

Communication Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO₂ and Inorganic Carbonates

Yeon-Joo Cheong, Kihyuk Sung, Jin-A Kim, Yu Kwon Kim, Woojin Yoon, Hoseop Yun and Hye-Young Jang *

Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; mercedes02@ajou.ac.kr (Y.-J.C.); metalism@ajou.ac.kr (K.S.); wlsa6011@ajou.ac.kr (J.-A.K.); yukwonkim@ajou.ac.kr (Y.K.K.); xtal@ajou.ac.kr (W.Y.); hsyun@ajou.ac.kr (H.Y.)

* Correspondence: hyjang2@ajou.ac.kr; Tel.: +82-31-219-2555

Abstract: Iridium(NHC)-catalyzed transfer hydrogenation (TH) of CO₂ and inorganic carbonates with glycerol were conducted, demonstrating excellent turnover numbers (TONs) and turnover frequencies (TOFs) for the formation of formate and lactate. Regardless of carbon sources, excellent TOFs of formate were observed (CO₂: 10,000 h⁻¹ and K₂CO₃: 10,150 h⁻¹). Iridium catalysts modified with the triscarbene ligand showed excellent catalytic activity at 200 °C and are a suitable choice for this transformation which requires a high temperature for high TONs of formate. On the basis of the control experiments, the transfer hydrogenation mechanism of CO₂ was proposed.

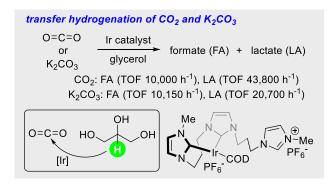
Keywords: carbon dioxide; inorganic carbonate; transfer hydrogenation; iridium(NHC)

1. Introduction

The transition-metal-catalyzed hydrogenation of CO₂ has received great attention for its potential to contribute to the resolution of global warming by converting CO2 to valuable chemicals, thus reducing the CO_2 concentration in the air [1–9]. The resulting hydrogenated CO₂ product, formate, is a sustainable and safe chemical for hydrogen gas storage. Since the pioneering work by Inoue et al. in 1976 [10], a variety of homogeneous catalysts have shown excellent catalytic activity for the hydrogenation of CO₂ to form formic acid/formate with high TONs and TOFs [11–18]. In parallel with the hydrogenation of CO₂, transfer hydrogenation using sustainable hydrogen sources has been used to further increase the environmental benefits of CO_2 utilization. Glycerol, a sustainable hydrogen source, increases the sustainability and economic value of the transfer hydrogenation of CO₂ because glycerol is the by-product of the biodiesel process, and glycerol provides hydrogen as well as useful C3 feedstocks, such as lactic acid in the transfer hydrogenation reaction [19–21]. The transfer hydrogenation of CO_2 and CO_2 -derived inorganic carbonates with glycerol are relatively less well-studied compared to the glycerol-mediated transfer hydrogenation of aldehydes and ketones, largely due to the gaseous nature of CO_2 and the low reactivity of carbonates compared to aldehydes and ketones [22–27]. The transfer hydrogenation of CO_2 has also been studied using isopropanol as a hydrogen source [28–30], but advantages of glycerol such as sustainability and useful C3 product (lactic acid) generation increase the value of glycerol-mediated transfer hydrogenation of CO₂.

In recently reported transfer hydrogenation reactions of CO_2 with glycerol, including our work, iridium catalysts modified with carbene ligands formed formate and lactate with high TONs and TOFs [22–25]. The electron-donating property of NHC ligands in the iridium catalysts plays a key role along with the oxidation state of iridium ions and the coordination mode of NHC ligands (mono- or bidentate coordination) in the iridium catalyzed-transfer hydrogenation [31]. Based on our previous report, including theoretical calculations of the iridium-catalyzed transfer hydrogenation of carbonate in glycerol, the energy barrier of the reduction of CO_2 with Ir-H was much higher compared to other

