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Abstract: The β-glycosidase LXYL-P1-2 identified from Lentinula edodes can be used to hydrolyze
7-β-xylosyl-10-deacetyltaxol (XDT) into 10-deacetyltaxol (DT) for the semi-synthesis of Taxol. Re-
cent success in obtaining the high-resolution X-ray crystal of LXYL-P1-2 and resolving its three-
dimensional structure has enabled us to perform molecular docking of LXYL-P1-2 with substrate
XDT and investigate the roles of the three noncatalytic amino acid residues located around the active
cavity in LXYL-P1-2. Site-directed mutagenesis results demonstrated that Tyr268 and Ser466 were
essential for maintaining the β-glycosidase activity, and the L220G mutation exhibited a positive
effect on increasing activity by enlarging the channel that facilitates the entrance of the substrate
XDT into the active cavity. Moreover, introducing L220G mutation into the other LXYL-P1-2 mutant
further increased the enzyme activity, and the β-D-xylosidase activity of the mutant EP2-L220G was
nearly two times higher than that of LXYL-P1-2. Thus, the recombinant yeast GS115-EP2-L220G can
be used for efficiently biocatalyzing XDT to DT for the semi-synthesis of Taxol. Our study provides
not only the prospective candidate strain for industrial production, but also a theoretical basis for
exploring the key amino acid residues in LXYL-P1-2.

Keywords: site-directed mutagenesis; β-glycosidase; enzyme activity; molecular docking; biocatalysis

1. Introduction

Enzyme-based biocatalysis has been applied in many areas, especially in pharmaceuti-
cals, chemicals, fragrances, cosmetics, and biofuels [1–5]. The effective catalytic properties
of enzymes have promoted their applications. Developments in biotechnology, particularly
in the area of protein engineering, have provided important tools for efficiently improving
enzyme properties [6–9], such as increasing catalytic efficiency [10] and/or specific sub-
strate recognition [11,12] or improving thermal stability [13–16]. In recent years, more and
more protein crystal structures have been resolved with the development of analytic tech-
nology. Based on the information obtained by molecular docking and other analysis, the
key amino acid residues related to enzyme activity can be speculated, and their roles can
be identified through targeted mutation [17,18]. Moreover, the specific amino acid residues
of enzyme can be chosen to be precisely designed to improve the enzyme property. This
method has the characteristics of simple operation and high success rate, and can obtain
mutants with improved properties in a short time [19–21]. Meanwhile, the results obtained
through rational design can, in turn, increase the understanding of the enzyme catalytic
mechanism, thus further increase the successful rate of beneficial enzyme modification,
and also lay a foundation for the functional elucidation of unknown protein [22].

Taxol (generic name: paclitaxel), a well-known blockbuster anticancer drug, has
an extremely low content in yew bark [23–26]. However, the content of 7-β-xylosyl-10-
deacetyltaxol (XDT), an analogue of Taxol, is much higher than that of Taxol in several
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Taxus species, such as T. wallichiana and T. chinese. The bifunctional β-D-xylosidase/β-D-
glucosidase LXYL-P1-2 was identified from Lentinula edodes, which belongs to the glycoside
hydrolase 3 (GH3) family and shows very low similarity with other known GHs. More im-
portantly, LXYL-P1-2 can remove the C7 xylosyl group from XDT to form 10-deacetyltaxol
(DT), which can be acetylated at the C10 position to produce Taxol (Scheme 1) [27,28].
Moreover, LXYL-P1-2 has been successfully expressed in Pichia pastoris, and the recom-
binant yeast can be used as a biocatalyst to convert XDT into DT for the semi-synthesis
of Taxol [29–31]. Thus, LXYL-P1-2 has a great potential in the pharmaceutical industry.
Recently, the high-resolution X-ray crystal of LXYL-P1-2 has been successfully obtained and
its three-dimensional structure has been resolved [32]. On this basis, molecular docking of
LXYL-P1-2 and substrate XDT was carried out, and the specific amino acid sites other than
catalytic sites were selected, which may play critical roles in enzyme activity. Then, the
site-directed mutagenesis of selected noncatalytic residues was conducted to investigate
their roles in LXYL-P1-2. Furthermore, the beneficial mutation was introduced into the
other LXYL-P1-2 mutant to acquire a mutant with higher activity, which provides the
prospective candidate strain for industrial production of Taxol.
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Scheme 1. The β-glycosidase LXYL-P1-2 hydrolyzes the xylosyl group from XDT to produce DT for the semi-synthesis of
Taxol. XDT, 7-β-xylosyl-10-deacetyltaxol; DT, 10-deacetyltaxol.

