A Superficial Intramolecular Alignment of Carbon Nitride through Conjugated Monomer for Optimized Photocatalytic CO2 Reduction
Abstract
:1. Introduction
2. Result and Discussion
2.1. Photocatalytic Property of CO2 Reduction
2.2. Mechanism of CO2 Reduction Reaction
3. Experimental
Preparation of Pure CN and Modified CN-TDP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ahmed, G.; Hanif, M.; Mahmood, K.; Yao, R.; Ning, H.; Jiao, D.; Wu, M.; Khan, J.; Liu, Z. Lattice defects of ZnO and hybrids with GO: Characterization, EPR and optoelectronic properties. AIP Adv. 2018, 8, 025218. [Google Scholar] [CrossRef]
- Khan, A.; Nair, V.; Colmenares, J.C.; Gläser, R. Lignin-based composite materials for photocatalysis and photovoltaics. Top. Curr. Chem. 2018, 376, 1–31. [Google Scholar] [CrossRef]
- Khan, J.; Gu, J.; He, S.; Li, X.; Ahmed, G.; Liu, Z.; Akhtar, M.N.; Mai, W.; Wu, M. Rational design of a tripartite-layered TiO2 photoelectrode: A candidate for enhanced power conversion efficiency in dye sensitized solar cells. Nanoscale 2017, 9, 9913–9920. [Google Scholar] [CrossRef]
- Khan, J.; Gu, J.; Meng, Y.; Chai, Z.; He, S.; Wu, Q.; Tong, S.; Ahmed, G.; Mai, W.; Wu, M. Anatase TiO2 single crystal hollow nanoparticles: Their facile synthesis and high-performance in dye-sensitized solar cells. CrystEngComm 2017, 19, 325–334. [Google Scholar] [CrossRef]
- Hayat, A.; Raziq, F.; Khan, M.; Ullah, I.; Khan, W.U.; Khan, J.; Ahmad, A. Visible-light enhanced photocatalytic performance of polypyrrole/g-C3N4 composites for water splitting to evolve H2 and pollutants degradation. J. Photochem. Photobiol. A Chem. 2019, 379, 88–98. [Google Scholar] [CrossRef]
- Gu, J.; Khan, J.; Chai, Z.; Yuan, Y.; Yu, X.; Liu, P.; Wu, M.; Mai, W. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells. J. Power Sources 2016, 303, 57–64. [Google Scholar] [CrossRef]
- Khan, J.; Rahman, N.U.; Khan, W.U.; Hayat, A.; Yang, Z.; Ahmed, G.; Akhtar, M.N.; Tong, S.; Chi, Z.; Wu, M. Multi-dimensional anatase TiO2 materials: Synthesis and their application as efficient charge transporter in perovskite solar cells. Sol. Energy 2019, 184, 323–330. [Google Scholar] [CrossRef]
- Khan, J.; Rahman, N.U.; Khan, W.U.; Wang, Y.; Fu, S.; Ahmed, G.; Akhtar, M.N.; Wu, M. Hollow 3D TiO2 sub-microspheres as an electron transporting layer for highly efficient perovskite solar cells. Mater. Today Energy 2021, 19, 100614. [Google Scholar] [CrossRef]
- Li, S.H.; Liu, S.; Colmenares, J.C.; Xu, Y.J. A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem. 2016, 18, 594–607. [Google Scholar] [CrossRef]
- Ahmed, G.; Raziq, F.; Hanif, M.; Khan, J.; Munawar, K.S.; Wu, M.; Cao, X.; Liu, Z. Oxygen-Cluster-Modified Anatase with Graphene Leads to Efficient and Recyclable Photo-Catalytic Conversion of CO2 to CH4 Supported by the Positron Annihilation Study. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Barrio, J.; Volokh, M.; Shalom, M. Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 11075–11116. [Google Scholar] [CrossRef]
- Hayat, A.; Khan, J.; Rahman, M.U.; Mane, S.B.; Khan, W.U.; Sohail, M.; Rahman, N.U.; Shaishta, N.; Chi, Z.; Wu, M. Synthesis and optimization of the trimesic acid modified polymeric carbon nitride for enhanced photocatalytic reduction of CO2. J. Colloid Interface Sci. 2019, 548, 197–205. [Google Scholar] [CrossRef]
