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Abstract: Asymmetric catalysis is the preferred method for the synthesis of pure chiral molecules in
the fine chemical industry. Cellulose has long been sought as a support in enantioselective catalysis.
Dialdehyde cellulose (DAC) is produced by the selective oxidation of cellulose and is used to bind
5,5′-diamino Binap by forming a Schiff base. Here, we report the synthesis of modified cellulose-
supported Rh as a novel biomass-supported catalyst and the characterization of its morphology,
composition, and thermal stability. DAC-BINAP-Rh was a very effective catalyst in the asymmetric
hydrogenation of enamides and could be easily recycled. This work provides a novel supported
catalyst that broadens the applications of cellulose in asymmetric catalysis.

Keywords: asymmetric hydrogenation; cellulose; BINAP; heterogeneous catalysis

1. Introduction

Chirality plays a major role in chemistry. Asymmetric hydrogenation is an important
way to prepare enantiomerically pure pharmaceuticals and other fine chemicals. So far,
various chiral catalysts have been developed, many of which are very effective for the asym-
metric hydrogenation of C=C, C=O, and other bonds [1–4]. Compared to the significant
development of homogeneous asymmetric catalysts, heterogeneous asymmetric catalysts
have developed more slowly and received less attention [5,6]. Although homogeneous
catalysts have good reactivity and a high turnover number (TON), the loss of precious
metals and chiral ligands limit their industrial applications [7,8]. The advantages of hetero-
geneous catalysts, such as their ease of separation and reusability, can reduce the amounts
of scarce resources that are required; thus, considerable efforts have been devoted to find-
ing strategies to develop heterogeneous asymmetric catalysts [9,10]. Recent trends have
seen immobilization emerge as an efficient tool for the easy separation of catalysts from
substrates and products, which reduces environmental contamination [11–15]. Because of
this, heterogeneous catalysts have been developed in the industry. Over the past decades,
many metallic species have been supported on inorganic materials and synthetic polymers,
such as silica [16,17], zeolites [18,19], metal oxides [20,21], charcoal [22,23], and magnetic
materials [24,25], which have been successfully used in catalytic applications. Although
these catalyst systems have achieved high yields and enantioselectivity, these copolymers
are predominantly derived from petroleum, an unsustainable resource.

In recent years, the transition from petrochemical-based raw materials to biomass-
based materials has promoted the cleaner and sustainable development of the chemical
industry [26,27]. Natural polymers receive high attention because of their abundance and
biodiversity can produce various properties at low cost. In addition, they are biocompatible,
biodegradable, non-toxic and highly reactive. For ecological reasons, natural polymers
are generally more popular than synthetic polymers and can effectively utilize renewable
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biomass [28–30]. Polysaccharides are important biomass biopolymers with many advan-
tages, such as a high adsorption capacity, metal anion stability, many stereocenters, good
chemical stability, and biodegradability, which make them an attractive support [31–34].

Celluloses are the most abundant macromolecules in the plant kingdom. We focused
on the use of cellulose as a support for asymmetric catalysis because this material has
several advantages, including a high stability and insolubility in common solvents and
also because it contains many hydroxyl groups, which can stabilize metal particles [35,36].
Cellulose and its derivatives (polysaccharides) have also been applied in asymmetric
catalysis. An early example of the immobilization of Pd-complex catalysts using cellulose
as a support for asymmetric hydrogenation was reported in 1956, and the seminal work was
included in Nature [37]; however, research in this area stagnated in the following decades.
At the end of the century, due to increasingly prominent energy and environmental issues,
the use of biomass as a carrier for catalysts has attracted great attention around the world.

BINAP [2,2′-bis(diphenylphosphino)-1,1′-binaphthyl] is an excellent homogeneous
catalyst for various asymmetric hydrogenation reactions and is frequently used to explore
new methods for the development of heterogeneous asymmetric catalysis [38–43]. With
these considerations in mind, the purpose of this research is to develop an environmentally
friendly BINAP-modified DAC supported Rh complex to achieve green catalysis (Scheme 1).
Then, the catalytic activity of this synthetic compound (DAC-BINAP-Rh) was studied in the
asymmetric catalytic hydrogenation of enamides. This work will provide a novel method
for the utilization of other promising biopolymers as advanced supports in asymmetric
hydrogenation reactions.
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Scheme 1. Preparation of DAC-BINAP-Rh.

