 × 10−5) 5 40 200 174,000, 8700 683,000, 34,200
11 3′ (1.75 × 10−5) a 5 40 200 103,000, 5150 414,000, 20,700
12 1 (3.5 × 10−5) 5 – 200 – –
13 – 5 40 200 0.06 mmol 0.4 mmol

The mixture of catalysts, CO2, KOH, and H2O (1.0 ml) in glycerol (21.1 mmol) was heated at indicated temperature
for 20 h. a Catalysts 1′, 2′ and 3′ have two iridium ions in the molecule.
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Figure 2. X-ray crystal structure of catalyst 3′.

For the transfer hydrogenation of K2CO3 with glycerol, a mixture of catalyst 1
(3.5 × 10−5 mol%), K2CO3 (40 mmol), and glycerol (42.3 mmol) was heated at 200 ◦C
for 20 h, producing formate and lactate with TONs of 203,000 and 414,000, respectively
(Table 2, entry 1). Catalysts 1′, 2, 2′, 3, and 3′ were employed under the conditions of
entry 1; the highest TONs and TOFs were achieved with catalyst 1 (Table 2, entries 1–6).
Compared to the result of CO2 and KOH, the TONs of formate are similar and the TONs of
lactate are lower with K2CO3 due to lesser basicity of K2CO3. The substituents at the car-
bene ligand or bi/monometallic structure of the catalysts did not make dramatic changes
in TONs. The reaction of K2CO3 in 1,2-propandiol formed formate with TONs of 38,000,
which is lower than the reactions of glycerol.

Table 2. Transfer hydrogenation of K2CO3 in glycerol.
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Entry Catalyst
(mol%)

Formate
(TON, TOF h−1)

Lactate
(TON, TOF h−1)

1 1 (3.5 × 10−5) 203,000, 10,150 414,000, 20,700
2 1′ (1.75 × 10−5) a 163,000, 8150 357,000, 17,850
3 2 (3.5 × 10−5) 149,000, 7450 315,000, 15,800
4 2′ (1.75 × 10−5) a 178,000, 8900 342,000, 17,100
5 3 (3.5 × 10−5) 164,000, 8200 326,000, 16,300
6 3′ (1.75 × 10−5) a 195,000, 9750 400,000, 20,000

The mixture of catalysts, K2CO3 (40 mmol), and glycerol (42.3 mmol) in H2O (2 ml) was heated at 200 ◦C for 20 h.
a Catalysts 1′, 2′ and 3′ have two iridium ions in the molecule.

To determine the effects of the solubility and basicity of inorganic carbonates in
the transfer hydrogenation in glycerol [24,25], the reaction results of KHCO3, Na2CO3,
and Cs2CO3 were compared with that of K2CO3 (Scheme 2). The TONs and TOFs for
formate formation with KHCO3 were lower than those of K2CO3 due to the low basicity
of bicarbonate (KHCO3); the pH of the solution with KHCO3 was 8.6. The reaction
using Na2CO3 produced lower TONs and TOFs for formate formation because of the low
solubility [24,25]. Although the pH of the solution including Cs2CO3 is the same as K2CO3,
the TONs for the formation of formate and lactate were lower than those of K2CO3.
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The catalytic activities of previously reported catalysts in glycerol-mediated transfer
hydrogenation of CO2 (or K2CO3) are illustrated (Table 3). The ruthenium-NHC and
iridium-abnormal NHC catalysts were employed for CO2 transfer hydrogenation show-
ing much lower TOFs (FA 44 and 90 h−1, LA 70 h−1) than this work (FA 10,000 h−1,
LA 43,800 h−1) (entries 1, 3, and 6). The reactions of K2CO3 in glycerol were promoted
by ruthenium-NHC and iridium-NHC (bidentate and monodentate) catalysts, exhibit-
ing lower TOFs than current results (entries 2, 4, 5, and 7). Compared to previous work,
our iridium-NHC catalysts showed high catalytic activities with extremely low concentra-
tions and at high temperatures, resulting in the highest TOFs of formate and lactate.

Table 3. Previously reported catalysts for the transfer hydrogenation of CO2 and inorganic carbonates
with glycerol.

Entry Catalyst C1
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We proposed a catalytic cycle of iridium catalysts based on previous iridium-catalyzed
TH reactions in Scheme 3 [24]. The catalysts 1 and 1′ undergo the dissociation of COD
from the metal complex at the initial stage. After COD dissociation, deprotonated glycerol
is added to form intermediate I, which undergoes β-hydrogen elimination. Replacing di-
hydroxyacetone (DHA) with bicarbonate affords intermediate III. The released DHA is
converted to lactic acid, illustrated at the bottom of the catalytic cycle [33]. The subsequent
dehydroxylation and the reduction of CO2 produced formic acid to complete the cycle
(main cycle in Scheme 3). Since hydrogen was generated as a by-product, the outer cycle of
Scheme 3 illustrates H2 production by the protonation of Ir-H. Due to the presence of H2
gas in the reaction vessel, this reaction may proceed via two separate steps composed of hy-
drogen generation from glycerol [36–39] and reduction of CO2 with H2 [3–18]. Tu’s group
published iridium catalysts having three NHC ligands for the dehydrogenation of alcohols,
and we also reported triscarbene-modified iridium catalysts for the dehydrogenation of
glycerol [32,36]. The reaction of CO2 and H2 was attempted in the presence of Ir(NHC)
catalysts, resulting in small amounts of formate (see Supporting Information, Scheme S1).
Therefore, the mechanism of the direct hydrogenation of CO2 by H2 can be ruled out.
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In conclusion, we have evaluated iridium(NHC)-catalyzed transfer hydrogenation
of CO2 and K2CO3 in glycerol. The highest TOF values for the formate formation from
CO2 and K2CO3 are 10,000 and 10,150 h−1, respectively. The observed TOFs of the transfer
hydrogenation of CO2 and carbonates are the highest values reported under conventional
thermal conditions. The combination of high temperature and stable catalysts at such
temperatures contributes to high TONs and TOFs of this transformation. We observe the
hydrogen generation from glycerol during the reaction, but a reaction mechanism of the
direct hydrogenation of CO2 was excluded based on control experiments.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11060695/s1, Figure S1: 13C NMR spectrum of the mixture of CO2 (5 bar) and KOH in
glycerol (Line Black), KHCO3 (Line Blue) and K2CO3 (Line Red), Figure S2: The GC (gas chromatog-
raphy) spectrum of the gas obtained from the reaction of CO2 and glycerol (Table 1, entry 6). Only H2
generated by dehydrogenation of glycerol was identified and CO2 was not detected, Scheme S1: The
hydrogenation reaction of CO2 and K2CO3. The pressure of H2 (5 bar) was determined based on the
observed H2 pressure of transfer hydrogenation using glycerol. The reaction of CO2 and H2 was run
with catalysts 1 (3.5 × 10−4 mol%), and the hydrogenation reaction of K2CO3 was run with catalysts
1 (7.5 × 10−4 mol%)., Scheme S2 Transfer hydrogenation of inorganic carbonate in glycerol, Table S1:
Transfer hydrogenation of CO2 in glycerol, Table S2: Transfer hydrogenation of K2CO3 in glycerol.
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