- Lin, L.; Hou, C.; Zhang, X.; Wang, Y.; Chen, Y.; He, T. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra (4-carboxyphenyl) porphyrin iron (III) chloride heterogeneous catalysts. Appl. Catal. B Environ. 2018, 221, 312–319. [Google Scholar] [CrossRef]
- Le, S.; Jiang, T.; Zhao, Q.; Liu, X.; Li, Y.; Fang, B.; Gong, M. Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Adv. 2016, 6, 38811–38819. [Google Scholar] [CrossRef]
- Li, K.; Zhang, W.D. Creating graphitic carbon nitride based donor-π–acceptor-π–donor structured catalysts for highly photocatalytic hydrogen evolution. Small 2018, 14, 1703599. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ. 2015, 179, 1–8. [Google Scholar] [CrossRef]
- Hayat, A.; Rahman, M.U.; Khan, I.; Khan, J.; Sohail, M.; Yasmeen, H.; Liu, S.-Y.; Qi, K.; Lv, W. Conjugated electron donor–acceptor hybrid polymeric carbon nitride as a photocatalyst for CO2 reduction. Molecules 2019, 24, 1779. [Google Scholar] [CrossRef]
- Hayat, A.; Raziq, F.; Khan, M.; Khan, J.; Mane, S.K.B.; Ahmad, A.; Rahman, M.U.; Khan, W.U. Fusion of conjugated bicyclic co-polymer within polymeric carbon nitride for high photocatalytic performance. J. Colloid Interface Sci. 2019, 554, 627–639. [Google Scholar] [CrossRef]
- Rao, H.; Lim, C.H.; Bonin, J.; Miyake, G.M.; Robert, M. Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 2018, 140, 17830–17834. [Google Scholar] [CrossRef]
- Qu, D.; Liu, J.; Miao, X.; Han, M.; Zhang, H.; Cui, Z.; Sun, S.; Kang, Z.; Fan, H.; Sun, Z. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B Environ. 2018, 227, 418–424. [Google Scholar] [CrossRef]
- Zhang, G.; Li, G.; Heil, T.; Zafeiratos, S.; Lai, F.; Savateev, A.; Antonietti, M.; Wang, X. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 3433–3437. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Huang, J.; Pantovich, S.A.; Carl, A.D.; Fenton, T.G.; Caputo, C.A.; Grimm, R.L.; Frenkel, A.I.; Li, G. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047. [Google Scholar] [CrossRef]
- Hayat, A.; Shaishta, N.; Mane, S.K.B.; Khan, J.; Hayat, A. Rational Ionothermal copolymerization of TCNQ with PCN semiconductor for enhanced Photocatalytic full water splitting. ACS Appl. Mater. Interfaces 2019, 11, 46756–46766. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein J. Nanotechnol. 2014, 5, 696–710. [Google Scholar] [CrossRef]
- Quan, H.; Gao, Y.; Wang, W. Tungsten oxide-based visible light-driven photocatalysts: Crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorg. Chem. Front. 2020, 7, 817–838. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Khoshghadam-Pireyousefan, M.; Shokrianfard-Ravasjan, B.; Azadbeh, M.; Rashedi, H.; Dibazar, M.; Mostafaei, A. Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H2O2 on methylene blue dye degradation. J. Alloy. Compd. 2020, 845, 156333. [Google Scholar] [CrossRef]
- Lu, X.; Xu, K.; Chen, P.; Jia, K.; Liu, S.; Wu, C. Facile one step method realizing scalable production of gC3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A 2014, 2, 18924–18928. [Google Scholar] [CrossRef]
- Tang, M.; Ao, Y.; Wang, C.; Wang, P. Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide. Appl. Catal. B Environ. 2020, 268, 118395. [Google Scholar] [CrossRef]
