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Abstract: Soil pollution has become a substantial environmental problem which is amplified by
overpopulation in different regions. In this review, the state of the art regarding the use of Ad-
vanced Oxidation Processes (AOPs) for soil remediation is presented. This review aims to provide
an outline of recent technologies developed for the decontamination of polluted soils by using
AOPs. Depending on the decontamination process, these techniques have been presented in three
categories: the Fenton process, sulfate radicals process, and coupled processes. The review presents
the achievements of, and includes some reflections on, the status of these emerging technologies, the
mechanisms, and influential factors. At the present, more investigation and development actions are
still desirable to bring them to real full-scale implementation.

Keywords: AOP; soil; pesticides; PAH; petroleum hydrocarbons

1. Introduction

As a key constituent of the natural environment, the soil is crucial for climate change
mitigation, farming production, nature, and biodiversity preservation, and is the foundation
of human health and wealth [1]. However, it is polluted in several ways every day, mainly
from agricultural activities, but also from the industrial, maritime and urban fields [2].
Accordingly, a series of pollutants end up in the soil due to human activities, but natural
events such as hurricanes, floods, and land degradation can also influence the storage,
degradation, and toxicity of organic pollutants [3]. Any contaminant present in a soil
matrix may lead to the contamination of public health and groundwater and, consequently,
prevent the soil’s use.

Among pollution types, the one attracting most attention in the scientific field is
organic contamination, because of the different nature of these compounds and their
significant impact on soils’ health. Accordingly, governments and public organizations
have recognized the potential harm of organic pollutants and are treating the polluted soil
for human health protection, and achieving sustainable development has become a priority.
Thus, in May 2020 the European Commission adopted the new EU Biodiversity Strategy
for 2030, where among different issues, soil sealing and the rehabilitation of contaminated
brownfields will be addressed [4].

The most common organic pollutants found in soils come from a wide range of chemi-
cal classes that include pharmaceuticals, personal care products, dioxin-like compounds,
nitrosamines, building materials, clothing, food packaging, and pesticides. Based on the
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recent literature review, the most worrying contaminants are polycyclic aromatic hydro-
carbons (PAHs; e.g., acenaphthene, phenanthrene, fluoranthene, and pyrene); monomeric
aromatic hydrocarbons (BTEXs; e.g., benzene, toluene, ethylbenzene, and xylene); chlori-
nated compounds (e.g., polychlorinated biphenyls (PCBs), polychlorinated dibenzo-para-
dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs)); petroleum hydrocarbons
(PEH; e.g., alkanes and cycloalkanes); and pesticides (e.g., lindane, atrazine, oxyfluorfen,
and chlorpyrifos) with their degradation products [5]. Some of these organic pollutants
have a high toxicity, are persistent, bioaccumulative, and can lead to negative impacts
on soils’ fertility or even human health. They are included in the Stockholm Convention
on Persistent Organic Pollutants (POPs), which determines the elimination or reduction
of the environmental release of the listed POPs [5]. It is necessary to conduct long-term
monitoring of organic contaminants in the soil to estimate the level of pollution and also
to have an accurate picture of their potential impacts on soil sustainability; in addition,
new, less costly, and more effective methods for pollution prevention are necessary for
environmental protection.

Nowadays, numerous technologies are available and can be applied to solve the
organic pollution problem. Among them, advanced oxidation processes (AOPs) allow
the transformation of organic pollutants with different chemical structures into elements
that are more biodegradable and/or less toxic by using oxidizing agents. Thus, AOPs
are being widely studied and are promising, efficient, and environment-friendly methods
for the removal of diverse types of contaminants. They are based on the use of highly
active radical species [6] such as the hydroxyl radical (•OH) and another species of similar
reactivity such as sulfate radical anion (SO4

•−), and these radicals react with the majority
of organic substances at rates often approaching the diffusion-controlled limit [7]. In most
AOPs, the objective is to produce strong oxidants, mainly hydroxyl radicals (•OH), with E0

(•OH/H2O) = 2.8 V/NHE, being able to non-selectively oxidize any organic pollutant up
to its mineralization (i.e., conversion to CO2 and water), as shown in Reactions (1) and (2)
below [8,9]:

•OH + Organic pollutant→ Primary intermediates (1)

Primary intermediates + •OH→ CO2 + H2O + Inorganic ions (2)

Depending on the physicochemical process directing the formation of these species,
AOPs can be classified into non-photochemical processes (e.g., ozonation, Fenton based
processes, sulfate-based processes, permanganate, and ultrasounds) and photochemical
processes (e.g., UV, UV/hydrogen peroxide, UV/ozone, and photo-Fenton processes).
However, the photochemical process is not recommendable for in situ soil remediation
treatments due to the lack of visible light activity inside the soil matrix [10]. As a result
of their properties, AOPs are considered more effective and economical, because the
application of mechanical remediation on polluted soils is expensive and invasive and the
biological methods can be limited regarding environmental conditions and time-consuming
processes [11].

AOPs and their applications were an interest for researchers beginning only around
1995, and it continues nowadays, since the number of investigations regarding its utilization
in soil remediation is rising considerably [10]. Consequently, these processes are an attrac-
tive alternative for the treatment of contaminated soil with organic pollutants, and in recent
years a growing number of papers have been published regarding their single or combined
use. Thus, AOPs were combined with biological, chemical, electrokinetic processes, and
between themselves to achieve a high degradation efficiency, because combining one or
more remediation methods enables a synergy that exploits the strengths and minimizes the
disadvantages of individual technologies [12].

The last review regarding soil remediation using AOP was published by Cheng et al. [10].
That review summarized published papers from 1995 to 2015, showing that in that period
the majority of studies were focused on the Fenton reaction and ozonation. However, in
the most recent years, research has moved to other technologies, such as sulfate-based pro-
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cesses [13]. This evolution was also observed in an analysis of published papers extracted
from a Scopus search using the keywords [soil] AND [advanced oxidation processes] AND
[organic]. The results of an analysis of the co-occurrence of keywords using bibliographic
network maps from VOS Viewer® are shown in Figure 1 [14]. This figure describes the co-
occurrence network of the top 26 keywords with the most frequent occurrences. The nodes
represent the keywords, and each line denotes the co-occurrence relationship between
the connected keywords. As illustrated in Figure 1, the colour of each keyword is based
on its average appearing year. Before 2010, the studies were mainly focused on Fenton
based processes (Fenton, electro-Fenton, and photo-Fenton). From this year onwards, the
number of scientific publications has increased considerably. There is a trend in terms of
the solutions being sought, as ozonation techniques, sulfate reactions, and biochar are more
frequently used in improving the quality of soils.
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Figure 1. Keyword and overlay visualization co-occurrence analysis of advance oxidation processes
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whereas the red nodes reflect their recent occurrence.

The most common organic pollutants found in the research papers in this review are
summarized in Figure 2. PEH, PAHs, and pesticides have focused the attention of the
current research, and most of the reviewed papers (75%) are related to these pollutants.
However, the presence of new emerging pollutants, such as PBDE and PCB, is attracting
attention as a result of their prevalence in the environment and negative effects.

This review aims to present a complete description of the recent publications, from
January 2016 to June 2021, regarding the use of currently available AOP-based soil remedi-
ation techniques used against organic pollutants. Besides these, the main characteristics of
the processes, influential factors, and environmental impacts of AOPs will be looked over,
delivering an ample reference for choosing the best option that suits the remediation of
contaminated soils.
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2. Data Sources

The scientific articles on which this literature is based have been searched on Scopus,
published up to 15 July 2021. The literature search included the keywords [soil] AND
[advanced oxidation processes] AND [organic] and it was limited to articles written in
English starting from January 2016.