Citation: Cheong, Y.-J.; Sung, K.; Kim, J.-A; Kim, Y.K.; Yoon, W.; Yun, H.; Jang, H.-Y. Iridium(NHC)-Catalyzed Sustainable Transfer Hydrogenation of CO₂ and Inorganic Carbonates. *Catalysts* **2021**, *11*, 695. https://doi.org/10.3390/ catal11060695


Academic Editor: Ken-ichi Fujita

Received: 11 May 2021 Accepted: 29 May 2021 Published: 31 May 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). steps, implying that more thermal energy is required to improve the CO_2 reduction [24]. Accordingly, multidentate carbene ligand-modified iridium catalysts showing stability at high temperatures (e.g., 200 °C) were considered to increase TONs and TOFs of the transfer hydrogenation of CO_2 and carbonate. Because we found that the triscarbene-modified iridium complexes exhibited excellent catalytic activities in the dehydrogenation of glycerol at high temperatures [32], we posit that triscarbene based-iridium catalysts are good candidates for the transfer hydrogenation of C1 sources, including CO_2 and carbonates at high temperatures. In this study, we present the highly efficient, sustainable, and versatile iridium(NHC)-catalyzed transfer hydrogenation of CO_2 and inorganic carbonates using biomass-derived glycerol, resulting in excellent TONs and TOFs (Scheme 1).

Scheme 1. Transfer hydrogenation of CO₂ and K₂CO₃.

2. Results and Discussion

The reaction optimization for the iridium(NHC)-catalyzed transfer hydrogenation of CO_2 is shown in Table 1. The iridium(NHC) catalysts used in this reaction are shown in Figure 1; their synthesis and characterization were reported in our previous publication [32]. The X-ray crystal structure of catalyst **3'** including dichloromethane is shown in Figure 2. A single crystal of **3'** was obtained by slow evaporation of a dichloromethane/hexane mixture at -20 °C. The reaction of CO₂ (5 bar) and KOH (20 mmol) with catalyst 1 $(3.5 \times 10^{-4} \text{ mol}\%)$ in glycerol (purchased from Aldrich) at 180 °C formed formate and lactate with TONs of 3360 and 3900 (TOFs of 168 and 195 h^{-1}), respectively (entry 1). Formate was formed by the reduction of CO₂ using Ir-H, and lactate was formed from dihydroxyacetone and glyceraldehyde which were derived from the dehydrogenation of glycerol [33]. When the gaseous CO_2 is added into the mixture, inorganic carbonates are immediately formed in the presence of KOH, and resulting carbonates participate in the transfer hydrogenation. This hypothesis is confirmed by the following observation and the NMR spectrum. The CO₂ pressure rapidly dropped from 5 to 1 bar, implying that gaseous CO_2 was converted to K_2CO_3 in the presence of KOH. Based on the ¹³C NMR analysis of the reaction mixture after pressurizing CO_2 , the formation of K_2CO_3 was confirmed (see Supporting Information, Figure S1). After running the reaction for 20 h, the residual gas analysis showed only hydrogen generated from the dehydrogenation of glycerol without residual CO₂ (see Supporting Information, Figure S2). Considering the balanced chemical equation of this reaction, 2 equivalents of bases are required. The addition of 40 mmol of KOH to the reaction resulted in slightly reduced TONs of formate but much higher TONs of lactate (entry 2). Because most transfer hydrogenations of CO_2 with glycerol are carried out at 150-180 °C [22-25], the iridium(NHC)-catalyzed transfer hydrogenation of CO_2 in glycerol began at 180 °C. As the reaction temperature was increased to 200 °C, TONs of formate and lactate were dramatically increased (entry 3). The effect of CO_2 pressure was evaluated (entries 4 and 5). Formate was formed with lower TONs under 1 bar of CO_2 , which provided less carbon than the reaction of CO_2 at 5 bar (entry 3). Although higher CO_2 pressure (10 bar) provided more carbon, it also reduced the pH of the solution. The initial pHs of the solutions for entries 4 and 5 were 14.0 and 10.3, respectively. Because the transfer hydrogenation of CO_2 in glycerol favors basic media, applying a higher CO_2 pressure is not favorable for the formation of both formate and lactate. Upon decreasing the catalyst loading (3.5×10^{-5} mol%), the TONs of formate and lactate were increased to 200,000 $(10,000 h^{-1})$ and 875,000 $(43,800 h^{-1})$, respectively (entry 6). Using the conditions of entry 6, mono and bimetallic iridium catalysts involving different types of ligands were employed (entries 7–11). The reactions using monometallic catalysts exhibited higher TONs and TOFs (entries 6, 8, and 10) than bimetallic complex-catalyzed reactions, which is attributed to the higher reactivity of bidentate NHC-coordinated iridium catalysts toward the CO_2 reduction.[24] The bimetallic complex 1' possesses bidentate NHC-coordinated iridium ions (1.75×10^{-5} mol%) and monodentate NHC-coordinated iridium ions (1.75×10^{-5} mol%), whereas the monometallic complex **1** has only bidentate NHC-coordinated iridium ions (3.5×10^{-5} mol%). With catalyst 1, formate and lactate were formed with the highest TOFs for formate $(10,000 \text{ h}^{-1})$ and lactate $(43,800 \text{ h}^{-1})$ to date (entry 6), and catalysts 2 and 3 also exhibited high TOFs for formate and lactate (entries 8 and 10). In the absence of base, the reaction did not proceed (entry 12). The reaction involving only KOH formed a small amount of formate and lactate (entry 13) [34,35]. The amounts of formate and lactate formed in entry 6 were 1.40 and 6.12 mmol, respectively, while 0.06 mmol of formate and 0.4 mmol of lactate were formed in the absence of catalysts (entry 13). In addition to glycerol, 1,2-propandiol was employed in the presence of catalyst 1, exhibiting much lower TONs of formate (7800).

