Direct Cross-Coupling of Alcohols with O-Nucleophiles Mediated by N-Iodosuccinimide as a Precatalyst under Mild Reaction Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuhrmann, E.; Talbiersky, J. Synthesis of Alkyl Aryl Ethers by Catalytic Williamson Ether Synthesis with Weak Alkylation Agents. Org. Process Res. Dev. 2005, 9, 206–211. [Google Scholar] [CrossRef]
- Emer, E.; Sinisi, R.; Capdevila, M.G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P.G. Direct Nucleophilic SN1-Type Reactions of Alcohols. Eur. J. Org. Chem. 2011, 2011, 647–666. [Google Scholar] [CrossRef]
- Kumar, R.; Van der Eycken, E.V. Recent approaches for C-C bond formation via direct dehydrative coupling strategies. Chem. Soc. Rev. 2013, 42, 1121–1146. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; He, T.; Ma, L.; Wang, Z. Recent developments in Ritter reaction. RSC Adv. 2014, 4, 64936–64946. [Google Scholar] [CrossRef]
- Chen, L.; Yin, X.-P.; Wang, C.-H.; Zhou, J. Catalytic functionalization of tertiary alcohols to fully substituted carbon centres. Org. Biomol. Chem. 2014, 12, 6033–6048. [Google Scholar] [CrossRef]
- Chaskar, A.; Murugan, K. Direct allylation of alcohols using allyltrimethylsilane: A move towards an economical and ecological protocol for C-C bond formation. Catal. Sci. Technol. 2014, 4, 1852–1868. [Google Scholar] [CrossRef]
- Uchuskin, M.G.; Makarov, A.S.; Butin, A.V. Catalytic Alkylation of Furans by π-Activated Alcohols (Review). Chem. Heterocycl. Compd. 2014, 50, 791–806. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Z.-Q. Iron-Catalyzed Alkylation of Alkenes and Alkynes Using Alcohols as the Alkylating Reagent. Synthesis 2015, 47, 1706–1708. [Google Scholar] [CrossRef]
- Dryzhakov, M.; Richmond, E.; Moran, J. Recent Advances in Direct Catalytic Dehydrative Substitution of Alcohols. Synthesis 2016, 48, 935–959. [Google Scholar]
- Ajvazi, N.; Stavber, S. Alcohols in direct carbon-carbon and carbon-heteroatom bond-forming reactions: Recent advances. Arkivoc 2018, 2018, 288–329. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu, X. Organohalide-catalyzed dehydrative O-alkylation between alcohols: A facile etherification method for aliphatic ether synthesis. Green Chem. 2015, 17, 2774–2779. [Google Scholar] [CrossRef]
- Veenboer, R.M.P.; Nolan, S.P. Gold(i)-catalysed dehydrative formation of ethers from benzylic alcohols and phenols. Green Chem. 2015, 17, 3819–3825. [Google Scholar] [CrossRef] [Green Version]
- Demchuk, O.M.; Jasiński, R.; Formela, A. The Halogen-Less Catalytic Transition Metal-Mediated Cross-Coupling Reactions: A Sustainable Alternative for Utilisation of Organohalides. In Chemistry beyond Chlorine; Springer: Cham, Switzerland, 2016; pp. 17–94. [Google Scholar]
- Böldl, M.; Fleischer, I. Dehydrative Coupling of Benzylic Alcohols Catalyzed by Brønsted Acid/Lewis Base. Eur. J. Org. Chem. 2019, 2019, 5856–5861. [Google Scholar] [CrossRef] [Green Version]
- Ajvazi, N.; Stavber, S. N-Halosuccinimides as Precatalysts for C-, N-, O-, and X-Nucleophilic Substitution Reactions of Alcohols under Mild Reaction Conditions. Catalysts 2020, 10, 460. [Google Scholar] [CrossRef]