Next, the main pieces of information about each article were summarized in a table,
including the name of the author and the title of the publication, the type of organic
pollutants, the oxidation method used with its removal efficiency, the year of publication,
and important observations regarding the processes’ functionality (e.g., influential factors,
advantages, and disadvantages). During this procedure, only the experimental papers
suitable to the review topic were selected, giving an ample and accurate representation
regarding AOPs in organically contaminated soils, providing process improvements, and
new and important factors for the future prospects of AOPs research.

In Figure 3 the experimental publications about soil remediation by AOPs in the last
6 years (up to 15 July 2021) are summarized. It is interesting to point out that, as a result of
the interest in the topic and the COVID-19 pandemic, the number of review articles on this
issue has increased in the last 2 years.
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3. Fenton Process

The Fenton process is considered to be one of the first AOP series, and it is attributed
to H. J. H. Fenton, who in 1894 reported that H2O2 could be activated by ferrous (Fe2+) salts
to oxidize tartaric acid. However, it was not applied as a remediation process to degrade
organics in aqueous solution until the late 1960s [15], and the use of this treatment for the
removal of organics from soils was first evidenced in the 1990s [16]. However, at present it
is the most common process for soil remediation [17].

During the Fenton process, H2O2 is decomposed in the presence of iron, which
produces hydroxyl radicals according to the following Reaction (3) with a kinetic constant
value of 70 M−1 s−1 at pH = 3 [18,19]:

Fe2+ + H2O2 → Fe3+ + •OH + OH− (3)

The biggest advantages of the Fenton process are that it can be carried out at room
temperature and atmospheric pressure with a high performance and non-toxicity [10].
However, some limitations are found in the conventional Fenton process, an important one
of which is a strong dependence on the pH. The optimum pH value is between 2.5 and
4.0, if the pH is under this range, H2O2 can solvate protons to form oxonium ions (H3O2

+),
which increases the stability of H2O2 and reduces its reactivity with ferrous ion; if the pH is
above this range, the dissolved fraction of iron species is reduced as colloidal ferric species
appear [10,20].

In soil remediation, a Fenton treatment can be applied in situ or ex situ, and the reac-
tions can be homogeneously catalysed (conventional Fenton) or heterogeneously catalysed
(Fenton-like) by the iron mineral content (Figure 4) [21]. However, there is no real difference
between the classical Fenton and Fenton-like removal process, because, from a mechanistic
point of view, the degradation of the pollutants occurs via the hydroxyl radicals, •OH, that
are generated [22].
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Different factors can be considered to promote de hydroxyl radical generation inside
the solid matrix. Thus the type of soil and pH, iron source, solubilizing agents, and
organic matter has been studied in detail. The recently published articles on the Fenton
process for soil decontamination are presented in Table 1. It must be pointed out that the
reviewed articles develop the treatment processes by mixing the soil with the oxidants
(a batch process at lab scale). A few studies have tried to simulate natural conditions in
the flow system by using dynamic column experiments under saturated and unsaturated
conditions [23,24].

Table 1. Selected published articles on the Fenton-based process for soil decontamination.

Process Description Process Parameters Contaminant &
Concentration

Higher Removal
Efficiency (%) Reference

Fenton Fe2+3.0 g/kg; H2O2 120 g/kg;
(1:67); pH = 3.0–7.1

Aristolochic acid 500 µg/kg >97 [25]

Fenton
(H2O2):(FeSO4) = 20:1

sequential, four times/day
with intervals of 2 h over 5 d.

16 PAHs 933.9–2155.4 mg/kg 40–70 [26]

Fenton 0.1 M EDTA 3% H2O2 Diesel 3300 mg/kg 70 [27]

Fenton 30% H2O2 = 1.2 mmol/g;
FeSO4,7H2O = 0.2, 0.4 mmol/g

16 PAHs gas plant
263.6 ± 73.3 mg/kg; coking
plant 385.2 ± 39.6 mg/kg

60–85.4 [28]

Fenton Fe2+:H2O2 1:5; H2O2 0.8
mol/L

Chlorpyrifos (CP)
11,000 mg/kg;

4-bromo-2-chlorophenol (BCP)
10,000 mg/kg.

CP 92; BCP 97 [29]

Fenton ZVI 0.25 g/g and H2O2 2 M
Polychlorobiphenyls (PCB

18-PCB 194)
450.2 ± 31.8 mg/kg

PCB 28 90;
PCB 118 49 [24]

Fenton + iron inside
oil

H2O2 900 mM/oil-absorbing
Fe

0.25–0.35 mg oil/mg Fe

short and long-chain alkanes
3937 mg/kg and 1490 mg/kg,

respectively
62–74 [30]

Fenton + ethyl lactate
(EL)

H2O2 0.5 M, Fe2+ 0.05 M,
EL% = 25%

TPH 5000 mg/kg 96.74 [31]
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Table 1. Cont.

Process Description Process Parameters Contaminant &
Concentration

Higher Removal
Efficiency (%) Reference

Fenton +
haemoglobin (Hb) H2O2:Hb = 3 16 PAHs 259 ± 5.5 mg/kg;

benzo(a)pyrene (BaP) 10 mg kg PAHs 89; BaP 85 [32]

Fenton + EDTA
H2O2 129.5 mL/kg;

FeSO4·7H2O 14.6 g/kg; EDTA
16.2 g/kg

Pyrene 1200 ± 200 mg/kg ~20 [33]

Fenton + EDTA H2O2/Fe(II)/PAH
(102–105/102/1). PAH 4.23 mg/kg ~30 [34]

Fenton + sodium
pyrophosphate
(SP)-chelated

Fe2+:SP:H2O2 (1:1:20) PCBs 63.9–739.0 mg/kg 87.5 and 77.1 [35]

Fenton + iron inside
soil organic matter

H2O2 900 mM/Fe chelated
with SOM S/L 5 g/60 mL TPH 9068 mg/kg 67 [36]

Fenton + iron inside
soil organic matter

H2O2 900 mM Fe-SOM
837 mg/kg TPH ~4500 mg/kg 66.8 [37]

Fenton + flow system H2O2 600 mM; FeII 60 mM
β-HCH 45 mg/kg; lindane

25 mg/kg
β-HCH ~70; lindane

~90 [23]

Fenton like H2O2 = 1.5 mol/L Gasoline 10 g/kg ~60–90 [38]

Fenton like H2O2 = 2.8% BTX 0.05–80 mg/kg Benzene ~99; toluene
~86; xylene ~74 [39]

Fenton-like + flow
system

Endogenous Fe 9.8 g/kg;
H2O2 4 mmol; L/S = 20/1 Pentachlorophenol 6 mg/kg 27 [24]

Fenton-like + ZVI +
EDTA

30% H2O2/endogenous
Fe/EDTA 20/1/1 TPH 30.51 ± 0.46 g/kg 80 [40]

Fenton-like + humic
acids

Humic acids (from organic
wastes, 10 g/L) and KH2PO4

(8.2 g/L); H2O2 30%;
Fe = 20 g/kg

Diesel-HC > 12
5500 ± 1000 mg/kg 90 [41]

Fenton-like + humic
acids

Humic acids 5 L/Kg; H2O2 6%
v/v; Fe = 29.7 g/kg 3-chlorophenol >90 [42]