Table 1. Transfer hydrogenation of CO₂ in glycerol.

CO ₂ +	ОН	catalyst	HCO₂K	+ H ₃ Cок
2	ноон	KOH		T UK
		H ₂ O		OH
		temp, 20 h		

temp, 20 fi						
Entry	Catalyst (mol%)	CO ₂ (bar)	KOH (mmol)	Temp (°C)	Formate (TON, TOF h ⁻¹)	Lactate (TON, TOF h ⁻¹)
1	$1 (3.5 imes 10^{-4})$	5	20	180	3360, 168	3900, 195
2	$1 (3.5 \times 10^{-4})$	5	40	180	1490, 74.5	23,800, 1190
3	$1(3.5 \times 10^{-4})$	5	40	200	15,800, 790	73,900, 3700
4	$1(3.5 \times 10^{-4})$	1	40	200	2110, 106	104,000, 5200
5	$1 (3.5 \times 10^{-4})$	10	40	200	12,700, 635	14,400,720
6	$1(3.5 \times 10^{-5})$	5	40	200	200,000, 10,000	875,000, 43,800
7	1' (1.75 × 10 ⁻⁵) ^a	5	40	200	77,400, 3870	534,000, 26,700
8	2 (3.5×10^{-5})	5	40	200	176,000, 8800	753,000, 37,700
9	2' $(1.75 \times 10^{-5})^{a}$	5	40	200	70,400, 3520	548,000, 27,400
10	$3(3.5 \times 10^{-5})$	5	40	200	174,000, 8700	683,000, 34,200
11	3' $(1.75 \times 10^{-5})^{a}$	5	40	200	103,000, 5150	414,000, 20,700
12	$1(3.5 \times 10^{-5})$	5	_	200	_	_
13		5	40	200	0.06 mmol	0.4 mmol

The mixture of catalysts, CO_2 , KOH, and H_2O (1.0 ml) in glycerol (21.1 mmol) was heated at indicated temperature for 20 h. ^a Catalysts 1', 2' and 3' have two iridium ions in the molecule.

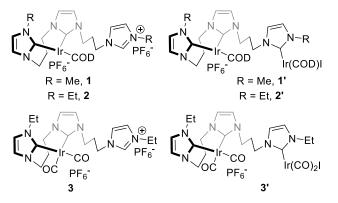


Figure 1. Ir catalysts for the transfer hydrogenation of CO₂ and carbonates with glycerol.

