A Membrane Reactor with Microchannels for Carbon Dioxide Reduction in Extraterrestrial Space
Abstract
:1. Introduction
2. Results and Discussion
2.1. System and Reactor Structure
2.2. Morphology and Structure Characterization
2.3. CO2 Reduction Performance
2.3.1. Voltage
2.3.2. Flow Rate
2.3.3. Channel Structure
2.3.4. Membrane
2.3.5. Stability
2.3.6. O2 Production Capability
3. Materials and Methods
3.1. Materials and Electrode Preparation
3.2. Characterization Methods
3.3. Performance Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Messerschmid, E.; Bertrand, R. Space Stations: Systems and Utilization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Law, J.; Watkins, S.; Alexander, D. In-flight carbon dioxide exposures and related symptoms: Association, susceptibility, and operational implications. NASA Tech. Paper 2010, 216126, 2010. [Google Scholar]
- Greenwood, Z.; Abney, M.; Stanley, C.; Brown, B.; Fox, E. State of NASA Oxygen Recovery. In Proceedings of the 48th International Conference on Environmental Systems, Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Hinterman, E.; Hoffman, J.A. Simulating oxygen production on Mars for the Mars Oxygen In-Situ Resource Utilization Experiment. Acta Astronaut. 2020, 170, 678–685. [Google Scholar] [CrossRef]
- Hecht, M.; Hoffman, J.; Rapp, D.; McClean, J.; SooHoo, J.; Schaefer, R.; Aboobaker, A.; Mellstrom, J.; Hartvigsen, J.; Meyen, F. Mars Oxygen ISRU Experiment (MOXIE). Space Sci. Rev. 2021, 217, 1–76. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, C.; Yu, X.; Yao, Y.; Li, Z.; Wu, C.; Yao, W.; Zou, Z. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization. Natl. Sci. Rev. 2021, 8, nwab104. [Google Scholar] [CrossRef]
- Ma, D.; Jin, T.; Xie, K.; Huang, H. An overview of flow cell architectures design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A 2021, 9, 20897–20918. [Google Scholar] [CrossRef]
- O’Brien, C.P.; Miao, R.K.; Liu, S.; Xu, Y.; Lee, G.; Robb, A.; Huang, J.E.; Xie, K.; Bertens, K.; Gabardo, C.M. Single Pass CO2 Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO2 Regeneration. ACS Energy Lett. 2021, 6, 2952–2959. [Google Scholar] [CrossRef]
- Gabardo, C.M.; O’Brien, C.P.; Edwards, J.P.; McCallum, C.; Xu, Y.; Dinh, C.-T.; Li, J.; Sargent, E.H.; Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3, 2777–2791. [Google Scholar] [CrossRef]
- Dunfeng, G.; Pengfei, W.; Hefei, L.; Long, L.; Guoxiong, W.; Xinhe, B. Designing Electrolyzers for Electrocatalytic CO2 Reduction. Acta Phys.-Chim. Sin. 2021, 37, 2009021-0. [Google Scholar]
- Luo, Y.; Zhang, K.; Li, Y.; Wang, Y. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 2021, 1–20. [Google Scholar] [CrossRef]
- Lee, W.H.; Kim, K.; Lim, C.; Ko, Y.-J.; Hwang, Y.J.; Min, B.K.; Lee, U.; Oh, H.-S. New strategies for economically feasible CO2 electroreduction using a porous membrane in zero-gap configuration. J. Mater. Chem. A 2021, 9, 16169–16177. [Google Scholar] [CrossRef]
- Wei, P.; Li, H.; Lin, L.; Gao, D.; Zhang, X.; Gong, H.; Qing, G.; Cai, R.; Wang, G.; Bao, X. CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Sci. China Chem. 2020, 63, 1711–1715. [Google Scholar] [CrossRef]
- Vennekoetter, J.-B.; Sengpiel, R.; Wessling, M. Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 2019, 364, 89–101. [Google Scholar] [CrossRef]
- Matsushima, H.; Nishida, T.; Konishi, Y.; Fukunaka, Y.; Ito, Y.; Kuribayashi, K. Water electrolysis under microgravity: Part 1. Experimental technique. Electrochim. Acta 2003, 48, 4119–4125. [Google Scholar] [CrossRef]
- Modestino, M.A.; Rivas, D.F.; Hashemi, S.M.H.; Gardeniers, J.G.E.; Psaltis, D. The potential for microfluidics in electrochemical energy systems. Energy Environ. Sci. 2016, 9, 3381–3391. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Ruan, Q.; Xie, J.; Chen, X.; Zhu, Y.; Tang, J. Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. Appl. Catal. B Environ. 2018, 236, 428–435. [Google Scholar] [CrossRef]