Fenton-like +
pyrophosphate-

chelated

Fe:Pyrophosphate:H2O2
(1:1:10) PCB 70.67–80.00 mg/kg 79.4–91.4 [43]

Fenton-like + steel
converter slag (SCS)

SCS 80 g/kg; 20 g soil; H2O2
solution (15% w/w) 20 mL; Antrazine 617.5 mg/kg 93.70 [44]

Fenton-like +
magnetite

1200 mL H2O2 30%; 6 g
magnetite; 6 g soil 16 PAHs 1210 µg/g 80 [45]

Fenton-like +
magnetite +
preheating

H2O2 10% + magnetite (20:1);
pre-heating 150 ◦C 16 PAHs 1089–1121 mg/kg ~50 [46]

Fenton-like +
magnetite + ascorbic

acid (AA)

Magnetite/AA/H2O2
25 g/kg/125 mM/500 mM Pentachlorophenol 6 mg/kg 95 [47]

Fenton + clay catalyst Fe clay catalyst = 1.5 g; 30%
H2O2

Phenanthrene 200 mg/kg 83 [48]

Fenton + KMnO4
(H2O2):(Fe2+) = 10:1, followed

by KMnO4 0.4 M, T = 60 ◦C
27 PAHs 3090 ± 104 mg/kg 71 [49]
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The iron mineral present in the soil matrix can allow the generation of reactive oxidant
species for the strong degradation of organic pollutants (Figure 4). Thus, iron minerals are
efficient in catalysing Fenton-like reactions through a large range of pH values. There are
different types of iron minerals, including ferric FeIII (ferrihydrite, goethite) and mixed
FeII–FeIII oxides (magnetite and green rust) and they catalyse oxidation by the heteroge-
neous reaction. Iron oxides or particular transition metals can catalyse the Fenton-like
oxidation in soils at a circumneutral pH, which can be an advantage for the in situ treatment
of polluted soils where the pH cannot be set. The utilization of mineral iron as a catalyst
has some advantages, such as a wide pH working range or a reduction in the external
agents added to the process [38,46]. Hence, Santos et al. [38] showed a 90% degradation of
gasoline (10 g/kg) in different soils with the highest concentration of mineral iron (94 g/kg)
with a high concentration of hydrogen peroxide (1.5 mol/L) and without the addition of
iron. In addition, some results from that same study, suggest that the degradation efficiency
of the Fenton processes is also strongly influenced by the physicochemical properties of
the soil, including its organic matter and clay contents. In Red Argisol that contains >70%
sand but has a reduced iron content (30 g/kg), a high removal efficiency could also be
obtained, because sand has a low sorption capacity that enhances the degradation of the
pollutants by hydroxyl radicals. In soil with a high clay content (76%) and iron (216 g/kg),
the degradation rate was about 60%, because clay stops the action of the hydroxyl radical.
In addition, in the study conducted by de Souza et al. [39], iron minerals (hematite) present
in the soil specimen (9%) increased the Fenton-like process as applied to the degradation of
BTEXs. Furthermore, the process of pre-heating the soil can enhance pollutant degradation
by a Fenton-like reaction. Thus, Usman et al. [46] demonstrated a thermal pre-treatment
at 150 ◦C for one week under an inert atmosphere, before being treated by the oxidation
process, enhancing the magnetite-catalysed oxidation of PAHs.

The presence of organic matter can have a negative effect on the Fenton process because
it can act as a scavenger of hydroxyl radicals (Figure 4) [38]. However, the presence of iron
linked to this organic matter could enhance the treatment. Thus, Xu et al. [50] obtained a
high long-chain alkane (C21–C30) removal rate in a Fenton system with iron–soil organic
matter, which was 1.6 times bigger than that obtained in a Fenton system with typical iron.
Similarly, it was found that the oil-absorbing Fe could bind with hydrophobic humic-like
acid and fulvic-like acid to enhance the degradation process. Accordingly, Xu et al. [36]
reported that the oxidation of macro-crude oil in soil by H2O2/oil-absorbing Fe connected
with a high solid organic matter content was much greater than that with a low solid
organic matter content. It was postulated that the efficient degradation of macro-crude
oil using oil-absorbing Fe bound with a high solid organic matter content was catalysed
by the H2O2. The large proportion of hydrophobic humic-like acid and fulvic-like acid
connected to the oil-absorbing Fe increased the hydrophobicity of the oil-absorbing Fe,
allowing abundant macro-crude oil to be easily absorbed by the oil-absorbing Fe bound
with high solid organic matter.

To avoid a pH limitation and to enhance the process, the use of solubilizing agents
(chelating or solvents) were also proposed as a solution [31,40]. Chelating agents are
generally organic compounds and can be used at a high pH to establish complexes with
Fe(III)/Fe(II), maintain them soluble, thus increasing the production of oxidative species
by the reaction of H2O2 with Fe(III)/Fe(II) in the Fenton process. In recent years, different
types of chelators have been studied, including catechol, cyclodextrin, nitrilotriacetic acid,
ethylenediaminetetraacetic acid (EDTA), gallic acid, citric acid, oxalic acid, humic sub-
stances, malic acid, sodium citrate, and other amino-poly-acetic acids [15,46,51]. Therefore,
Ouriache et al. [40] studied the Fenton-like process with the addition of EDTA and without
modification of the pH in the remediation of petroleum-contaminated old polluted soil.
According to their results, EDTA led to a high removal efficiency (80%) independently of
the iron addition. The EDTA addition enhanced the performance of the Fenton-like process
and encouraged the formation of hydroxyl radicals, which efficiently degraded the PEH
in the contaminated soil [40]. For another example, Zingaretti et al. [41] carried out the
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Fenton-like reaction with the addition of humic acids, extracted from compost obtained
from organic wastes, on a diesel-contaminated soil. When the humic acids (10 g/L) were
used in combination with KH2PO4 (8.2 g/L), the H2O2 lifetime growth was around 150 h
(without the addition, the H2O2 lifetime was only 1 h), and the removal rate was above
90% compared to around 75% in the case of using KH2PO4 or humic acids alone.

Similarly, solvents can be used to solubilize pollutants to enhance the removal. Thus,
Ahmadkalaei et al. [31] used ethyl lactate to intensify the removal of soil polluted with total
petroleum hydrocarbon (TPH). They found that an optimal concentration of 10% of ethyl
lactate should be used to achieve a removal of higher than 96%.

Although solubilizing agents are a promising alternative to promote pollutant oxida-
tion, their application is limited by their cost, toxicity, and potential adverse effects on the
oxidation efficiency due to their poor self-consumption. Chelating agents like EDTA can
be harmful to the environment due to their persistence and their role in enhancing heavy
metal mobility/bioavailability. Besides, their self-oxidation would lead to the loss of their
chelating ability, which is necessary to improve the pollutant degradation [46].

