Selective Catalytic Reduction of NO by NH3 over Mn–Cu Oxide Catalysts Supported by Highly Porous Silica Gel Powder: Comparative Investigation of Six Different Preparation Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. ICP-OES, SEM, EDX Elemental Mapping
2.1.2. Textural Properties
2.1.3. XPS Analysis
Catalyst | Mn2p3/2, eV Peak | Reference | ||
---|---|---|---|---|
Mn4+ (Mn4+ Satellite) | Mn3+ | |||
Mn91.1Cu8.9/SiO2–IWI | 642.4, (643.8) | 641.1 | 0.70 | [32,33,34] |
Mn90.8Cu9.2/SiO2–EMD | 642.5, (644.3) | 640.8 | 0.78 | [32,33,34,35] |
Mn90.6Cu9.4/SiO2–SARA | 642.9, (644.7) | 641.3 | 0.79 | [33,34,36] |
Mn91.1Cu8.9/SiO2–UH | 642.7, (644.4) | 641.2 | 0.69 | [33,34] |
Mn90.9Cu9.1/SiO2–WI | 642.6, (644.5) | 641.5 | 0.72 | [33,34] |
Mn89.9Cu10.1/SiO2–AE | 642.4, (643.9) | 641.1 | 0.81 | [33,34] |
2.1.4. XRD Analysis
2.2. Catalytic Activity Test
3. Materials and Methods
3.1. Catalyst Preparation
3.1.1. Electroless Metal Deposition
3.1.2. Stepwise Addition of a Reducing Agent
3.1.3. Wet Impregnation
3.1.4. Incipient Wetness Impregnation
3.1.5. Urea Hydrolysis
3.1.6. Ammonia Evaporation
3.2. Catalyst Characterization
3.3. Catalytic Activity Test (NH3-SCR de-NOx)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, X.; Bi, X.T. A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology 2014, 16, 1–18. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2019 Report; Publications Office of the European Union: Luxembourg, 2019.
- United States Environmental Protection Agency. Nitrogen Dioxide (NO2) Pollution. Available online: https://www.epa.gov/no2-pollution/basic-information-about-no2#Effects (accessed on 10 April 2021).
- Zhao, G.; Li, M.; Wang, L.; Wang, D.; Liang, J.; Xue, G. Environmentally-friendly tourmaline modified CeMnFeOx catalysts for low-temperature selective catalytic reduction of NOx with NH3. Catal. Today 2020, 355, 385–396. [Google Scholar] [CrossRef]
- Chen, L.; Si, Z.; Wu, X.; Weng, D.; Ran, R.; Yu, J. Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A review. J. Rare Earths 2014, 32, 907–917. [Google Scholar] [CrossRef]
- Pu, Y.; Xie, X.; Jiang, W.; Yang, L.; Jiang, X.; Yao, L. Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: A review. Chin. Chem. Lett. 2020, 31, 2549–2555. [Google Scholar] [CrossRef]
- Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catal. Today 2011, 175, 147–156. [Google Scholar] [CrossRef]
- Sorrels, J.L.; Randall, D.D.; Schaffner, K.S.; Fry, C.R. Chapter 2 Selective Catalytic Reduction. In EPA Air Pollution Control Cost Manual; US EPA: Research Triangle Park, NC, USA, 2019; ISBN 1070-9908. [Google Scholar]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A Gen. 2007, 327, 261–269. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.W.; Gao, C.; Niu, C. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review. Appl. Catal. A Gen. 2016, 522, 54–69. [Google Scholar] [CrossRef]
- Ettireddy, P.R.; Ettireddy, N.; Mamedov, S.; Boolchand, P.; Smirniotis, P.G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl. Catal. B Environ. 2007, 76, 123–134. [Google Scholar] [CrossRef]
- Gao, C.; Shi, J.W.; Fan, Z.; Gao, G.; Niu, C. Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NOx: A review. Catalysts 2018, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wan, Y.; Li, Y.; Zhan, S.; Guan, Q.; Tian, Y. Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets. ACS Appl. Mater. Interfaces 2016, 8, 5224–5233. [Google Scholar] [CrossRef]