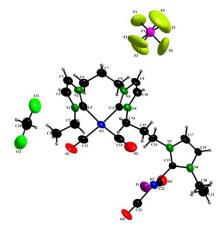


Figure 2. X-ray crystal structure of catalyst 3'.

For the transfer hydrogenation of K_2CO_3 with glycerol, a mixture of catalyst 1 (3.5×10^{-5} mol%), K_2CO_3 (40 mmol), and glycerol (42.3 mmol) was heated at 200 °C for 20 h, producing formate and lactate with TONs of 203,000 and 414,000, respectively (Table 2, entry 1). Catalysts 1', 2, 2', 3, and 3' were employed under the conditions of entry 1; the highest TONs and TOFs were achieved with catalyst 1 (Table 2, entries 1–6). Compared to the result of CO₂ and KOH, the TONs of formate are similar and the TONs of lactate are lower with K_2CO_3 due to lesser basicity of K_2CO_3 . The substituents at the carbene ligand or bi/monometallic structure of the catalysts did not make dramatic changes in TONs. The reaction of K_2CO_3 in 1,2-propandiol formed formate with TONs of 38,000, which is lower than the reactions of glycerol.

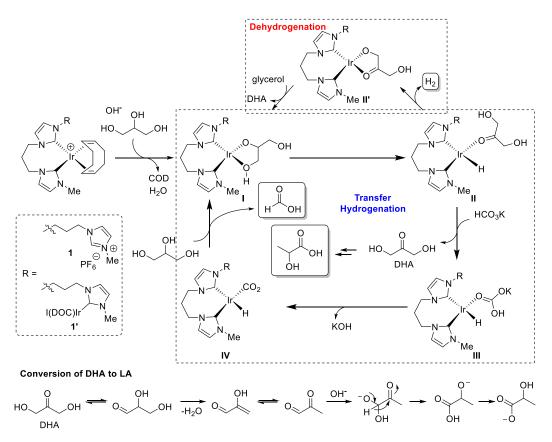
Table 2. Transfer hydrogenation of K₂CO₃ in glycerol.

$C_2CO_3 + HO \longrightarrow OH \xrightarrow{Catalyst} HCO_2K + H_3C \longrightarrow OK OH OH OH$						
Entry	Catalyst (mol%)	Formate (TON, TOF h ⁻¹)	Lactate (TON, TOF h ⁻¹)			
1	$1(3.5 \times 10^{-5})$	203,000, 10,150	414,000, 20,700			
2	$1'$ (1.75 $ imes 10^{-5}$) ^a	163,000, 8150	357,000, 17,850			
3	$2(3.5 \times 10^{-5})$	149,000, 7450	315,000, 15,800			
4	2' $(1.75 \times 10^{-5})^{a}$	178,000, 8900	342,000, 17,100			
5	$3(3.5 \times 10^{-5})$	164,000, 8200	326,000, 16,300			
6	3' $(1.75 \times 10^{-5})^{a}$	195,000, 9750	400,000, 20,000			

The mixture of catalysts, K_2CO_3 (40 mmol), and glycerol (42.3 mmol) in H_2O (2 ml) was heated at 200 °C for 20 h. ^a Catalysts 1', 2' and 3' have two iridium ions in the molecule.

To determine the effects of the solubility and basicity of inorganic carbonates in the transfer hydrogenation in glycerol [24,25], the reaction results of KHCO₃, Na₂CO₃, and Cs₂CO₃ were compared with that of K₂CO₃ (Scheme 2). The TONs and TOFs for formate formation with KHCO₃ were lower than those of K₂CO₃ due to the low basicity of bicarbonate (KHCO₃); the pH of the solution with KHCO₃ was 8.6. The reaction using Na₂CO₃ produced lower TONs and TOFs for formate formation because of the low solubility [24,25]. Although the pH of the solution including Cs₂CO₃ is the same as K₂CO₃, the TONs for the formation of formate and lactate were lower than those of K₂CO₃.