Similarly, Sun et al. [43] conducted a study regarding the influence of the soil type
on the Fenton process, where they used as representative soils red soil (RS), paddy soil
(PS), fluvo-aquic soil (FS), and black soil (BS) contaminated with polychlorinated biphenyls
(PCBs), and the degradation process of pollutants was in a pyrophosphate-chelated Fenton-
like system. They noticed that the soil type affected the degradation efficiency, as an
inadequate dosage of pyrophosphate to the amount of exogenous iron, soil components
such as iron oxides, and the soil organic matter–Fe complex, could be an important factor
in compensating for the insufficient proportion of the Fenton reagent and thereby enhanced
the degradation efficiency of PCBs. However, an excess pyrophosphate dosage did not
positively effect the useless decomposition of H2O2, even though this influenced the
increase in soluble Fe3+. Sun et al. [43] achieved high organic pollutant removal rates
in all four types of soils (RS > BS > PS > FS; 1 h), which was a synergistic effect of the
quantity of soluble Fe3+ and the availability of H2O2 under the soil components (soil
organic matter, clay minerals, and Fe/Al oxides). Furthermore, this showed that the
pyrophosphate-chelated Fenton-like reaction is suitable for the treatment of various types
of PCB-contaminated soils.

4. Sulfate Radical Process

In recent years, numerous published papers on AOPs’ applications have investigated
the treatment of water and soil remediation using sulfate-radical-based processes [13,52].
The main reason is that SO4

•− (t1/2 = 30 µs), compared to •OH (t1/2 ≤ 1 µs), has a longer
half-life and is more electrophilic, which drives a long-term relationship with contami-
nants [53,54]. Furthermore, several comparative studies have demonstrated that sulfate
radicals showed a higher degradation extent than hydrogen peroxide [48,55] and the
synergistic effect of the combination of both oxidants [56].

The generation of SO4
•− radicals can be accomplished by using two main precursors,

peroxydisulfate (PS, S2O8
2−) or peroxymonosulfate (PMS, HSO5

−) [53].
PS is stable at ambient temperature and can be activated by heat, transition metals, pH,

ultraviolet (UV) light, or other elements to form a highly reactive sulfate radical, SO4
•−, as

shown in Reaction (4). This radical is a stronger oxidant (E0 = 2.6 V) than the persulfate
anion, giving it a great capacity for organic destruction [57,58].

S2O8
2− + activator → SO4

•−(energy transfer) + SO4
2− (electron transfer) (4)

PMS can be obtained from potassium or sodium salts or as a triple salt called OXONE
(KHSO5·0.5KHSO4·0.5K2SO4) [59]. These reagents can be activated similarly to the process
previously described for PS. However, depending on the activation process, PMS can
generate sulfate radicals or hydroxyl and sulfate radicals, as shown in Reaction (5) [60]:

HSO5
− + activator→ SO4

•− + OH− (electron transfer) or •OH (energy transfer) (5)
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Among them, PS is commonly used in soil treatment, because it costs less and has a
shorter environmental retention time. Furthermore, the energy consumption for generating
SO4

•− by PS is 140 kJ/mol, which is less than that of PMS, which is 213.3 kJ/mol [61].
Activation by heat is an efficient means of generating radicals by PS or PMS. A

high temperature (>50 ◦C) can lead to the fission of the O–O bond to form the sulfate
radicals [62]. The activation energy also depends on the pH, accordingly that of the PS
reaction is 119–129 kJ/mol, 134–139 kJ/mol, and 100–116 kJ/mol under neutral, basic, and
acidic conditions, respectively. Thus, the rate constant of sulfate radical generation is from
1 × 10−7 s−1 at 25 ◦C to 5.7 × 10−5 s−1 at 70 ◦C and pH = 1.3 [57]. However, this method is
not recommended for large-scale processes because of its energy consumption.

Chen et al. [63] successfully degraded triclosan (TCS) in various arable topsoils through
a thermally activated PS. The activation energy Ea was calculated to be 74.3 kJ/mol when
18.8 mM of PS was used as an oxidant for 88% of TCS removal over 360 min of reaction. The
degradation efficiency was affected by the pH; a superior degradation rate was obtained
with an acid pH as a result of the TCS’ speciation. Chen et al. [63] also reported that both
SO4

•− and OH• were present during the following Reaction (6), although SO4
•− was the

dominant radical oxidant:

SO4
•− + OH− → OH• + SO4

2− (6)

Similarly, in a study conducted by Chen et al. [51] it was reported that in p-nitrophenol
degradation, the pH had an important effect on the PS degradation process. The pH was
adjusted and controlled by the addition of a phosphate buffer solution (25.8 mM-Na2HPO4
+ NaH2PO4), and the results showed a slight reduction in the degradation process, because
the buffer salts were competing with the contaminant molecule in consuming the SO4

•−.
However, the alkaline activation of PS using NaOH was verified for the removal of a com-
plex compound of chlorinated PAHs by García-Cervilla et al. [64] and Lominchar et al. [65].

Different studies showed that microwave heating is higher compared to conventional
heating, which leads to a faster contaminant degradation. Microwave heating distributes
the required energy faster, leading to the movement and collision of PS molecules, rupturing
molecular bonds and determining the formation of SO4

•− [57,66]. The microwave/PS
system degraded up to 90% of ethyl-parathion, demonstrating that it is time-saving, cost-
effective, and can be conducted under moderate conditions. Hence, some researchers have
claimed that the microwave heating activation process was a promising technology for the
treatment of pesticide-contaminated soils [66].

Likewise, in the Fenton treatment, the pre-heating process can increase the degradation
process by PS. Thus, the investigation accomplished by Ranc et al. [67] showed the efficiency
of using pre-heating. Two types of ageing PAH-polluted soils were heated to 60 ◦C for
PS oxidation and soil pre-heating to 90 ◦C followed by permanganate oxidation. The
effectiveness of PS was higher than permanganate due to its thermal activation.

Iron salts or iron minerals have long been known as efficient activators of PS and
PMS [68,69]. Ferrous ion (Fe2+) reacts with PS to generate the SO4

•−, as shown in
Reaction (7), with an activation energy of 50.23 kJ/mol:

S2O8
2− + Fe2+ → Fe3+ + SO4

•− + SO4
− (7)

A PS to iron ratio of 1:1 is usually necessary to achieve the maximum contaminant
removal; however, different authors have reported other ratios which depend on iron form
states, the presence of chelating agents, addition methods, and target analytes [57,68].

Accordingly, Liu et al. [70], investigated the removal of ibuprofen through using a
PS activated with pyrophosphate chelated Fe(II) system to demonstrate the positive effect
of chelating agents in the process. Thus, at a dosage of Fe(II)-pyrophosphate:PS = 1:10,
the ibuprofen degradation efficiency was 72.1% at an initial pollutant concentration of
48.4 µM/kg, showing that pyrophosphate coupled with Fe(II) notably improved the soil
pollutant degradation.
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Kakosová et al. [71] evaluated PS activation by Fe2+, Fe3+, Fe-EDTA, and Fe-citric acid
chelate on a real contaminated soil collected from a petroleum lagoon deposit. Among the
different studied systems, the highest contaminant removal efficiency for the degradation
of petroleum contaminants was achieved by using Fe3+ activated PS system (around
78%), demonstrating that the iron speciation also affects the removal process and the low
influence of the complexing agents used. However, Liao et al. [28] demonstrated a positive
influence in the removal of PAH when citric acid was in the media. In addition, Silva-
Rackov et al. [72] evaluated a diatomite-supported iron catalyst (a mixture of ferrous (Fe2+)
and ferric (Fe3+) ions in the form of precipitated iron hydroxides) in the remediation of
phenanthrene-contaminated soil. After 168 h of treatment, at a molar ratio of PS to iron
content of 1:1, the degradation rate was 98%, and a small amount of PS was used, which
reduced the cost of the process without compromising the removal efficiency.