2. Results
2.1. Selection of Mutation Sites

To find the key amino acid residues that affect the activity of the β-glycosidase LXYL-
P1-2, molecular docking between the enzyme and the substrate XDT was conducted based
on the three-dimensional structure of LXYL-P1-2 (PDB code 6JBS). As shown in Figure 1a,
the substrate XDT is in the active cavity of LXYL-P1-2, where the 7-xylosyl group is close
to the catalytic sites Asp300 and Glu529. In the enzyme-substrate complex model, Glu529

provides protons and Asp300 performs nucleophilic attack, which is consistent with the
catalytic mechanism of other glycosidases. Other than the early confirmed catalytic sites
(Asp300 and Glu529), three noncatalytic residues Leu220, Tyr268, and Ser466, located around
the active cavity of the enzyme, have attracted our attention. We hypothesize that these
residues play important roles in enzyme activity of LXYL-P1-2. Among them, Leu220 is
located at the channel where the substrate enters the active cavity. It is assumed that the
XDT may more easily enter the active pocket if Leu220 was replaced with Gly220 which
has a smaller side chain (Figure 1b,c). Moreover, Tyr268 is very close to the substrate, and
can form hydrogen bonds with the substrate, catalytic sites Asp300, and the surrounding
amino acids Trp301. Meanwhile, Ser466 is also close to the substrate, and can form the
hydrogen bonds with the catalytic sites Glu529 and other surrounding amino acids Asp109

and Arg115 (Figure 1b). The analysis results implied that the existence of these hydrogen
bonds may be critical for enzyme activity. Therefore, in order to investigate the roles of
these hydrogen bonds, Tyr268 and Ser466 were mutated into Glu268 and Asp466, respectively,
in which the numbers of hydrogen bonds formed by Y268E and S466D mutants were
decreased (Figure 1d,e).
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Close-up view of molecular docking of LXYL-P1-2 (b) and mutants harboring L220G (c), T268E (d), and S466D (e) mutations
with XDT. The carbon atoms of XDT are shown in wheat. The catalytic sites (Asp300 and Glu529) are shown in green. The
residues (Leu220, Tyr268, and Ser466) predicted to play important roles on enzyme activity are shown in magenta. The
mutated sites are shown in red. Hydrogen bonds are shown as dotted lines.

2.2. Measurement of β-Glycosidase Activities of Mutant Strains

In order to investigate the effect of L220G, Y268E, and S466D mutations on the en-
zyme activity, the corresponding recombinant yeasts were constructed, and their biomass
enzyme activities were detected as described previously [33]. As shown in Figure 2a,b, the
β-D-xylosidase and β-D-glucosidase activities of GS115-L220G were always higher than
those of GS115-P1-2 during the entire fermentation stage. At the induction time of 7 d
by methanol, the β-D-xylosidase and β-D-glucosidase activities of GS115-L220G reached
1.27 × 105 U/g and 3.33 × 105 U/g, respectively, which increased by 13% and 25% com-
pared with those of GS115-P1-2 (1.12 × 105 U/g and 2.67 × 105 U/g, respectively). How-
ever, the β-D-xylosidase and β-D-glucosidase activities of the mutants GS115-Y268E and
GS115-S466D were almost lost. Moreover, the induced recombinant cells were harvested
after 7 d of cultivation, and the conversion rates towards XDT by the recombinant cells
were also measured. As shown in Figure 2c, the hydrolytic activity on XDT of the mutant
GS115-L220G was 1.13 times higher than that of the wild-type. Nevertheless, the hydrolytic
activities on XDT of the mutant strains GS115-Y268E and GS115-S466D were significantly
decreased or even lost compared with that of the control, indicating that Tyr268 and Ser466

are essential for maintaining the enzyme activity.