inorganic ₊ carbonate	HO	он (он н	H ₃ C OH				
		inorganic carbonate	pН	formate (TON, TOF h ⁻¹)	lactate (TON, TOF ⁻¹)		
		K ₂ CO ₃	12.0	203,000, 10,150	414,000, 20,700		
		KHCO ₃	8.6	54,000, 2,700	57,300, 2,870		
		Na ₂ CO ₃	11.3	14,500, 725	53,100, 2,660		
		Cs ₂ CO ₃ ^a	12.0	145,000, 7,250	191,000, 9,600		
		The mixture of catalyst, inorganic carbonate (40 mmol), and glycerol (42.3 mmol) in H_2O (2.0 mL) was heated at 200 °C for 20 h. ^a H_2O (3 mL) was added.					


Scheme 2. Transfer hydrogenation of inorganic carbonate in glycerol.

The catalytic activities of previously reported catalysts in glycerol-mediated transfer hydrogenation of CO₂ (or K₂CO₃) are illustrated (Table 3). The ruthenium-NHC and iridium-abnormal NHC catalysts were employed for CO₂ transfer hydrogenation showing much lower TOFs (FA 44 and 90 h⁻¹, LA 70 h⁻¹) than this work (FA 10,000 h⁻¹, LA 43,800 h⁻¹) (entries 1, 3, and 6). The reactions of K₂CO₃ in glycerol were promoted by ruthenium-NHC and iridium-NHC (bidentate and monodentate) catalysts, exhibiting lower TOFs than current results (entries 2, 4, 5, and 7). Compared to previous work, our iridium-NHC catalysts showed high catalytic activities with extremely low concentrations and at high temperatures, resulting in the highest TOFs of formate and lactate.

Table 3. Previously reported catalysts for the transfer hydrogenation of CO₂ and inorganic carbonates with glycerol.

Entry	Catalyst	C1 Source	Temp (°C)	Formate (TOF h ⁻¹)	Lactate (TOF h ⁻¹)	Reference
1	O3S 4 TO K2SO3	CO ₂ (26 bar)	180	44	70	[22]
2		K ₂ CO ₃	150	179	2130	
3		CO ₂ (1 bar)	150	90	_	[23]
4		K ₂ CO ₃	180	840	1630	[24]
5	-O ₃ S	K ₂ CO ₃	150	2170	3010	[25]
6		CO ₂ (5 bar)	200	10,000	43,800	this work
7	$V_{N} = V_{PF_6} = V_{PF_6}$	K ₂ CO ₃	200	10,150	20,700	

We proposed a catalytic cycle of iridium catalysts based on previous iridium-catalyzed TH reactions in Scheme 3 [24]. The catalysts 1 and 1' undergo the dissociation of COD from the metal complex at the initial stage. After COD dissociation, deprotonated glycerol is added to form intermediate I, which undergoes β -hydrogen elimination. Replacing dihydroxyacetone (DHA) with bicarbonate affords intermediate III. The released DHA is converted to lactic acid, illustrated at the bottom of the catalytic cycle [33]. The subsequent dehydroxylation and the reduction of CO₂ produced formic acid to complete the cycle (main cycle in Scheme 3). Since hydrogen was generated as a by-product, the outer cycle of Scheme 3 illustrates H_2 production by the protonation of Ir-H. Due to the presence of H_2 gas in the reaction vessel, this reaction may proceed via two separate steps composed of hydrogen generation from glycerol [36-39] and reduction of CO₂ with H₂ [3-18]. Tu's group published iridium catalysts having three NHC ligands for the dehydrogenation of alcohols, and we also reported triscarbene-modified iridium catalysts for the dehydrogenation of glycerol [32,36]. The reaction of CO_2 and H_2 was attempted in the presence of Ir(NHC) catalysts, resulting in small amounts of formate (see Supporting Information, Scheme S1). Therefore, the mechanism of the direct hydrogenation of CO₂ by H₂ can be ruled out.

Scheme 3. A proposed catalytic cycle.