Zero-valent iron (ZVI) can also be used for PS activation. It has been proposed that ZVI,
as an iron source, gradually releases Fe2+, as shown in Reaction (8), avoiding the scavenging
effect at a high iron concentration (Reaction (9)) and enhancing the sulfate radical produc-
tion seen in Reaction (7). Thus, Kang et al. [73] described that para-chloronitrobenzene
reduction was enhanced significantly from 10.8 to 90.1% with an increase in the ZVI dosage
from 0.1 mmol/g to 1.0 mmol/g in the ZVI-PS process.

ZVI Fe0 + S2O8
2 → Fe2+ + 2 SO4

2− (8)

Fe2+ + SO4
•− → Fe3+ + SO4

2− (9)

However, other mechanisms have been reported for the removal of pollutants in the
presence of PS and ZVI. Thus, Chen et al. [74] described a two-stage remediation process:
first, the reduction of para-nitrochlorobenzene by ZVI; and second, the oxidation with PS.
They reported that the reduction of para-nitrochlorobenzene by using ZVI was enhanced
from 66.3% to 94.1% when PS was used as an oxidant. In addition, ZVI-activated persulfate
is widely utilized. Song et al. [75] tested various types of ZVI (micro/nanostructured,
stearic-coated micro/nanostructured, and commercial micron-sized) for the in situ pilot-
scale remediation of a PAH-polluted soil. The removal percentage achieved was higher
than 60% with the studied ZVI. However, the presence of persulfate oxidizing agents
provoked a long-term inhibitory effect on the soil microbial community.

Pardo et al. [76] evaluated the effect of the type of iron source (Fe3+ or nanoparticles
of zerovalent iron (nZVI)) in the remediation of contaminated soils under flow-through
conditions by the PS system. Higher efficiencies were achieved utilizing nZVI than Fe3+

under similar amounts of iron. Because of the acidic media, Fe3+ was more strongly retained
in the soil column than nZVI particles, thus having a big concentration at the column entry.
However, as a result of the nZVI injection, a soft profile of Fe on the column was noticed.

Similarly, Bajagain and Jeong [77] also studied the remediation of diesel oil in soil,
and determined that the optimal concentrations of PMS and nZVI were 3% and 0.2%,
respectively, showing the best degradation efficiency (61.2% in 2 h), and that around 96% of
removal could be achieved by the consecutive application of the reagents. They also demon-
strated that hydroxyl and sulfate radicals could be generated via PMS activation by nZVI.

An interesting method to synthesize nZVI for PS activation was described in the study
conducted by Desalegn et al. [78]. In their study, nZVI synthesized using green mango
peel extracts (GMP) was evaluated as an activator of PS in the oxidation of PEH in oil-
sludge-contaminated soil. They showed a GMP-nZVI activated PS oxidation system that
achieved a >90% degradation over one-week treatment. Green synthesized nZVI has greater
advantages, such as a low production cost and low environmental effects. Some studies
have found that the utilization of ultrasound is efficient in the activation of PS. For example,
this method is found in the experiment conducted by Lei et al. [79] on the treatment of
diesel-hydrocarbon contaminated soil. The author obtained a degradation of 93% of the
diesel hydrocarbons in the soil, and although neither the US nor the temperature alone
was responsible for the activation of the PS, the heat produced by the US was the decisive
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parameter in successfully activating the PS. Later, in another paper, Lei et al. [80] used the
same process on polyfluoroalkyl substances (PFAS) in water and soil with encouraging
results, efficiently degrading 14 PFAS in the contaminated soil, with a 62–71% degradation
in soil and 100% in water. In addition, a high efficiency was obtained by Li et al. [81],
who applied ultrasound and Fe in PS activation to the treatment of soil contaminated with
petroleum; the degradation rate of the US/Fe/PS system was 82.23%.

As well as in the activation methods presented above, PS can be activated to produce
sulfate radicals by the utilization of non-conventional methods. Biochar is environment-
friendly, enhances soil fertility, and sequesters carbon, and can also be used as an efficient
sorbent for pollutants. Several researchers reported its efficiency mostly in the degradation
of organic contaminants in water, but Liu et al. [82] investigated the performance of PS
activation by biochar to degrade bisphenol A in soil and obtained great results, showing
that the addition of biochar can overcome soil acidification by counteracting the pH drop
in soil. Additionally, the combination of PMS with a mechanical treatment was evaluated
by Fan et al. [83] for the degradation of phenanthrene in different contaminated soils.
They evaluated PMS as a co-grinding reagent in the ball-mill treatment. Their results
showed that the organic matter content was negatively correlated with the degradation
efficiency. Under the optimal condition (10:1 Soil:PMS), a phenanthrene removal of higher
than 98% was reached. Additionally, the combination of Portland cement with persulfate
oxidation was evaluated by Ma et al. [84] and Srivastava et al. [85]; their findings established
that the presence of cement enhances the PAH removal by improving the sulfate radical
generation and reducing the pollutants’ leachability. Following in Table 2 a summary of the
decontamination process using PS is presented.

Table 2. Summary of soil decontamination results reported in the literature based on the PS
activation methods.

Process Description Process Parameters Contaminant &
Concentration

Removal
Efficiency (%) Reference

PS PS 43.0 g/kg Phenanthrene 110 ± 20 mg/kg 36 [33]

Preheating + PS T = 60 ◦C; PS 1.5 stoichiometric
oxidant demand/g PAH 14.9 g/kg >50 [67]

Thermally activated PS PS 18.8 mM; T 50 ◦C TCS 50 mg/kg >88 [63]

Thermally activated PS PS 60 mmol/kg; T 80 ◦C p-Nitrophenol 93 (±2) mg/kg 100 [51]

Thermally activated PS PS 20 mM; T 60 ◦C Ibuprofen 1–10 mg/kg 92–95 [86]

Thermally activated PS PS 0.5 M; T = 50 ◦C; Decabromodiphenyl ether
(BDE209) 20 mg/kg 52.8 [87]

Thermally activated PS PS 2.1 M; T = 60 ◦C 6 PAHs 497.47 ± 18.71 mg/kg 38.28–79.97 [88]

Thermally activated PS
+ Fe PS:Fe2+ 1:2; T = 60 ◦C

Polychlorinated
dibenzo-p-dioxins (PCDDs)

1350.543 pg/g; dibenzofurans
(PCDFs) 2152.601 pg/g

98.3 [89]

Thermally activated PS
+ Fe + EDTA

PS 267 g/kg; FeSO4·7H2O
14.6 g/kg; EDTA 16.2 g/kg;

T = 65 ◦C

Phenanthrene
1200 ± 200 mg/kg; pyrene

1200 ± 200 mg/kg
91 and 96 [33]

Microwave-activated
PS PS 1.0 M; T = 60 ◦C Ethyl-parathion 60 mg/kg 90 [66]

Microwave-activated
PS PS 50 g/L; T = 80 ◦C Phenanthrene ~1000 mg/kg 99 [90]

PS activation by Fe PS 60 g/kg; Fe3+ 17 g/kg PEH C10-C14 60.2 g/kg 78 [71]

PS activation by Fe PS 0.2 mol/L;
Fe(II)/SP 0.5/1 M

Decabromodiphenyl ether
10 mg/kg 66 [91]
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Table 2. Cont.