- Stavber, G.; Iskra, J.; Zupan, M.; Stavber, S. Aerobic oxidative iodination of ketones catalysed by sodium nitrite “on water” or in a micelle-based aqueous system. Green Chem. 2009, 11, 1262–1267. [Google Scholar] [CrossRef]
- Stavber, G.; Stavber, S. Towards Greener Fluorine Organic Chemistry: Direct Electrophilic Fluorination of Carbonyl Compounds in Water and Under Solvent-Free Reaction Conditions. Adv. Synth. Catal. 2010, 352, 2838–2846. [Google Scholar] [CrossRef]
- Čebular, K.; Božić, B.Đ.; Stavber, S. 1,3-Dibromo-5,5-dimethylhydantoin as a Precatalyst for Activation of Carbonyl Functionality. Molecules 2019, 24, 2608. [Google Scholar] [CrossRef] [Green Version]
- Ajvazi, N.; Stavber, S. N-Iodosuccinimide as a Precatalyst for Direct Cross-Coupling of Alcohols with C-Nucleophiles under Solvent-Free Reaction Conditions. Catalysts 2020, 10, 850. [Google Scholar] [CrossRef]
- Bulfield, D.; Huber, S.M. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. Eur. J. 2016, 22, 14434–14450. [Google Scholar] [CrossRef]
- Breugst, M.; Von der Heiden, D. Mechanisms in Iodine Catalysis. Chem. Eur. J. 2018, 24, 9187–9199. [Google Scholar] [CrossRef]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2006, 13, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef]
- Yoshiharu, O.; Yoshihiro, N.; Makoto, Y.; Akio, B. InI3/Me3SiI-catalyzed Direct Alkylation of Enol Acetates Using Alkyl Acetates or Alkyl Ethers. Chem. Lett 2011, 40, 1223–1255. [Google Scholar]
- Das, T.; Chakraborty, A.; Sarkar, A. Solvent control of product diversity in palladium-catalyzed addition of arylboronic acid to aryl aldehydes. Tetrahedron Lett. 2014, 55, 5174–5178. [Google Scholar] [CrossRef]
- Arendt, K.M.; Doyle, A.G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem. Int. Ed. 2015, 54, 9876–9880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muramatsu, W.; Nakano, K.; Li, C.-J. Simple and Direct sp3C–H Bond Arylation of Tetrahydroisoquinolines and Isochromans via 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone Oxidation under Mild Conditions. Org. Lett. 2013, 15, 3650–3653. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; García-Muñoz, Ángel; Pena, J.A.; Trujillo-Reyes, J.; Morales-Luckie, R.A.; Ávalos-Borja, M.; Vilchis-Néstor, A.R.; Sánchez-Mendieta, V.; Corona, D.; Cuevas-Yanez, E. Carbenoid Etherifications Catalyzed by “Green” Silver Nanoparticles and Iron-Copper Nanoparticles. Lett. Org. Chem. 2012, 9, 2–6. [Google Scholar] [CrossRef]
- Leino, R.; Savela, R. Synthesis of Ethers from Carbonyl Compounds by Reductive Etherification Catalyzed by Iron(III) and Silyl Chloride. Synth. 2015, 47, 1749–1760. [Google Scholar] [CrossRef] [Green Version]
- Howard, K.T.; Duffy, B.C.; Linaburga, M.R.; Chisholm, J. Formation of DPM ethers using O-diphenylmethyl trichloroacetimidate under thermal conditions. Org. Biomol. Chem. 2016, 14, 1623–1628. [Google Scholar] [CrossRef] [Green Version]
- Stanescu, M.A.; Varma, R.S. Nafion-catalyzed preparation of benzhydryl ethers. Tetrahedron Lett. 2002, 43, 7307–7309. [Google Scholar] [CrossRef]