- Ullah, A.; Khan, J.; Sohail, M.; Hayat, A.; Zhao, T.K.; Ullah, B.; Khan, M.; Uddin, I.; Ullah, S.; Ullah, R. Fabrication of polymer carbon nitride with organic monomer for effective photocatalytic hydrogen evolution. J. Photochem. Photobiol. A Chem. 2020, 401, 112764. [Google Scholar] [CrossRef]
- Wang, J.; Cao, S.; Yu, J. Nanocages of Polymeric Carbon Nitride from Low-Temperature Supramolecular Preorganization for Photocatalytic CO2 Reduction. Sol. RRL 2020, 4, 1900469. [Google Scholar] [CrossRef]
- Hayat, A.; Shaishta, N.; Mane, S.K.B.; Hayat, A.; Khan, J.; Rehman, A.U.; Li, T. Molecular engineering of polymeric carbon nitride based Donor-Acceptor conjugated copolymers for enhanced photocatalytic full water splitting. J. Colloid Interface Sci. 2020, 560, 743–754. [Google Scholar] [CrossRef]
- Huang, T.; Pan, S.; Shi, L.; Yu, A.; Wang, X.; Fu, Y. Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping: A high-performance visible light-driven catalyst for nitrogen fixation. Nanoscale 2020, 12, 1833–1841. [Google Scholar] [CrossRef]
- Hou, P.; Song, W.; Wang, X.; Hu, Z.; Kang, P. Well-Defined Single-Atom Cobalt Catalyst for Electrocatalytic Flue Gas CO2 Reduction. Small 2020, 16, 2001896. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Chen, G.; Fave, C.; Chen, L.; Kuriki, R.; Maeda, K.; Ishitani, O.; Lau, T.-C.; Bonin, J.; Robert, M. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 2020, 142, 6188–6195. [Google Scholar] [CrossRef]
- Pei, G.X.; Dzade, N.Y.; Zhang, Y.; Hofmann, J.P.; De Leeuw, N.H.; Weckhuysen, B.M. Identification of photoexcited electron relaxation in a cobalt phosphide modified carbon nitride photocatalyst. ChemPhotoChem 2021, 5, 330–334. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, L.; Wang, H.; Cao, R.; Wang, J.; Bai, F.; Fan, H. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chen, Z.; Shi, R.; Yang, X.; Zhang, T. Recent Advances in Conjugated Polymers for Visible-Light-Driven Water Splitting. Adv. Mater. 2020, 32, 1907296. [Google Scholar] [CrossRef]
- Wu, K.; Chen, X.; Liu, S.; Pan, Y.; Cheong, W.-C.; Zhu, W.; Cao, X.; Shen, R.; Chen, W.; Luo, J. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, H.; Liu, G.; Li, P.; Liu, H.; Zhang, H.; Shi, L.; Ye, J. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl. Catal. B Environ. 2017, 200, 141–149. [Google Scholar] [CrossRef]
- Tian, S.; Chen, S.; Ren, X.; Hu, Y.; Hu, H.; Sun, J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672. [Google Scholar] [CrossRef]
- Chaubey, S.; Singh, C.; Singh, P.; Kumar, A.; Pande, P.P.; Baeg, J.-O.; Dwivedi, D.K.; Yadav, R.K. Efficient photocatalytic synthesis of l-glutamate using a self-assembled carbon nitride/sulfur/porphyrin catalyst. Environ. Chem. Lett. 2020, 18, 1389–1395. [Google Scholar] [CrossRef]
- Castro-Hermosa, S.; Wouk, L.; Bicalho, I.S.; de Queiroz Corrêa, L.; de Jong, B.; Cinà, L.; Brown, T.M.; Bagnis, D. Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Res. 2021, 14, 1034–1042. [Google Scholar] [CrossRef]
- Li, H.J.W.; Zhou, H.; Chen, K.; Liu, K.; Li, S.; Jiang, K.; Zhang, W.; Xie, Y.; Cao, Z.; Li, H. Metallic MoO2-Modified Graphitic Carbon Nitride Boosting Photocatalytic CO2 Reduction via Schottky Junction. Sol. RRL 2020, 4, 1900416. [Google Scholar] [CrossRef]
