Hydrogen-Assisted Thermocatalysis over Titanium Nanotube for Oxidative Desulfurization
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.1.1. X-ray Diffraction
2.1.2. FT-IR Spectra
2.1.3. SEM
2.1.4. BET Surface Area and Pore Size (Calculated by Nitrogen Adsorption–Desorption)
2.1.5. UV Analysis
2.1.6. Raman Analysis
2.1.7. NH3-TPD
2.2. Catalytic Performancefor ODS
2.2.1. ODS over Titanium Nanotube Catalysts
2.2.2. Desulfurization for Various Reaction Temperatures
2.2.3. Recycling
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.G.; Wilson, K.; Lee, A.F. Heterogeneously Catalyzed Hydrothermal Processing of C5–C6 Sugars. Chem. Rev. 2016, 116, 12328–12368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Zuo, M.G.; Shao, P.P.; Huang, X.Q.; Li, J.X.; Duan, Y.S.; Zhou, H.L.; Yan, L.J.; Lu, S.X. Oxidative desulfurization of 4,6-dimethyldibenzothiophene over short titanate nanotubes: A non-classical shape selective catalysis. J. Porous Mater. 2020, 27, 331–338. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Zhang, L.; Pei, T.T.; Dong, L.; Zhou, P.Y.; Li, C.Q.; Xia, L.X. Acidic polymeric ionic liquids based reduced graphene oxide: An efficient and rewriteable catalyst for oxidative desulfurization. Chem. Eng. J. 2018, 334, 285–295. [Google Scholar] [CrossRef]
- Seredych, M.; Bandosz, T.J. Template-derived mesoporous carbons with highly dispersed transition metals as media for reactive adsorption of dibenzothiophene. Langmuir 2007, 23, 6033–6041. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Song, C.; Ma, X.; Li, Z. Efects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon. Ind. Eng. Chem. Res. 2007, 51, 3436–3443. [Google Scholar] [CrossRef]
- Zuo, M.G.; Huang, X.Q.; Li, J.X.; Chang, Q.; Duan, Y.S.; Yan, L.J.; Xiao, Z.Z.; Mei, S.D.; Lu, S.X.; Yao, Y. Oxidative desulfurization in diesel via a titanium dioxide triggered thermocatalytic mechanism. Catal. Sci. Technol. 2019, 9, 2923–2930. [Google Scholar] [CrossRef]
- Ma, C.H.; Dai, B.; Xu, C.X.; Liu, P.; Qi, L.L.; Ban, L.L. Deep oxidative desulfurization of model fuel via dielectric barrier discharge plasma oxidation using MnO2 catalysts and combination of ionic liquid extraction. Catal. Today 2013, 211, 84–89. [Google Scholar] [CrossRef]
- Lu, S.X.; Zhong, H.; Mo, D.; Hu, Z.; Zhou, H.; Yao, Y. A H-titanate nanotube with superior oxidative desulfurization selectivity. Green Chem. 2017, 19, 1371–1377. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Y.J.; Cui, Y.C.; Luo, G.S. Direct synthesis of mesoporous TiO2 and its catalytic performance in DBT oxidative desulfurization. Microporous Mesoporous Mater. 2008, 116, 378–385. [Google Scholar] [CrossRef]
- Lorencon, E.; Alves, D.C.B.; Krambrock, K.; Avila, E.S. Oxidative desulfurization of dibenzothiophene over titanate nanotubes. Fuel 2014, 132, 53–61. [Google Scholar] [CrossRef]
- Ma, W.C.; Xie, S.J.; Liu, T.T.; Fan, Q.Y.; Ye, J.Y.; Sun, F.F. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487. [Google Scholar] [CrossRef]
- Ren, X.L.; Miao, G.; Xiao, Z.Y.; Ye, F.Y.; Li, Z.; Wang, H.H.; Xiao, J. Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions. Fuel 2016, 174, 118–125. [Google Scholar] [CrossRef]
- Wei, Y.; Li, G.; Yi, Y.H.; Liu, J.X.; Guo, H.C. An octane mediated strategy towards Ti-containing HMS-type mesoporous materials incorporated with methyl for high-efficiency oxidative desulfurization. Fuel 2020, 280, 118660. [Google Scholar] [CrossRef]
- Ohno, T.; Masaki, Y.; Hirayama, S.; Matsumura, M. TiO2-Photocatalyzed Epoxidation of 1-Decene by H2O2 under Visible Light. J. Catal. 2001, 204, 163–168. [Google Scholar] [CrossRef]
- Liu, Y.J.; Aizawa, M.; Wang, Z.M.; Hatori, H.; Uekawa, N.; Kanoh, H. Comparative examination of titania nanocrystals synthesized by peroxo titanic acid approach from different precursors. J. Colloid Interface Sci. 2008, 322, 497–504. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, Y.J.; Wu, H.H.; Lu, S.X. Pt-promoted and Hβ zeolite-supported Ni2P catalysts for hydroisomerisation of n-heptane. Fuel Process. Technol. 2015, 133, 146–151. [Google Scholar] [CrossRef]