2.3. Effect of L220G Mutation on the Activity of the Other LXYL-P1-2 Mutant EP2

In our previous study, we obtained a highly active mutant EP2 which harbored
the T368E mutation in LXYL-P1-2 through directed evolution strategy [34]. To further
confirm whether the L220G mutation is beneficial for the further improvement of EP2,
we introduced the L220G mutation into EP2, and the enzyme activity of corresponding
recombinant yeast was measured. The results showed that the introduction of L220G
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mutation into the EP2 also led to the improvement of the β-glycosidase activity and
the ability to hydrolyze the substrate XDT of the recombinant yeast GS115-EP2-L220G
(Figure 3). Moreover, the β-D-xylosidase and the β-D-glucosidase activities of GS115-EP2-
L220G were 1.7 times and 1.4 times higher than those of GS115-P1-2, respectively.
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2.4. Specific β-Glycosidase Activities of the Mutants

To further analyze the specific β-glycosidase activities of the mutants, the recombinant
proteins were purified and their activities were evaluated. As shown in Figure 4a, the β-D-
xylosidase activities of the mutants P1-2-L220G and EP2-L220G were both increased, which
were 1.55 times and 1.17 times of those of the corresponding controls, respectively. More-
over, the mutant EP2-L220G was 1.8 times higher than LXYL-P1-2 in the β-D-xylosidase
activity. As EP2-L220G is the mutant harboring the T368E and L220G mutation in LXYL-P1-
2, the result indicated that the combination of double mutations exhibited a synergetic effect
on increasing the β-D-xylosidase activity. Similarly, the β-D-glucosidase activities of these
mutants were also enhanced (Figure 4b), although the increasing degree in β-D-glucosidase
activity was less than that in β-D-xylosidase activity.

2.5. Kinetic Analysis of LXYL-P1-2 Mutants against XDT

The kinetic parameters of the mutated enzymes against XDT were determined at
the optimal temperature and pH. The results are listed in Table 1. The turnover number
(kcat) of P1-2-L220G and EP2-L220G against XDT were significantly increased, which were
3.1-fold and 6.2-fold higher than those of controls, respectively. Meanwhile, the Km values
of the above mutants were also enhanced compared with those of controls. Nevertheless,
the catalytic efficiencies (kcat/Km) of P1-2-L220G and EP2-L220G against XDT were still
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increased compared with those of LXYL-P1-2 and EP2, respectively. Consequently, the
catalytic efficiency of EP2-L220G against XDT was 1.7-fold higher than that of LXYL-P1-2.

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 4. Specific activities of different L220G mutants against PNP-Xyl (a) and PNP-Glc (b). 
P1-2-L220G and EP2-L220G are the enzymes harboring L220G mutation. LXYL-P1-2 and P1-2-EP2 
are used as controls, respectively. Data are the mean ± SD, n = 3. 

2.5. Kinetic Analysis of LXYL-P1-2 Mutants against XDT 
The kinetic parameters of the mutated enzymes against XDT were determined at the 

optimal temperature and pH. The results are listed in Table 1. The turnover number (kcat) 
of P1-2-L220G and EP2-L220G against XDT were significantly increased, which were 
3.1-fold and 6.2-fold higher than those of controls, respectively. Meanwhile, the Km values 
of the above mutants were also enhanced compared with those of controls. Nevertheless, 
the catalytic efficiencies (kcat/Km) of P1-2-L220G and EP2-L220G against XDT were still 
increased compared with those of LXYL-P1-2 and EP2, respectively. Consequently, the 
catalytic efficiency of EP2-L220G against XDT was 1.7-fold higher than that of 
LXYL-P1-2. 

Table 1. Kinetic parameters for the hydrolysis of XDT by mutants harboring L220G mutation. 

Vmax (μmol L−1 min−1) Km (mmol L−1) kcat (s−1) kcat/Km (mmol L−1 s−1) 
LXYL-P1-2 7.28 (± 0.13) 0.50 (± 0.01) 4.37 (± 0.08) 8.72 (± 0.09) 
P1-2-L220G 22.42 (± 2.42) 1.47 (± 0.15) 13.44 (± 1.45) 9.17 (± 0.22) * 

EP2 3.30 (± 0.04) 0.15 (± 0.01) 1.98 (± 0.03) 13.44 (± 0.76) *** 
EP2-L220G 20.70 (± 0.60) 0.86 (± 0.10) 12.41 (± 1.01) 14.45 (± 0.60) *** 
Note: Data are the mean (± SD), n = 3. * p < 0.05 vs. LXYL-P1-2 and *** p < 0.001 vs. LXYL-P1-2. 