- Zhang, N.; He, H.; Wang, D.; Li, Y. Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability. J. Solid State Chem. 2020, 289, 121464. [Google Scholar] [CrossRef]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Cu-Mn mixed oxides for low temperature NO reduction with NH3. Catal. Today 2006, 111, 236–241. [Google Scholar] [CrossRef]
- Tang, X.; Hao, J.; Yi, H.; Li, J. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catal. Today 2007, 126, 406–411. [Google Scholar] [CrossRef]
- Tian, W.; Yang, H.; Fan, X.; Zhang, X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. J. Hazard. Mater. 2011, 188, 105–109. [Google Scholar] [CrossRef]
- Yu, J.; Guo, F.; Wang, Y.; Zhu, J.; Liu, Y.; Su, F.; Gao, S.; Xu, G. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Appl. Catal. B Environ. 2010, 95, 160–168. [Google Scholar] [CrossRef]
- Zamudio, M.A.; Russo, N.; Fino, D. Low temperature NH3 selective catalytic reduction of NOx over substituted MnCr2O4 spinel-oxide catalysts. Ind. Eng. Chem. Res. 2011, 50, 6668–6672. [Google Scholar] [CrossRef]
- Zuo, J.; Chen, Z.; Wang, F.; Yu, Y.; Wang, L.; Li, X. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts. Ind. Eng. Chem. Res. 2014, 53, 2647–2655. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Rodríguez-González, V.; García-Serrano, L.A.; Mejía-Centeno, I. Selective catalytic reduction of NOx by NH3 at low temperature over manganese oxide catalysts supported on titanate nanotubes. Chem. Eng. Commun. 2018, 205, 1583–1593. [Google Scholar] [CrossRef]
- Snapkauskiene, V.; Valinčius, V.; Grigaitiene, V. Preparation and characterization of TiO2-based plasma-sprayed coatings for NOx abatement. Catal. Today 2012, 191, 154–158. [Google Scholar] [CrossRef]
- Salazar, M.; Becker, R.; Grünert, W. Hybrid catalysts-an innovative route to improve catalyst performance in the selective catalytic reduction of NO by NH3. Appl. Catal. B Environ. 2015, 165, 316–327. [Google Scholar] [CrossRef]
- Sun, P.; Guo, R.T.; Liu, S.M.; Wang, S.X.; Pan, W.G.; Li, M.Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu. Appl. Catal. A Gen. 2017, 531, 129–138. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysts 2017, 7, 199. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Liu, B.; Sun, S. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv. 2017, 7, 26226–26242. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ban, L.; Wang, Z.; Meng, P.; Zhang, Y.; Wu, R.; Zhao, Y. Regulation of Cu species in CuO/SiO2 and its structural evolution in ethynylation reaction. Nanomaterials 2019, 9, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezemer, G.L.; Radstake, P.B.; Koot, V.; van Dillen, A.J.; Geus, J.W.; de Jong, K.P. Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation. J. Catal. 2006, 237, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Alothman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Sun, B. An adsorption isotherm equation for multi-types adsorption with thermodynamic correctness. Appl. Therm. Eng. 2014, 72, 190–199. [Google Scholar] [CrossRef]
- Guo, B.; Shen, H.; Shu, K.; Zeng, Y.; Ning, W. The study of the relationship between pore structure and photocatalysis of mesoporous TiO2. J. Chem. Sci. 2009, 121, 317–321. [Google Scholar] [CrossRef]
- Oku, M.; Hirokawa, K.; Ikeda, S. X-ray photoelectron spectroscopy of manganese-oxygen systems. J. Electron Spectros. Relat. Phenom. 1975, 7, 465–473. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Langell, M.A.; Hutchings, C.W.; Carson, G.A.; Nassir, M.H. High resolution electron energy loss spectroscopy of MnO(100) and oxidized MnO(100). J. Vac. Sci. Technol. A Vac. Surf. Film 1996, 14, 1656–1661. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Ma, K.; Zou, W.; He, S.; An, J.; Yang, F.; Dong, L. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature. Chin. J. Catal. 2017, 38, 146–159. [Google Scholar] [CrossRef]