- Lin, X.H.; Wu, Y.; Xiang, J.; He, D.; Li, S.F. Elucidation of mesopore-organic molecules interactions in mesoporous TiO2 photocatalysts to improve photocatalytic activity. Appl. Catal. B Environ. 2016, 199, 64–74. [Google Scholar] [CrossRef]
- Kakihana, M.; Tada, M.; Shiro, M.; Petrykin, V.; Osada, M.; Nakamura, Y. Structure and stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4]·8H2O. Inorg. Chem. 2001, 40, 891–894. [Google Scholar] [CrossRef]
- Nag, M.; Ghosh, S.; Rana, R.K.; Manorama, S.V. Controlling Phase, Crystallinity, and Morphology of Titania Nanoparticles with Peroxotitanium Complex: Experimental and Theoretical Insights. J. Phys. Chem. Lett. 2010, 19, 2881–2885. [Google Scholar] [CrossRef]
- Chaudhuri, M.K.; Das, B. Direct synthesis of alkali-metal and ammonium pentafluoroperoxytitanates(IV), A3[Ti(O2)F5], and first synthesis and structural assessment of alkali-metal and ammonium difluorodiperoxytitanates(IV), A2[Ti(O2)2F2]. Inorg. Chem. 1986, 25, 168–170. [Google Scholar] [CrossRef]
- Lu, S.X.; Zhang, H.; Wu, D.; Han, X.; Yao, Y.; Zhang, Q.Z. An Efficient and recyclable polyoxometalate-based hybrid catalyst for heterogeneous deep oxidative desulfurization of dibenzothiophene derivatives with oxygen. RSC Adv. 2016, 6, 79520–79525. [Google Scholar] [CrossRef]
- Huang, C.Y.; Guo, R.T.; Pan, W.G.; Tang, J.Y.; Zhou, W.G.; Liu, X.Y.; Qin, H.; Jia, P.Y. One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction. Appl. Surf. Sci. 2019, 464, 534–543. [Google Scholar] [CrossRef]
- Cano-Casanova, L.; Amoros-Perez, A.; Ouzzine, M.; Lillo-Rodenas, M.A.; Roman-Martinez, C. One step hydrothermal synthesis of TiO2 with variable HCl concentration: Detailed characterization and photocatalytic activity in propene oxidation. Appl. Catal. B 2018, 220, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160–3163. [Google Scholar] [CrossRef]
- Bi, J.T.; Wang, J.K.; Yang, J.X.; Lu, H.J.; Wang, T.; Huang, X.; Hao, H.X. Double-layered hierarchical titanate and its attaching and splitting mechanism. Ceram. Int. 2019, 9, 12290–12296. [Google Scholar] [CrossRef]
- Yao, Y.; Zuo, M.G.; Zhou, H.L.; Li, J.Y.; Shao, H.Q.; Jiang, T.; Liao, X.Y.; Lu, S.X. One-Pot Preparation of Ni2P/γ-Al2O3 Catalyst for Dehydrogenation of Propane to Propylene. ChemistrySelect 2018, 3, 10532–10536. [Google Scholar] [CrossRef]
- Liao, X.Y.; Wu, D.; Geng, B.Y.; Lu, S.X.; Yao, Y. Deep oxidative desulfurization catalyzed by (NH4)xH4−xPMo11VO40 (x=1, 2, 3, 4) using O2 as an oxidant. RSC Adv. 2017, 7, 48454–48460. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.J.; Yao, Y.; Zhi, Y.H.; Yan, L.J.; Lu, S.X. Combined extraction-oxidation system for oxidative desulfurization (ODS) of a model fuel. Energy Fuels 2015, 29, 618–625. [Google Scholar] [CrossRef]
- Chica, A.; Corma, A.; Domine, M.E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. J. Catal. 2006, 242, 299–308. [Google Scholar] [CrossRef]
Catalysts | SBET (m2/g) | Pore Size (nm) |
---|---|---|
NT-purchased | 45 | 3.9 |
NT-P25 | 245 | 3.7 |
NT-TBOT | 283 | 3.7 |
Catalysts | CNa+(μg/mL) Na-NT | CNa+(μg/mL)H-NT | Total Acidity a H–NT | Effective Reactant Concentration b |
---|---|---|---|---|
NT-P25 | 82.8 | 5.0 | 171.6 | 66.3 |
NT-TBOT | 36.4 | 2.6 | 229.5 | 70.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Yao, Y.; Huang, X. Hydrogen-Assisted Thermocatalysis over Titanium Nanotube for Oxidative Desulfurization. Catalysts 2022, 12, 29. https://doi.org/10.3390/catal12010029
Tang W, Yao Y, Huang X. Hydrogen-Assisted Thermocatalysis over Titanium Nanotube for Oxidative Desulfurization. Catalysts. 2022; 12(1):29. https://doi.org/10.3390/catal12010029
Chicago/Turabian StyleTang, Weiwei, Yue Yao, and Xiaoqiao Huang. 2022. "Hydrogen-Assisted Thermocatalysis over Titanium Nanotube for Oxidative Desulfurization" Catalysts 12, no. 1: 29. https://doi.org/10.3390/catal12010029
APA StyleTang, W., Yao, Y., & Huang, X. (2022). Hydrogen-Assisted Thermocatalysis over Titanium Nanotube for Oxidative Desulfurization. Catalysts, 12(1), 29. https://doi.org/10.3390/catal12010029