In conclusion, we have evaluated iridium(NHC)-catalyzed transfer hydrogenation of CO_2 and K_2CO_3 in glycerol. The highest TOF values for the formate formation from CO_2 and K_2CO_3 are 10,000 and 10,150 h⁻¹, respectively. The observed TOFs of the transfer hydrogenation of CO_2 and carbonates are the highest values reported under conventional thermal conditions. The combination of high temperature and stable catalysts at such temperatures contributes to high TONs and TOFs of this transformation. We observe the hydrogen generation from glycerol during the reaction, but a reaction mechanism of the direct hydrogenation of CO_2 was excluded based on control experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10 .3390/catal11060695/s1, Figure S1: ¹³C NMR spectrum of the mixture of CO₂ (5 bar) and KOH in glycerol (Line Black), KHCO₃ (Line Blue) and K₂CO₃ (Line Red), Figure S2: The GC (gas chromatography) spectrum of the gas obtained from the reaction of CO₂ and glycerol (Table 1, entry 6). Only H₂ generated by dehydrogenation of glycerol was identified and CO₂ was not detected, Scheme S1: The hydrogenation reaction of CO₂ and K₂CO₃. The pressure of H₂ (5 bar) was determined based on the observed H₂ pressure of transfer hydrogenation using glycerol. The reaction of CO₂ and H₂ was run with catalysts **1** (3.5×10^{-4} mol%), and the hydrogenation reaction of K₂CO₃ was run with catalysts 1 (7.5×10^{-4} mol%)., Scheme S2 Transfer hydrogenation of inorganic carbonate in glycerol, Table S1: Transfer hydrogenation of CO₂ in glycerol, Table S2: Transfer hydrogenation of K₂CO₃ in glycerol.

Author Contributions: Conceptualization, H.-Y.J.; investigations, Y.-J.C., K.S., J.-A.K., Y.K.K., W.Y. and H.Y.; writing—original draft preparation, H.-Y.J.; writing—review and editing, H.-Y.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Korean Research Foundation, grant number 2020M3H7A1098283 and 2019R1A2C1084021.

Data Availability Statement: The data presented in this study are openly available in catalysts-1236478-SI at https://www.mdpi.com/article/10.3390/catal11060695/s1.

Acknowledgments: This study was supported by the Carbon to X Program (No. 2020M3H7A1098283) and the National Research Foundation Program (No. 2019R1A2C1084021) by the Ministry of Science and ICT, Republic of Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Onishi, N.; Laurenczy, G.; Beller, M.; Himeda, Y. Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. *Coord. Chem. Rev.* 2018, 373, 317–332. [CrossRef]
- Sordakis, K.; Tang, C.; Vogt, L.K.; Junge, H.; Dyson, P.J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. *Chem. Rev.* 2018, 118, 372–433. [CrossRef] [PubMed]
- 3. Eppinger, J.; Huang, K.-W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195. [CrossRef]
- 4. Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous hydrogenation of carbon-dioxide. *Chem. Rev.* 1995, 95, 259–272. [CrossRef]
- 5. Jessop, P.G.; Joó, F.; Tai, C.C. Recent advances in the homogeneous hydrogenation of carbon dioxide. *Coord. Chem. Rev.* 2004, 248, 2425–2442. [CrossRef]
- 6. Himeda, Y. Conversion of CO₂ into formate by homogeneously catalyzed hydrogenation in water: Tuning catalytic activity and water solubility through the acid-base equilibrium of the ligand. *Eur. J. Inorg. Chem.* **2007**, 3927–3941. [CrossRef]
- Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169. [CrossRef]
- 8. Loges, B.; Boddien, A.; Gartner, F.; Junge, H.; Beller, M. Catalytic generation of hydrogen from formic acid and its derivatives: Useful hydrogen storage materials. *Top. Catal.* **2010**, *53*, 902–914. [CrossRef]
- 9. Wang, W.-H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO₂ Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO₂ reduction. *Chem. Rev.* **2015**, *115*, 12936–12973. [CrossRef]
- 10. Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions. *Chem. Lett.* **1976**, *5*, 863–864. [CrossRef]
- 11. Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. *Angew. Chem. Int. Ed.* **2016**, *55*, 7296–7343. [CrossRef]
- 12. Papp, G.; Csorba, J.; Laurenczy, G.; Joó, F. A charge/discharge device for chemical hydrogen storage and generation. *Angew. Chem. Int. Ed.* **2011**, *50*, 10433–10435. [CrossRef]
- Himeda, Y.; Miyazawa, S.; Hirose, T. Interconversion between formic acid and H₂/CO₂ using rhodium and ruthenium catalysts for CO₂ fixation and H₂ storage. *ChemSusChem* 2011, *4*, 487–493. [CrossRef] [PubMed]
- 14. Filonenko, G.A.; van Putten, R.; Schulpen, E.N.; Hensen, E.J.M.; Pidko, E.A. Highly efficient reversible hydrogenation of carbon dioxide to formats using a ruthenium PNP-pincer catalyst. *ChemCatChem* **2014**, *6*, 1526–1530. [CrossRef]
- Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J.-P.; May, R.B.; Prakash, G.K.S.; Olah, G.A. Amine-free reversible hydrogen storage in formate salts catalysed by ruthenium pincer complex without pH control or solvent change. *ChemSusChem* 2015, *8*, 1442–1451. [CrossRef]
- Horváth, H.; Papp, G.; Szabolcsi, R.; Kathó, Á.; Joó, F. Water-soluble iridium-NHC-phosphine complexes as catalysts for chemical hydrogen batteries based on formate. *ChemSusChem* 2015, *8*, 3036–3038. [CrossRef] [PubMed]
- 17. Siek, S.; Burks, D.B.; Gerlach, D.L.; Liang, G.; Tesh, J.M.; Thompson, C.R.; Qu, F.; Shankwitz, J.E.; Vasquez, R.M.; Chambers, N.; et al. Iridium and ruthenium complexes of N-heterocyclic carbene- and pyridinol-derived chelates as catalysts for aqueous