3. Discussion 
Based on the available structure information of LXYL-P1-2, the molecular docking 

between the LXYL-P1-2 and XDT was conducted. The three noncatalytic amino acid 
residues Leu220, Tyr268, and Ser466, located around the active cavity, were speculated to 
have greater impacts on the activity of the enzyme. Thus, these three sites were chosen 
for mutation. Through the site-directed mutagenesis of LXYL-P1-2, we obtained three 
variants including P1-2-L220G, P1-2-Y268E, and P1-2-S466D. The β-D-xylosidase and 
β-D-glucosidase activities of P1-2-Y268E and P1-2-S466D were almost completely lost, 
indicating that Tyr268 and Ser466 are very important for maintaining the spatial structure 
and physical and chemical environment of the active center. As Tyr268 and Ser466 form the 
hydrogen bonds with the glycoside structure of XDT, the catalytic sites and the sur-
rounding amino acids, the Y268E or the S466D mutation may decrease the stability of the 
substrate in the active pocket of enzyme, and change the protein conformation near the 
catalytic sites, which is not conducive to the progress of the catalytic reaction. Moreover, 
as we expected, the β-D-xylosidase and β-D-glucosidase activities of P1-2-L220G and its 
ability to hydrolyze the substrate XDT were much higher than those of the control, which 
suggest that the L220G mutation has exhibited the positive effect on increasing the en-
zyme activity. Similar phenomenon was also observed when the L220G mutation was 

Figure 4. Specific activities of different L220G mutants against PNP-Xyl (a) and PNP-Glc (b). P1-2-
L220G and EP2-L220G are the enzymes harboring L220G mutation. LXYL-P1-2 and P1-2-EP2 are
used as controls, respectively. Data are the mean ± SD, n = 3.

Table 1. Kinetic parameters for the hydrolysis of XDT by mutants harboring L220G mutation.

Vmax (µmol L−1 min−1) Km (mmol L−1) kcat (s−1) kcat/Km (mmol L−1 s−1)

LXYL-P1-2 7.28 (±0.13) 0.50 (±0.01) 4.37 (±0.08) 8.72 (±0.09)
P1-2-L220G 22.42 (±2.42) 1.47 (±0.15) 13.44 (±1.45) 9.17 (±0.22) *

EP2 3.30 (±0.04) 0.15 (±0.01) 1.98 (±0.03) 13.44 (±0.76) ***
EP2-L220G 20.70 (±0.60) 0.86 (±0.10) 12.41 (±1.01) 14.45 (±0.60) ***

Note: Data are the mean (± SD), n = 3. * p < 0.05 vs. LXYL-P1-2 and *** p < 0.001 vs. LXYL-P1-2.

3. Discussion

Based on the available structure information of LXYL-P1-2, the molecular docking
between the LXYL-P1-2 and XDT was conducted. The three noncatalytic amino acid
residues Leu220, Tyr268, and Ser466, located around the active cavity, were speculated to
have greater impacts on the activity of the enzyme. Thus, these three sites were chosen
for mutation. Through the site-directed mutagenesis of LXYL-P1-2, we obtained three
variants including P1-2-L220G, P1-2-Y268E, and P1-2-S466D. The β-D-xylosidase and
β-D-glucosidase activities of P1-2-Y268E and P1-2-S466D were almost completely lost,
indicating that Tyr268 and Ser466 are very important for maintaining the spatial structure
and physical and chemical environment of the active center. As Tyr268 and Ser466 form the
hydrogen bonds with the glycoside structure of XDT, the catalytic sites and the surrounding
amino acids, the Y268E or the S466D mutation may decrease the stability of the substrate
in the active pocket of enzyme, and change the protein conformation near the catalytic
sites, which is not conducive to the progress of the catalytic reaction. Moreover, as we
expected, the β-D-xylosidase and β-D-glucosidase activities of P1-2-L220G and its ability
to hydrolyze the substrate XDT were much higher than those of the control, which suggest
that the L220G mutation has exhibited the positive effect on increasing the enzyme activity.
Similar phenomenon was also observed when the L220G mutation was introduced into
EP2, resulting in mutant EP2-L220G with higher β-D-xylosidase activity than that of the
control. Furthermore, it was found that the maximum reaction rate (Vmax) and turnover
number (kcat) of the mutants for hydrolyzing XDT were significantly higher than those of
the controls, demonstrating that the L220G mutation is an important factor for increasing
the conversion rate of XDT in the biocatalytic reaction. In addition, we observed that the
effect of the L220G mutation on the improvement of β-D-glucosidase activity is not obvious,
possibly as the complex model was based on the substrate XDT, and the mutation was not
necessarily suitable for the enhancement of β-D-glucosidase activity. Thus, the roles of
amino acid residues involved in the hydrolysis of β-xyloside may not be exactly the same
as those in hydrolysis of β-glucoside.
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To further explore how the L220G and T368E mutations in EP2-L220G affect the
enzyme activity, molecular docking between the mutant EP2-L220G and the substrate XDT
was conducted. As shown in Figure 5, Leu220 is located at the channel through which
the substrate enters the active cavity. Turning Leu into Gly with a smaller side chain
volume may allow the substrate to enter the active cavity more smoothly. Meanwhile,
T368E mutation may alter the profile of the loop near the active pocket, which may be more
conducive to the catalytic reaction.
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4. Materials and Methods
4.1. Plasmids and Strains