- Dehmlow, E.V.; Sleegers, A. Applications of phase transfer catalysis. 39. Do simple optically active phase-transfer agents catalyze enantioselective ether formation? J. Org. Chem. 1988, 53, 3875–3877. [Google Scholar] [CrossRef]
- Diem, M.J.; Burow, D.F.; Fry, J.L. Oxonium salt alkylation of structurally and optically labile alcohols. J. Org. Chem. 1977, 42, 1801–1802. [Google Scholar] [CrossRef]
Entry | NIS (mol %) | Conv. b (%) of 1 | Yield c (%) 2 |
---|---|---|---|
1 | 0.5 | 79 | 78 d |
2 | 1 | 90 | 89 d |
3 | 2 | 100 | 100 |
Entry | NIS (mol %) | Conv. b (%) of 1 | Relative Distribution c (%) | |
---|---|---|---|---|
4 | 2 | |||
1 | 0.5 | 83 | 78 | 5 |
2 | 1 | 100 | 94 | 6 |
3 | 2 | 100 | 95 | 5 |
4 | 3 | 100 | 100 | / |
Entry | T(°C) | Conv. b (%) of 1 | Relative Distribution c (%) | |
---|---|---|---|---|
4 | 2 | |||
1 | rt | / | / | / |
2 | 40–45 | 26 | 23 | 3 |
3 | 50–55 | 61 | 56 | 5 |
4 | 60–65 | 86 | 81 | 3 d |
5 | 70–75 | 100 | 100 | / |
Entry | R1, R2, R3 | R–OH, Time (h) | Product | Conversion b (%) (Yield c (%)) |
---|---|---|---|---|
1 g | R1 = R2 = H, R3 = Ph 1 | / (3.5) | 100 “(99) [15]” | |
2 | R1 = R2 = H, R3 = Ph 1 | MeOH 3 (6) | 100 | |
3 g | R1 = Me, R2 = H, R3 = Ph 5 | / (4.5) | 100 (99) | |
4 | R1 = Me, R2 = H, R3 = Ph 5 | MeOH 3 (6) | 100 d (90) | |
5 | R1 = Cl, R2 = H, R3 = Ph 8 | MeOH 3 (24) | 100 (99) | |
6 | R1 = R2 = H, R3 = Ph 1 | EtOH 10 (24) | 100 d (89) | |
7 | R1 = R2 = H, R3 = Ph 1 | iPrOH 12 (24) | 100 d (88) | |
8 | R1 = R2 = H, R3 = Me 14 | MeOH 3 (24) | 67 e “(61) f [15]” | |
9 | R1 = H, R2 = R3 = Me 16 | MeOH 3 (24) | 93 “(90) [15]” | |
10 | C6H5(CH2)2C(CH3)2 18 | MeOH 3 (24) | 74 “(64) [15]” | |
11 | R1 = R2 = R3 = H 20 | MeOH 3 (24) | “2 e [15]” - | |
12 g | R1 = Me, R2 = R3 = H 22 | / (24) | 100 (99) | |
13 | R1 = Me, R2 = R3 = H 22 | MeOH 3 (24) | 10 d | |
14 | R1 = Cl, R2 = R3 = H 25 | MeOH 3 (24) | - | |
15 | R1 = Me, R2 = H, R3 = Ph 5 | TMSOEt 27 (24) | 100 e “(89) [15]” |
Entry. | R | Conversion. b (%) of 1 (Yield c (%)) |
---|---|---|
1 | H | 100 d (88) |
2 | 4-Me | 96 e (73) |
3 | 4-Cl | 100 d (90) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajvazi, N.; Stavber, S. Direct Cross-Coupling of Alcohols with O-Nucleophiles Mediated by N-Iodosuccinimide as a Precatalyst under Mild Reaction Conditions. Catalysts 2021, 11, 858. https://doi.org/10.3390/catal11070858
Ajvazi N, Stavber S. Direct Cross-Coupling of Alcohols with O-Nucleophiles Mediated by N-Iodosuccinimide as a Precatalyst under Mild Reaction Conditions. Catalysts. 2021; 11(7):858. https://doi.org/10.3390/catal11070858
Chicago/Turabian StyleAjvazi, Njomza, and Stojan Stavber. 2021. "Direct Cross-Coupling of Alcohols with O-Nucleophiles Mediated by N-Iodosuccinimide as a Precatalyst under Mild Reaction Conditions" Catalysts 11, no. 7: 858. https://doi.org/10.3390/catal11070858
APA StyleAjvazi, N., & Stavber, S. (2021). Direct Cross-Coupling of Alcohols with O-Nucleophiles Mediated by N-Iodosuccinimide as a Precatalyst under Mild Reaction Conditions. Catalysts, 11(7), 858. https://doi.org/10.3390/catal11070858