Process Description Process Parameters Contaminant &
Concentration

Removal
Efficiency (%) Reference

PS activation by Fe Fe2+:PS 1:1 M; Fe2+ 8.3 mM; PS
8.3 mM

Atrazine 100 mg/kg 80 [92]

PS activation by Fe PS 20 g/L; Fe(II) 0.78 g/L Anthracene 1.87 mmol/kg >99.9 [93]

PS activation by Fe PS 18.37 g/L; FeSO4 4.25 g/L Naphthalene 80 mg/kg 62 [94]

PS activation by py-
rophosphatechelated

Fe(II)

Fe(II) = 10 mM/kg;
PS = 100 mM/kg Ibuprofen 48.4 µM/kg 72.10 [82]

PS activation by
diatomite-supported

iron
PS:diatomite-supported Fe 1:1 Phenanthrene 200 mg/kg 98 [72]

PS activation by ZVI ZVI 1.0 mmol/g;
PS 4.0 mmol/g

para-chloronitrobenzene
(p-CNB) 425.0 mg/kg 90.1 [73]

ZVI + PS two stage
process

ZVI 0.8 mmol/g;
PS 5.0 mmol/g

para-nitrochlorobenzene
(pNCB) 2.87 mmol/kg 94.1 [74]

PS activation by mango
peel-nZVI nZVI 5 g/L; PS 0.5 M PEH 6.41 (0.17) g/kg >90 [78]

PS activation by ZVI
flow system

PS 0.2 mmol/cm3; Fe3+

0.0558 mg/cm3;
nZV 0.0558 mg/cm3

Anthracene 5.75 mg/kg;
anthraquinone 97.7 mg/kg;
phenantrene 137.7 mg/kg;
pyrene 125.5 mg/kg; BaP

112.9 mg/kg

BaP 100 [76]

PS activation by nZVI nZVI 0.03 g/g; T= 30 ◦C;
n(SMX)/n(PDS) = 1:75 Sulfamethoxazole 20 mg/kg 96.1 [95]

PS activation by nZVI PS 50,000 mg/L;
nZVI 1 mM

Anthracene 97 mg/kg; pyrene
3 mg/kg; benzo(a)pyrene
102 mg/kg; phenanthrene

89 mg/kg

All 100 except
phenantrene (80) [96]

PS activation by ZVI in
an in situ pilot-scale

study
nZVI 3.5 g/L; PS 30 g/L; PAHs ∼17 mg/kg 62.78–82.21 [75]

PS activated by Fe3O4
nanoparticles PS 180 mM; Fe3O4 0.25 g/g

Polychlorobiphenyls (PCB
18-PCB 194)

450.2 ± 31.8 mg/kg

PCB 28:99;
PCB 118:90 [55]

PS activation by Fe and
citric acid

PS 2 mmol/L; FeSO4
0.2 mmol/g; citric acid

0.04 mmol/g;

16 PAHs 263.6 ± 73.3 and
385.2 ± 39.6 mg/kg 81.5–86.54 [28]

PS activated by
magnetite 1% magnetite; 5.5% PS PEH 4200 ± 124 mg/kg 95 [97]

PS activated by siderite PS 400 mM; siderite 0.4 g;
T = 60 ◦C; PS:Fe (II) 400:1 PEH 5000 mg/kg 41 [69]

PS activation by US US 104 W; PS = 50 g/L; DHC
6500 mg/kg,

Diesel hydrocarbons
3250–16,250 mg/kg 23.29–92.56 [79]

PS activation by US US 20 kHz; (PS)0 = 5, 50 g/L PFAS 0.045 mg/kg 62–71 [80]

PS activation by US/Fe PS 1 M; US 200 W;
Fe0 = 0.28 g PEH 19,850 mg/kg 82.23 [81]

PS activation by
biochar PS 8 mM; biochar 4 wt% Bisphenol A 31.93 mg/kg ~99 [98]
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Table 2. Cont.

Process Description Process Parameters Contaminant &
Concentration

Removal
Efficiency (%) Reference

PMS activation by
nZVI 0.3% PMS; 0.2% nZVI TPH 6625 ± 115 mg/kg. >96 [77]

PMS activation by
ball-mill

PMS:soil 10:1; mass ratio of
ball to material 30:1 Phenantrene 200 mg/kg 98 [83]

PS activation by
alkaline PS 100 g/L; NaOH:PS 4:1 PEH 5000 mg/kg 98 [65]

PS activation by
alkaline

PS 400 mmol/L; NaOH
200 mol/L

Chlorinated organic
compounds (COCs)
3060–9822 mg/kg

96–70 [64]

Cement-activated PS PS 19.20 mmol/kg; Portland
cement 10% PAHs 214.4 mg/kg 57.3 [84]

Cement-activated PS Portland cement:PS 2:1;
PS 1.5%

BTEX 2,685–6836 mg/kg; 17
PAHs 54,001–30,372 mg/kg;
naphthalene 23,140 ± 1673–

13,445 ± 976 mg/kg

BTEX 91.1; PAHs 33.3;
naphthalene 81.1 [85]

5. Coupled Processes

The comprehensive soil remediation by a single treatment technology can be com-
plicated when pollutants of different natures are present in this heterogeneous matrix.
In addition, some limitations of AOPs can be overcome by their combination. Thus, in
recent years there has been a tendency towards the use of coupled processes (Table 3).
Accordingly, different processes were coupled with AOPs such as biological methods, soil
washing, electrochemical techniques, and also a combination of different AOPs. In the
following the most notable processes are described.

Table 3. Recently published articles on soil decontamination by coupled processes.

Process Description Contaminant & Concentration Removal Efficiency (%) Reference

EK–Fenton

Organochlorine pesticides:
hexachloro-cyclohexane soprocide (HCH)

and dichloro-diphenyl-trichloroethane
(DDT) 7.79–14,025.2 mg/kg

71.5–82.6 [99]

EK–Fenton Petroleum 10,000 mg/kg 89 [100]

EK–Fenton Rhodamine B 0.16 g dye/kg; PEH
80.4 mg/kg Dye:54.4; Petroleum:58.2 [101]

EK–Fenton pilot level Gasoline 1126 mg/kg 80 [102]

EK–PS Decabromodiphenyl ether (BDE-209)
50 mg/kg BDE:209 85.6 [103]

EK–PS Pyrene 200 mg/kg 100 [104]

EK–PS PAHs 4.88 mg/kg 93.1 [105]

EK–Fenton–surfactants THP Spanish soil 80,356.42 mg/kg; THP
Romanian soil 45,557.10 mg/kg

Spanish soil 25.7–81.8;
Romanian soil 15.1–71.6 [106]

EK–PS–surfactants Organochlorine pesticides (OCPs) 462.08
to 20,335.09 ng/g 88.05 [107]

EK–Fenton–
phytoremediation PEH 8956 mg/kg >85 [108]

Fenton–KMnO4 16 PAHs 1210 and 1136 µg/g 80 and 84 [45]

Fenton–KMnO4 27 PAH 3090 ± 104 mg/kg 71 [49]
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Table 3. Cont.