The recombinant expression plasmids pPIC3.5K-LXYL-P1-2 and pPIC3.5K-LXYL-P1-
2-EP2 harboring the lxyl-p1-2 and lxyl-p1-2-EP2, respectively were previously constructed
in our laboratory. The Pichia pastoris GS115-P1-2 and GS115-EP2 were constructed by
transforming the corresponding plasmid into the host strain P. pastoris GS115 (Mut+). All
the strains were preserved at −80 ◦C prior to use.

4.2. Molecular Docking between LXYL-P1-2 the Substrate XDT

Molecular docking between LXYL-P1-2 (PDB code 6JBS) and XDT substrate was
conducted using AutoDockTools software. The center point of the Grid Box was set in the
middle of the active cavity, and the range of the Grid Box was set as 26 × 26 × 26, which
ensures the Grid Box covers the whole active cavity.

4.3. Mutation of Key Residues in LXYL-P1-2

Site-directed mutations in LXYL-P1-2 were conducted through whole-plasmid am-
plification. Primers used are listed in Table 2. First, the expression plasmid pPIC3.5K-
LXYL-P1-2 was used as a template in the PCR reactions. PCR was performed with Phusion
DNA polymerase using the following pairs of primers: p1-2-L220G-F/ p1-2-L220G-R,
p1-2-Y268E-F/p1-2-Y268E-R, and p1-2-S466D-F/p1-2-S466D-R, respectively. The PCR run
started with a first cycle of 30 s at 98 ◦C, and followed by 30 cycles of 10 s at 98 ◦C, 30 s at
60 ◦C, and 1 min at 72 ◦C. The PCR was ended with an extension step of 10 min at 72 ◦C.
Then, the PCR products were purified and digested by Dpn I at 37 ◦C for 3 h and trans-
formed into DMT competent cells (Transgen, Beijing, China). The corresponding plasmids
were extracted. Finally, after verification by DNA sequencing, the recombinant plasmids
were transformed into P. pastoris GS115 and the transformants were screened as mentioned
previously [33]. The resulting mutant strains were referred to as GS115-L220G, GS115-
Y268E, and GS115-S466D, respectively. For the construction of the variant harboring L220G
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mutation in EP2, the PCR amplification was conducted using the plasmid pPIC3.5K-LXYL-
P1-2-EP2 as a template and the primers p1-2-L220G-F/p1-2-L220G-R. The corresponding
strain was constructed as mentioned above and referred to as GS115-EP2-L220G.

Table 2. Primers used for construction of lxyl-p1-2 variants.

Primer Sequence (5′ → 3′)

p1-2-L220G-F AGAAAT GGA TATATCGACATCGACGGAGTT
p1-2-L220G-R GATGTCGATATA TCC ATTTCTCGATGTTTC
p1-2-Y268E-F CATGTGTTCC GAA AACCGTATCAACAACAC
p1-2-Y268E-R TACGGTT TTC GGAACACATGATATGATTCG
p1-2-S466D-F GGCGGA GAC GGGTCGGCACTTTCACCATAC
p1-2-S466D-R GTGCCGACCC GTC TCCGCCTCCTGTTGTC

Note: Mutated bases are boxed.