- González, C.; Gutiérrez, J.I.; Gonzalez-Velasco, J.R.; Cid, A.; Arranz, A.; Arranz, J.F. Transformations of manganese oxides under different thermal conditions. J. Therm. Anal. 1996, 47, 93–102. [Google Scholar] [CrossRef]
- Fukuda, M.; Koga, N. Kinetics and mechanisms of the thermal decomposition of copper(II) hydroxide: A consecutive process comprising induction period, surface reaction, and phase boundary-controlled reaction. J. Phys. Chem. C 2018, 122, 12869–12879. [Google Scholar] [CrossRef]
- Tang, X.; Hao, J.; Xu, W.; Li, J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catal. Commun. 2007, 8, 329–334. [Google Scholar] [CrossRef]
- Norkus, E.; Tamašauskaite-Tamašiunaite, L. Application of electroless metal deposition and galvanic displacement for fabrication of catalysts for borohydride oxidation. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 361–372. ISBN 9780128098943. [Google Scholar]
- Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687–6718. [Google Scholar] [CrossRef]
Active Component | Share in the Catalytic Layer, wt% | Loading in the Supported Catalyst, wt% |
---|---|---|
Mn90.8Cu9.2/SiO2–EMD | ||
Mn | 90.8 | 3.5 |
Cu | 9.2 | 0.4 |
Mn90.6Cu9.4/SiO2–SARA | ||
Mn | 90.6 | 4.8 |
Cu | 9.4 | 0.5 |
Mn90.9Cu9.1/SiO2–WI | ||
Mn | 90.9 | 8.7 |
Cu | 9.1 | 0.9 |
Mn91.1Cu8.9/SiO2–IWI | ||
Mn | 91.1 | 1.1 |
Cu | 8.9 | 0.1 |
Mn91.1Cu8.9/SiO2–UH | ||
Mn | 91.1 | 11.1 |
Cu | 8.9 | 1.1 |
Mn89.9Cu10.1/SiO2–AE | ||
Mn | 89.9 | 13.3 |
Cu | 10.1 | 1.5 |
Sample | Textural Properties | Total (Mn + Cu) Loading, % | ||
---|---|---|---|---|
BET SSA, m2·g−1 | Pore Volume, cm3·g−1 | Average Pore Size, nm | ||
Silica gel powder | 474 | 0.8 | 6.5 | 0 |
Mn91.1Cu8.9/SiO2–IWI | 251 | 0.62 | 8.6 | 1.2 |
Mn90.8Cu9.2/SiO2–EMD | 196 | 0.63 | 11.4 | 3.9 |
Mn90.6Cu9.4/SiO2–SARA | 61 | 0.44 | 35.3 | 5.3 |
Mn91.1Cu8.9/SiO2–UH | 50 | 0.27 | 22 | 12.2 |
Mn90.9Cu9.1/SiO2–WI | 32 | 0.22 | 43.6 | 9.6 |
Mn89.9Cu10.1/SiO2–AE | 0.9 | 0.01 | 82.6 | 14.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanas, D.; Baltrėnaitė-Gedienė, E. Selective Catalytic Reduction of NO by NH3 over Mn–Cu Oxide Catalysts Supported by Highly Porous Silica Gel Powder: Comparative Investigation of Six Different Preparation Methods. Catalysts 2021, 11, 702. https://doi.org/10.3390/catal11060702
Urbanas D, Baltrėnaitė-Gedienė E. Selective Catalytic Reduction of NO by NH3 over Mn–Cu Oxide Catalysts Supported by Highly Porous Silica Gel Powder: Comparative Investigation of Six Different Preparation Methods. Catalysts. 2021; 11(6):702. https://doi.org/10.3390/catal11060702
Chicago/Turabian StyleUrbanas, Davyd, and Edita Baltrėnaitė-Gedienė. 2021. "Selective Catalytic Reduction of NO by NH3 over Mn–Cu Oxide Catalysts Supported by Highly Porous Silica Gel Powder: Comparative Investigation of Six Different Preparation Methods" Catalysts 11, no. 6: 702. https://doi.org/10.3390/catal11060702
APA StyleUrbanas, D., & Baltrėnaitė-Gedienė, E. (2021). Selective Catalytic Reduction of NO by NH3 over Mn–Cu Oxide Catalysts Supported by Highly Porous Silica Gel Powder: Comparative Investigation of Six Different Preparation Methods. Catalysts, 11(6), 702. https://doi.org/10.3390/catal11060702