Process Description Contaminant & Concentration Removal Efficiency (%) Reference

Fenton–HPCD surfactant 16 PAH listed by USEPA 1090 mg/kg 99 [109]

Fenton–bioremediation 16 PAHs 263.6 ± 73.3 and
385.2 ± 39.6 mg/kg

5–6 rings 78–90; 2–4 rings
52–85 [28]

Fenton–bioremediation 1,4-dioxane 100 [110]

Fenton–bioremediation Lubricants 10,000 mg/kg 99.2 [70]

Fenton–bioaugmentation
serial foam PEH 7470 mg/kg 92 [111]

Fenton–anoxic–
biodegradation 16 PAHs 350.07 mg/kg 33.2–95.9 [112]

Fenton–pre-oxidation–
bioremediation PEH 12,178 ± 390 mg/kg 42 ± 1.43 [113]

Fenton–pre-oxidation–
bioremediation

Macro crude oil (C19–C29 and C17–C29)
8853 mg/kg-S1 11.719 mg/kg-S2 57.1 and 64.4 [114]

Fenton–pre-oxidation–
bioremediation Crude oil 23,440 ± 390 mg/kg 53 [115]

Fenton-like
treatment–bioremediation Diesel 700–2600 mg/kg 75 [116]

Fenton-like reaction combined
with Phanerochaete

chrysosporium

Polybrominated diphenyl ethers
18.70 ± 0.08 ng/g 55.5 ± 6.0–72.6 ± 3.6 [117]

Tween 80
surfactant–electro–Fenton Diesel 50 g/kg 87.2 [118]

Sono–photo–Fenton TPH 15 g/kg 99 [119]

PMS in presence of Fe (V) PCB > 1000 mg/kg 40 [120]

PS–H2O2 o-NCB 400 mg/kg ~80 [56]

PS-SDS surfactant PAHs 100 mg/kg 34–75 [121]

PS–bioremediation Phenanthrene 1200 ± 200 mg/kg;
pyrene 1200 ± 200 mg/kg 90 [122]

PS–bioremediation PAHs 214 ± 21 mg/kg 66 [123]

PS–bioremediation PEH 7996.86 ± 1173.40 mg/kg 62.61 ± 1.23 [124]

PS–bioremediation PBDEs 53.8 ± 0.5 mg/kg 94.60 [125]

PS–anoxic–bioremediation 16 PAHs-562.81 ± 10.29 and sterilized
soil 481.35 ± 6.63 36.37–94.91 [88]

PS–pre-oxidation–
bioremediation BaP 0.7 mg/kg 98.7 [126]

PS–bioaugmentation serial
foam spraying technique PEH 100 mL/kg 80 [118]

5.1. Electrokinetic Treatment–AOP

Electrokinetic (EK) treatment is a well-studied technology applied in the remediation
of contaminated soils for the removal of contaminants (Figure 5). The process is based on
the use of a low-voltage gradient (1 DCV/cm), utilizing two electrodes (anode and cathode)
directly inserted into the soil [127]. The effectiveness of this method is highly dependent on
the capacity of the contaminants to move under the electric field’s action, and the migration
and removal of the contaminants under the electric field are made through electromigration,
electroosmosis, and electrophoresis processes [99,128,129]. When the electric field is applied
to the soil, various events take place, such as electrochemical reactions, the production of
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flow processes and a pH gradient, mobility, sorption, desorption, precipitation of pollutants,
and complexation. The low solubility of most organic pollutants reduces the efficiency
of the electrokinetic treatment’s ability to enhance the removal efficiency and assure an
optimal performance; it is necessary to combine this technology with other techniques [106].
The Fenton process, one of the frequently used AOPs is often combined with electrokinetic
methods, giving high removal rates of organic pollution. The electrokinetic Fenton (EK–
Fenton) process can contribute to the transport of the H2O2 through the soil and, in the
presence of transition metal minerals, mainly iron minerals, in the soil, decompose the
H2O2 delivering ·OH, which is capable of oxidizing contaminants [101]. By using this
technology, there are studies such as that developed by Ochoa et al. [102], who achieved
encouraging results at the pilot level.
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Ni et al. [99] demonstrated the compatibility of electrokinetic remediation with the
Fenton process for a high degradation to soil historically polluted by organochlorine pesti-
cides. The individual EK method showed a reduced removal efficiency, while the enhanced
EK–Fenton process with the addition of the oxidant and electrolyte successfully removed
the pesticides from the actual historically polluted soil. The high efficiency of this process
was also shown without the addition of any supporting electrolyte. Furthermore, a high
efficiency was found in EK–persulfate experiments. Thus, Chen et al. [103] applied to
the remediation of soil contaminated with decabromodiphenyl ether the electrokinetics–
persulfate process (EK–PS), where the EK process highly increased the transport of the in-
jected PS and supported the in situ chemical oxidation of the pollutant. EK–Fenton has been
successfully combined with the Tween 80 and Triton X-100 surfactants in the treatment of
soils historically polluted with PEH, giving a high removal efficiency [106]. Similarly, a sur-
factant combined with persulfate and EK remediation was tested by Suanon et al. [107,130]
on the removal of organochlorine pesticides from soil. The utilization of Triton X-100
as co-solvent led to a significantly improved contaminant degradation, demonstrating
that surfactant-enhanced advanced oxidation is a qualitative treatment for organochlorine
contaminated soil. Moreover, this synergic combination was tested by Abtahi et al. [104]
on the remediation of PAH-spiked soil, where they obtained a complete degradation of
pyrene using Tween 80 of 20 mL/kg concentration and a voltage gradient of 1 V/cm. Other
removal technologies can also be coupled with AOP–EK that enhanced the efficacy of the
electrokinetic and Fenton process by phytoremediation [108]. Results showed that the use
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of a polarity reversal benefits the germination and growth of plants and produces a high
PEH degradation after 20 days.

5.2. AOP–AOPs

The combination of several AOPs at the same time has been also achieved encouraging
results to enhance the limitations of using a single process. Therefore, a combination of
ultraviolet and ultrasonic irradiation and nano zero-valent iron (UV/US/nZVI) improved
by Fenton’s reagent was studied by Gharaee et al. [119]. They demonstrated that the
combination of these treatment processes led to a 15% synergistic effect. In the paper, the
rate constant of the combined process was 52 × 10−3 min−1, which was greater than the
sum of the rate constants of the individual methods (21 × 10−3/min and 23 × 10−3/min).

A dual oxidant system has been used by Liu et al. [56], using hydrogen peroxide and PS,
where the reactivity of H2O2 in the decrease of compounds is combined with the improved
stability of persulfate; moreover, the iron species present in the soil contributing to the
degradation process proved to be promising in the removal of ortho-nitrochlorobenzene
(o-NCB) in soil.

Permanganate is the oxidant that is used most often, because it easily decomposes into
permanganate ions and is cheap and secure compared to H2O2. However, an excess genera-
tion of MnO2 could reduce the soil’s permeability. It may affect the soil quality, and it is also
not effective in the removal of chlorinated alkanes and most of the aromatic compounds.
To overcome these negative factors, coupling permanganate with AOPs for a higher re-
moval rate was proposed in some studies [45]. It was reported by Bendouz et al. [49] that
the degradation of 27 PAHs using the Fenton reaction followed by KMnO4 oxidation (or
KMnO4 followed by Fenton) was superior (at around 71%) to that in the application of the
Fenton or KMnO4 treatment alone (43% for each process).

In recent times, Ferrate (Fe(VI)) has emerged as an efficient oxidant to remediate con-
taminated soils. Accordingly, Monfort et al. [120] integrated the use of Fe(VI) and conven-
tional oxidants and found that the degradation efficiency was increased by the combination
of Fe(VI)/PMS, obtaining a 40% removal of PCBs from historically contaminated soil.