carbon dioxide hydrogenation and formic acid dehydrogenation: The role of the alkali metal. *Organometallics* **2017**, *36*, 1091–1106. [CrossRef]

- 18. Kanega, R.; Onishi, N.; Szalda, D.J.; Ertem, M.Z.; Muckerman, J.T.; Fujita, E.; Himdea, Y. CO₂ hydrogenation catalysts with deprotonated picolimaide ligands. *ACS Catal.* **2017**, *7*, 6426–6429. [CrossRef]
- 19. Díaz-Álvarez, A.E.; Cadierno, V. Glycerol: A promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. *Appl. Sci.* 2013, *3*, 55–69. [CrossRef]
- 20. Zassinovich, G.; Mestroni, G.; Gladiali, S. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysis. *Chem. Rev.* **1992**, *92*, 1051–1069. [CrossRef]
- Crabtree, R.H. Transfer hydrogenation with glycerol as H-donor: Catalyst activation, deactivation and homogeneity. ACS Sustain. Chem. Eng. 2019, 7, 15845–15853. [CrossRef]
- 22. Heltzel, J.M.; Finn, M.; Ainembabazi, D.; Wang, K.; Voutchkova-Kostal, A.M. Transfer hydrogenation of carbon dioxide and bicarbonate from glycerol under aqueous conditions. *Chem. Commun.* **2018**, *54*, 6184–6187. [CrossRef]
- 23. Kumar, A.; Semwal, S.; Choudhury, J. Catalytic conversion of CO₂ to formate with renewable hydrogen donors: An ambientpressure and H2-independent strategy. *ACS Catal.* **2019**, *9*, 2164–2168. [CrossRef]
- 24. Cheong, Y.-J.; Sung, K.; Park, S.; Jung, J.; Jang, H.-Y. Valorization of chemical wates: Ir(biscarbene)-catalyzed transfer hydrogenation of inorganic carbonates using glycerol. *ACS Sustain. Chem. Eng.* **2020**, *8*, 6972–6978. [CrossRef]
- 25. Ainembabazi, D.; Wang, K.; Finn, M.; Ridenour, J.; Voutchkova-Kostal, A. Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbone catalysts. *Green Chem.* **2020**, *22*, 6093–6104. [CrossRef]
- 26. Brieger, G.; Nestrick, T.J. Catalytic transfer hydrogenation. Chem. Rev. 1974, 74, 567–580. [CrossRef]
- 27. Wang, D.; Astruc, D. The golden age of transfer hydrogenation. *Chem. Rev.* 2015, 115, 6621–6686. [CrossRef]
- Sanz, S.; Azua, A.; Peris, E. (η⁶-arene)Ru(bis-NHC) complexes for the reduction of CO₂ to formate with hydrogen and by transfer hydrogenation with iPrOH. *Dalton Trans.* 2010, *39*, 6339–6343. [CrossRef] [PubMed]
- 29. Azua, A.; Sanz, S.; Peris, E. Water-soluble Ir^{III} N-heterocyclic carbene based catalysts for the reduction of CO₂ to formate by transfer hydrogenation and the deuteration of aryl amines in water. *Chem. Eur. J.* **2011**, *17*, 3963–3967. [CrossRef] [PubMed]