- Hayat, A.; Taha, T.A.; Alenad, A.M.; Ullah, I.; Shah, S.; Uddin, I.; Ullah, I.; Hayat, A.; Khan, W.U. A simplistic molecular agglomeration of carbon nitride for optimized photocatalytic performance. Surf. Interfaces 2021, 25, 101166. [Google Scholar] [CrossRef]
- Liang, Z.; Zhuang, X.; Tang, Z.; Li, H.; Liu, L.; Kang, W. Soft-template induced synthesis of high-crystalline polymeric carbon nitride with boosted photocatalytic performance. J. Mater. Chem. A 2021, 9, 6805–6810. [Google Scholar] [CrossRef]
- Hayat, A.; Chen, Z.; Luo, Z.; Fang, Y.; Wang, X. π-deficient pyridine ring-incorporated carbon nitride polymers for photocatalytic H2 evolution and CO2 fixation. Res. Chem. Intermed. 2021, 47, 15–27. [Google Scholar] [CrossRef]
- Hayat, A.; Li, T. A facile supramolecular aggregation of trithiocyanuric acid with PCN for high photocatalytic hydrogen evolution from water splitting. Int. J. Energy Res. 2019, 43, 5479–5492. [Google Scholar] [CrossRef]
- Hayat, A.; Alrowaili, Z.A.; Taha, T.A.; Khan, J.; Uddin, I.; Ali, T.; Raziq, F.; Ullah, I.; Hayat, A.; Palamanit, A.; et al. Organic heterostructure modified carbon nitride as apprehension for Quercetin Biosensor. Synth. Met. 2021, 278, 116813. [Google Scholar] [CrossRef]
- Wisser, F.M.; Duguet, M.; Perrinet, Q.; Ghosh, A.C.; Alves-Favaro, M.; Mohr, Y.; Lorentz, C.; Quadrelli, E.A.; Palkovits, R.; Farrusseng, D.; et al. Molecular Porous Photosystems Tailored for Long-Term Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2020, 59, 5116–5122. [Google Scholar] [CrossRef]
- Bai, S.; Wang, Z.; Tan, L.; Waterhouse, G.I.; Zhao, Y.; Song, Y.F. 600 nm irradiation-induced efficient photocatalytic CO2 reduction by ultrathin layered double hydroxide nanosheets. Ind. Eng. Chem. Res. 2020, 59, 5848–5857. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, A.; Sohail, M.; Taha, T.A.; Alenad, A.M.; Uddin, I.; Hayat, A.; Ali, T.; Shah, R.; Irfan, A.; Khan, W.U.; et al. A Superficial Intramolecular Alignment of Carbon Nitride through Conjugated Monomer for Optimized Photocatalytic CO2 Reduction. Catalysts 2021, 11, 935. https://doi.org/10.3390/catal11080935
Hayat A, Sohail M, Taha TA, Alenad AM, Uddin I, Hayat A, Ali T, Shah R, Irfan A, Khan WU, et al. A Superficial Intramolecular Alignment of Carbon Nitride through Conjugated Monomer for Optimized Photocatalytic CO2 Reduction. Catalysts. 2021; 11(8):935. https://doi.org/10.3390/catal11080935
Chicago/Turabian StyleHayat, Asif, Muhammad Sohail, T.A. Taha, Asma M. Alenad, Ikram Uddin, Ashiq Hayat, Tariq Ali, Rahim Shah, Ahmad Irfan, Wasim Ullah Khan, and et al. 2021. "A Superficial Intramolecular Alignment of Carbon Nitride through Conjugated Monomer for Optimized Photocatalytic CO2 Reduction" Catalysts 11, no. 8: 935. https://doi.org/10.3390/catal11080935
APA StyleHayat, A., Sohail, M., Taha, T. A., Alenad, A. M., Uddin, I., Hayat, A., Ali, T., Shah, R., Irfan, A., Khan, W. U., Palamanit, A., Al-Hadeethi, Y., Syed, J. A. S., Amin, M. A., Khan, J., & Baburao Mane, S. K. (2021). A Superficial Intramolecular Alignment of Carbon Nitride through Conjugated Monomer for Optimized Photocatalytic CO2 Reduction. Catalysts, 11(8), 935. https://doi.org/10.3390/catal11080935