5.3. Surfactants–AOPs

During the soil washing remediation, the addition of surfactants in order to enhance
the removal process used to be mandatory [131]. These compounds are complex am-
phiphilic molecules formed from a hydrophobic (nonpolar) hydrocarbon “tail” and a
hydrophilic (polar) “head” group [131], and they can be divided into four classes: anionic,
cationic, amphoteric, and nonionic (e.g., Tween 80 and Triton X-100). The surfactant treat-
ment of the generated effluent is essential to achieve a total pollutant removal; the presence
of these compounds in the effluent can be an obstacle to its appropriate management,
because the removal process is even harder, since the contaminant is trapped in the micelle
core of the surfactants. Thus, the selection of a suitable process requires careful consider-
ation. In these cases, AOPs have been found to be a promising option leading to a high
effectiveness in eliminating the refractory target contaminants [121]. Thus, Liu et al. [118]
demonstrated that the combination of soil washing using Tween 80 and electrooxidation or
electro-Fenton could achieve the efficient remediation of soil heavily contaminated with
diesel. In addition, as demonstrated in previous sections, the surfactants (during Fenton
oxidation) can result from the partial oxidation of hydrocarbons and/or the native soil
organic matter and could enhance the degradation of the contaminants [46].

In other research, surfactants were used to enhance the AOP, and it was observed
that the compatibility between surfactants and oxidants is affected by some factors. The
matrix composition has a great influence on the process efficiency, especially the natures
of the surfactant agents, soil organic matter, inorganic ions, and/or the organic pollutants’
composition. In Mousset et al.’s [132] study (Fenton process and surfactants) a slower
PAHs removal was observed in the case of Tween 80 solutions than with 2-hydroxypropyl-
β-cyclodextrin (HPCD). In addition, in a previous work by the same authors [109], they
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observed that a high yield was achieved after 150 min with HPCD (10 g/L) without the
supplement of organic matter. This was because of the high reactivity of •OH with the
organic matter, which led to a competitive reaction between the organic molecules and
•OH in the case of Tween 80 solutions. Thus, as well as leading to a slower PAHs removal,
the degradation rates decreased as the number of the PAHs’ rings increased. Nevertheless,
overall, Tween 80 showed a better performance than HPCD regarding some parameters,
such as extraction efficiency, costs, and global soil microbial activity [109,132,133].

5.4. AOPs–Biological Methods

Coupling AOPs with a biological treatment can allow the removal of organic pollutants
from the soil in a cost-effective way. Biological remediation is an environmentally friendly
method that applies microorganisms to degrade organic pollutants. AOPs utilize a few
chemicals but produce secondary contaminants, and biological methods rely on enzymatic
reactions (laccases, peroxidases, tyrosinases, etc.) that are safe for the environment. Harmful
by-products produced through AOP remediation can be eliminated from the soil with the
help of microorganisms [124]. The results of many studies showed that AOPs are an
efficient treatment when combined with bioremediation for high degradation rates of
organic contaminants. For instance, Bajagain et al. [111] achieved a 92% PEH removal
utilizing hydrogen peroxide (without amendment by supplementary iron) followed by
biodegradation. Meanwhile, biodegradation alone degraded the contaminants by only
25%. Similarly, Xu et al. [114] applied Fenton and bioremediation in the degradation of
macro crude oil, obtaining significant results. The bioremediation efficiency of macro crude
oil improved and the bioremediation period was cut by two to three times. Moreover, the
genera Sedimentibacter, Caenispirillum, and Brevundimonas became the dominant bacteria
after a matching Fenton pre-oxidation. The macro crude oil was the primary carbon
source for the increased rate of the indigenous hydrocarbon degraded by the utilization of
matching Fenton pre-oxidation, so it further enhanced the biodegradation of macro crude
oil. In another study, a great removal efficiency (99.2%) in the removal of lubricant was
obtained by a combination of biopile for 56 d followed by a modified Fenton process [70].

In another study conducted by Liao et al. [28], the effects of different oxidants on the
removal of PAHs from real polluted soils were tested. Whereas Fenton oxidation provides
nutrients to enhance the bioremediation, and had a mild effect on the indigenous microbial
diversity, potassium permanganate significantly affected microbial diversity and delayed
the population’s recuperation. In addition, in the study performed by Xu et al. [113],
Fenton pre-oxidation at a high H2O2 concentration inhibited the indigenous bacteria that
degrade C15–C30 alkanes, but in the final result at a low H2O2 concentration, indigenous
bacterial populations were not harmed and the process enhanced the nutrient mobilization
and further bioremediation. Some studies have found this general decreasing/increasing
biodiversity trend with different oxidation reactions. Miao et al. [110] applied oxidation
with H2O2 followed by bioaugmentation to 1,4-dioxine degradation and they observed
that the microbial population, biodiversity, and richness were inhibited after their exposure
to peroxide but recovered during the biodegradation process. They obtained a complete
removal of 1,4-dioxane from contaminated soil, even though the bioremediation process
was generally inhibited by VOCs, proving the effectiveness of treatment trains.

In the case of persulfate coupled with bioremediation, results showed that the uti-
lization of low doses of sodium PS in the presence of low soil-moisture levels was the
most efficient variant for phenanthrene degradation that can be compatible with bioreme-
diation [33]. PS facilitated the occurrence of more pollutant-degrading microorganisms.
The effects of pre-oxidation followed by the biodegradation of BaP were assessed, and
the degradation efficiency of BaP by PS was 81.8% after 7 days of pre-oxidation. The
pre-oxidation improved the activity of soil microorganisms and enhanced the biodegra-
dation of BaP in soils within 7–60 days [114]. Likewise, Bajagain et al. [134] applied the
persulfate–bioaugmentation serial foam spraying technique on diesel-oil-contaminated
soil, and nearly 80% of the pollutant was degraded by this combined method, while 52%
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was removed by bioaugmentation alone. They reported that persulfate-foam spraying is
superior to peroxide for diesel degradation even at a reduced concentration (0.005 N). This
fact is due to persulfate-foam is more permeable, persistent, and does not influence the soil
pH in the subsurface.

Furthermore, the addition of biochar for PS activation was used in combination with
bioremediation on the treatment of soil contaminated with PEH. Zhang et al. [124] applied
the degradation treatment over 60 days in two stages, using remediation by PS with
biochar supported nano iron (BC-nZVI) and biodegradation. The pollutants were degraded
efficiently during the chemical oxidation period and afterwards were converted to be more
disposable in the next step. The biochar addition enhanced the optimal conditions for
bioremediation, obtaining favourable results during the whole remediation period.

6. Conclusions and Prospects for the Future

From the review performed in the present review article, it can be established that
AOPs have been demonstrated to be effective in removing a wide range of contaminants
from soil, such as pesticides, PEH, PHAs, and recalcitrant organics. Among the different
AOPs, the scientific community is focusing its attention on the process based on the Fenton
reaction and the sulfate radical generation. This last one is the most studied in recent
years as a result of the fact that no pH limitations and minor activation requirements are
necessary in comparison to the Fenton process. However, for both treatments, the main
factor that influences the removal process is the delivery of reagents to carry out an efficient
removal process. In addition, at present, scarce studies in flow system have been reported
and no in situ treatments have been accomplished. To increase the process efficiency and
reduce the associated costs, the coupled methods have been identified as viable techniques
for the treatment of different polluted soils. The reviewed research determined that the
use of coupled processes tends to decrease the operational costs, especially the coupling
with biological remediation. However, the next stages to achieve the field scale application
should be focused on the identification of intermediate by-products, the impact on soils’
physical-chemical and biological properties, and the determination of scale-up parameters.
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