- Gu, Z.; Yang, N.; Han, P.; Kuang, M.; Mei, B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 2019, 3, 1800449. [Google Scholar]
- Li, M.; Ma, Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO2 Reduction to C2+. Angew. Chem. 2021, 133, 11588–11594. [Google Scholar] [CrossRef]
- Li, R.; Xu, J.; Zeng, R.; Pan, Q.; Tang, T.; Luo, W. Halides-assisted electrochemical synthesis of Cu/Cu2O/CuO core-shell electrocatalyst for oxygen evolution reaction. J. Power Sources 2020, 457, 228058. [Google Scholar] [CrossRef]
- Weekes, D.M.; Salvatore, D.A.; Reyes, A.; Huang, A.; Berlinguette, C.P. Electrolytic CO2 reduction in a flow cell. Accounts. Chem. Res. 2018, 51, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Edwards, J.P.; Liu, S.; Miao, R.K.; Huang, J.E.; Gabardo, C.M.; O’Brien, C.P.; Li, J.; Sargent, E.H.; Sinton, D. Self-cleaning CO2 reduction systems: Unsteady electrochemical forcing enables stability. ACS Energy Lett. 2021, 6, 809–815. [Google Scholar] [CrossRef]
- Endrődi, B.; Samu, A.; Kecsenovity, E.; Halmágyi, T.; Sebők, D.; Janáky, C. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 2021, 6, 439–448. [Google Scholar] [CrossRef]
- Huang, J.E.; Li, F.; Ozden, A.; Rasouli, A.S.; de Arquer, F.P.G.; Liu, S.; Zhang, S.; Luo, M.; Wang, X.; Lum, Y. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Hu, L.; Ripatti, D.S.; Hu, X.; Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Endrődi, B.; Kecsenovity, E.; Samu, A.; Halmágyi, T.; Rojas-Carbonell, S.; Wang, L.; Yan, Y.; Janáky, C. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energ. Environ. Sci. 2020, 13, 4098–4105. [Google Scholar] [CrossRef]
- Salvatore, D.A.; Gabardo, C.M.; Reyes, A.; O’Brien, C.P.; Holdcroft, S.; Pintauro, P.; Bahar, B.; Hickner, M.; Bae, C.; Sinton, D. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 2021, 6, 339–348. [Google Scholar] [CrossRef]
- Shi, R.; Guo, J.; Zhang, X.; Waterhouse, G.I.; Han, Z.; Zhao, Y.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, W.-H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X. MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew. Chem. Int. Edit. 2021. [Google Scholar] [CrossRef]
- Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and Degradation Mechanisms of Copper-Based Catalysts for Electrochemical CO2 Reduction. Angew. Chem. Int. Edit. 2020, 59, 14736–14746. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Kas, R.; Smith, W.A.; Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 2020, 6, 33–40. [Google Scholar] [CrossRef]
- Choi, C.; Kwon, S.; Cheng, T.; Xu, M.; Tieu, P.; Lee, C.; Cai, J.; Lee, H.M.; Pan, X.; Duan, X. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.; Jiang, W.; Zhang, C.; Li, L.; Hu, B.; Song, J.; Yao, W. A Membrane Reactor with Microchannels for Carbon Dioxide Reduction in Extraterrestrial Space. Catalysts 2022, 12, 3. https://doi.org/10.3390/catal12010003
Feng D, Jiang W, Zhang C, Li L, Hu B, Song J, Yao W. A Membrane Reactor with Microchannels for Carbon Dioxide Reduction in Extraterrestrial Space. Catalysts. 2022; 12(1):3. https://doi.org/10.3390/catal12010003
Chicago/Turabian StyleFeng, Deqiang, Wenjun Jiang, Ce Zhang, Long Li, Botao Hu, Jian Song, and Wei Yao. 2022. "A Membrane Reactor with Microchannels for Carbon Dioxide Reduction in Extraterrestrial Space" Catalysts 12, no. 1: 3. https://doi.org/10.3390/catal12010003
APA StyleFeng, D., Jiang, W., Zhang, C., Li, L., Hu, B., Song, J., & Yao, W. (2022). A Membrane Reactor with Microchannels for Carbon Dioxide Reduction in Extraterrestrial Space. Catalysts, 12(1), 3. https://doi.org/10.3390/catal12010003