- Sanz, S.; Benítez, M.; Peris, E. A New approach to the reduction of carbon dioxide: CO₂ reduction to formate by transfer hydrogenation in iPrOH. Organometallics 2010, 29, 275–277. [CrossRef]
- 31. Iglesias, M.; Oro, L.A. A leap forward in iridium-NHC catalysis: New horizons and mechanistic insights. *Chem. Soc. Rev.* 2018, 47, 2772–2808. [CrossRef] [PubMed]
- 32. Cheong, Y.-J.; Sung, K.; Kim, J.; Kim, Y.K.; Jang, H.-Y. Highly efficient iridium-catalyzed production of hydrogen and lactate from glycerol: Rapid hydrogen evolution by bimetallic iridium catalysts. *Eur. J. Inorg. Chem.* **2020**, 4064–4068. [CrossRef]
- Lu, Z.; Cherepakhin, V.; Demianets, I.; Lauridsen, P.J.; Williams, T.J. Iridium-based hydride transfer catalysts: From hydrogen storage to fine chemicals. *Chem. Commun.* 2018, 54, 7711–7724. [CrossRef] [PubMed]
- 34. Ouali, A.; Majoral, J.-P.; Caminade, A.-M.; Taillefer, M. NaOH-promoted hydrogen transfer: Does NaOH or traces of transition metals catalyze the reaction? *ChemCatChem* **2009**, *1*, 504–509. [CrossRef]
- Ramírez-López, C.A.; Ochoa-Gómez, J.R.; Fernández-Santos, M.; Gómez-Jiménez-Aberasturi, O.; Alonso-Vicario, A.; Torrecilla-Soria, J. Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. *Ind. Eng. Chem. Res.* 2010, 49, 6270–6278. [CrossRef]
- 36. Wu, J.; Shen, L.; Chen, Z.-N.; Zheng, Q.; Xu, Z.; Tu, T. Iridium-catalyzed selective cross-coupling of ethylene glycol and methanol to lactic acid. *Angew. Chem. Int. Ed.* **2020**, *59*, 10421–10425. [CrossRef]
- Sharninghausen, L.S.; Campos, J.; Manas, M.G.; Crabtree, R.H. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. *Nat. Commun.* 2014, 5, 5084–5092. [CrossRef]
- Sun, Z.; Liu, Y.; Chen, J.; Huang, C.; Tu, T. Robust iridium coordination polymers: Highly selective, efficient, and recyclable catalysts for oxidative conversion of glycerol to potassium lactate with dihydrogen liberation. ACS Catal. 2015, 5, 6573–6578. [CrossRef]
- 39. Wu, J.; Shen, L.; Duan, S.; Chen, Z.-N.; Zheng, Q.; Liu, Y.; Sun, Z.; Clark, J.H.; Xu, X.; Tu, T. Selective catalytic dehydrogenative oxidation of bio-polyols to lactic acid. *Angew. Chem. Int. Ed.* **2020**, *59*, 13871–13878. [CrossRef]