4.4. Measurement of β-Glycosidase Activities of Mutant Strains

The mutant strains constructed above were firstly grown at 30 ◦C and 200 rpm for 60 h
in 100 mL buffered minimal glycerol complex medium (BMGY) medium (20 g/L tryptone,
13.4 g/L YNB, 10 g/L yeast extract, 10 g/L glycerol, 0.4 mg/L biotin, 100 mmol/L potas-
sium phosphate buffer, pH 6.0). In order to induce the heterologous protein expression,
1 mL methanol was added in the 100 mL culture every day. Meanwhile, the β-D-xylosidase
and β-D-glucosidase activities were analyzed by periodic sampling. Briefly, the cells were
firstly collected via centrifugation and washed twice with dH2O. After resuspending the
cells in dH2O in the same volume of culture broth, 10 µL cell suspension was mixed with
100 µL p-nitrophenyl-β-D-xylopyranoside (PNP-Xyl, 5 mmol/L) or p-nitrophenyl-β-D-
glucopyranoside (PNP-Glc, 5 mmol/L), and the β-glycosidase activities were measured as
described previously [34]. Furthermore, the conversion rates towards XDT by the mutant
strains were also measured. After inducing protein expression for 7 days, the recombinant
cells were collected and freeze dried. The dried cells (16 mg) were resuspended in 1.8 mL
of 0.1 M sodium acetate buffer (pH 4.0), to which 200 µL of 100 mg/mL XDT was added.
The reaction was performed at 45 ◦C for 24 h. Finally, the reaction was stopped by adding
menthol. The products were assayed via HPLC and conversion rate was calculated as
described previously [34].

4.5. Purification of Recombinant LXYL-P1-2 Mutants

After 7 days of induction, the recombinant yeasts harboring L220G mutation were
collected, and the proteins were purified as described in our previous report [33]. Briefly,
the cells were harvested by centrifugation at 10,000× g for 10 min, then washed and
resuspended in buffer A (20 mM Tris-HCl, pH 8.0). The cells were lysed by high-pressure
cell disruption (APV-2000, SPX Corporation, Charlotte, NC, USA) for 10 cycles, and the
cellular debris was removed by centrifugation at 16,000× g for 30 min. After filtration
through a 0.45 µm filter, the supernatant was subjected to a 2 mL nickel bonded affinity
chromatography, and sequentially eluted by 20 mM, 60 mM, and 200 mM imidazole
solution (pH 8.0). The elution fraction from 60 mM imidazole was merged together and
concentrated. Then, the concentrated sample was further purified through preparative high
performance liquid chromatography by using Agilent Zorbax Bio Series GF-450 column.
Next, 500 µL supernatant was subjected to the column and eluted by 0.1 M potassium
phosphate buffer (pH 8.0) at the flow rate of 0.5 mL/min and the UV wavelength of 280 nm.
Finally, the purified fractions were concentrated by ultrafiltration, and flash frozen at
−80 ◦C.

4.6. Enzyme Activities and Kinetics Parameters Measurement of LXYL-P1-2 Mutants

The β-D-xylosidase and β-D-glucosidase activities of the purified proteins harboring
L220G mutation were measured using substrate PNP-Xyl or PNP-Glc, as mentioned in our
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previous report [34]. Concretely, 50 µL of 5 mmol/L PNP-Xyl or PNP-Glc was added into
10 µL of 0.1 mg/mL enzyme in 50 mmol/L sodium acetate buffer with pH 5.0, and the
reaction was performed under 50 ◦C for 20 min. Reactions were stopped by adding 1 mL
saturated Na2B4O7 solution. The enzymatic activity was assayed using spectrophotometry
based on the absorbance at 405 nm. One unit of activity was defined as the amount of
enzyme that catalyzed the formation of 1 nmol/L p-nitrophenol per minute. The kinetic
parameters against XDT of the mutants harboring L220G mutation were evaluated as
described previously [34].

5. Conclusions

In conclusion, we investigated the roles of the three noncatalytic amino acid residues
located around the active cavity in LXYL-P1-2. The site-directed mutagenesis demonstrated
that Tyr268 and Ser466 were essential for maintaining the β-glycosidase activity of LXYL-P1-
2 and the L220G mutation exhibited the positive effect on increasing activity by enlarging
the channel that facilitates the entrance of the substrate XDT into the active cavity. Moreover,
introducing L220G mutation into the highly active mutant EP2 further increased the
enzyme activity, and the β-D-xylosidase activity of the mutant EP2-L220G was nearly two
times higher than that of LXYL-P1-2. Thus, the recombinant yeast GS115-EP2-L220G can
be used for efficiently biocatalyzing XDT to DT for the semi-synthesis of Taxol. Our study
provides not only the prospective candidate strain for industrial production, but also a
theoretical basis for exploring the key amino acid residues in LXYL-P1-2.
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