2. Results
2.1. Characterization

This report focuses on the preparation of dialdehyde cellulose and its functional-
ized modified catalysts for asymmetric catalytic hydrogenation. Evidence of DAC and
DAC-BINAP preparation was provided by FT-IR spectra (Figure 1). The oxidation of
microcrystalline cellulose resulted in very few changes to its functional groups because
the typical absorption peaks associated with cellulose were unchanged. For example,
the strong broadband band at 3350 cm−1 and the strong absorption peak at 1635 cm−1

were respectively assigned to the tensile vibration of -OH and the stretching vibration
of H-O-H [44]. The characteristic peak at 2903 cm−1 was generated by symmetric and
asymmetric C-H vibrations [45]. In the FT-IR spectra of DAC, the characteristic bands at
1732 cm−1 and 889 cm−1 belong to the hydrated forms of aldehyde carbonyls, hemiacetals,
and aldehydes, respectively. The FT-IR peak of DAC-BINAP at 1663 cm−1 belongs to N=C
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bending. The disappearance of the band at 1732 cm−1 (in DAC) was due to the strong C=N
bond formed by the Schiff base reaction between BINAP-NH2 and –CHO. The weakened
band at 3375 cm−1 in the DAC-BINAP spectrum was mainly caused by the reduction of
-OH groups [46]. After the catalytic reaction is completed, the FT-IR spectrum shows that
there is still a C=N bond absorption peak at 1663 cm−1, indicating that the catalyst only
acts on the reaction substrate and has no effect on the structure of the catalyst.
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Figure 1. FT-IR spectra of MCC, DAC, DAC-BINAP and Recycling DAC-BINAP.

The phase composition and crystallinity of MCC, DAC, and DAC-BINAP were charac-
terized by XRD, and the results are shown in Figure 2. In the XRD patterns of MCC, the
two crystallization peaks at 2θ = 22.4◦ and 15.5◦ corresponded to the typical diffraction
peaks of cellulose I and cellulose II, respectively. During the oxidation of microcrystalline
cellulose, the structure of cellulose was destroyed due to the addition of a large amount
of NaIO4. The characteristic diffraction peak of the cellulose was not retained, and only
a broad peak existed around 2θ = 20◦. The crystalline peaks at 2θ = 34.5 were weakened or
even disappeared in the case of DAC. The reduced crystallinity after oxidation is one of the
characteristics of cellulose periodate oxidation. The reason is that the structure and func-
tional groups of cellulose changed, and the packing order of cellulose chains was disrupted
after the opening of the glucose pyran ring after oxidation [47,48]. The crystallization peak
of DAC-HN-BINAP is similar to that of DAC, which indicates that the crystal structure of
DAC was not changed during the functionalization of DAC, which is also supported by
the FT-IR spectrum in Figure 1 [49].
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Catalytic hydrogenation generally needs to be carried out with heating, so the thermal
stability of the catalyst is crucial to its activity and reusability; therefore, the thermal stability
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of the chiral ligand was tested by TGA, and the results are shown in Figure 3. The thermal
stability curves of DAC-BINAP and DAC have similar trends, indicating that the thermal
stability of DAC was not damaged during the preparation of bio-based chiral ligands. Both
began to decompose rapidly near 180 ◦C. In addition, the mass of the bio-based chiral ligand in
the final residue was about 20% higher than that of the unmodified DAC, due to the binding
of R-5,5′-diamino BINAP; therefore, the designed bio-based chiral ligand shows good thermal
stability and can be used stably at the temperature required by the experiment.
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Figure 4. XPS spectra of DAC-BINAP (a) and Rh 3d (b). 

Figure 3. Thermogravimetric curves of DAC and DAC-BINAP.

Rh(I) complexes are known to catalyze the hydrogenation of various unsaturated hydro-
carbons, including alkynes [50]. XPS analysis is an effective tool for verifying the elemental
composition of compounds. The characteristic peaks of C 1s, O 1s, N 1s, Rh 3d, and P 2p ele-
ments can be clearly seen in the XPS spectra in Figure 4a, which proves that Rh(COD)2BF4 was
successfully complexed with DAC-BINAP. The oxygen-containing functional group on the sur-
face of DAC acts as an anchor point to fix Rh via electrostatic interactions, so that Rh(COD)2BF4
was distributed on the surface of DAC-BINAP [51]. The binding energy peaks of Rh 3d5/2 and
Rh 3d3/2 for Rh/DAC-BINAP were observed at 307.79 eV and 312.47 eV, respectively, as shown
in Figure 4b, indicating the presence of Rh0 [52].
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The SEM image (Figure 5) shows the overall morphology of MCC after oxidation and
that further grafting did not change it significantly. It can be seen from images (Figure 5a,d)
that the surface of MCC was rough. The surface of DAC was smoother, and the specific
surface area increased, which may be caused by the hydrolysis of hemicelluloses, which
formed the cellulose skeleton, after the oxidation of NaIO4. After functionalization of DAC
to 5,5′-diamino BINAP, the surface of DAC-BINAP became rough again. The presence of
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Rh and P elements can be clearly seen from the EDS images, which further proves that
BINAP is grafted and Rh is successfully complexed.
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The morphology of Rh/DAC-BINAP was analyzed by transmission electron mi-
croscopy (TEM), which showed that rhodium particles were uniformly distributed on
the surface of DAC-BINAP (Figure 6a). The dark points with an average particle size of
20.71 nm correspond to Rh complexation in DAC-BINAP (Figure 6b) The lattice stripe lines
of metal rhodium can be clearly observed in the magnified TEM images. Its surface spacing
was measured to be about 0.39 nm, which is in accordance with the theoretical value of the
lattice plane of metal rhodium (Figure 6c) [53]. After repeatedly using the catalyst six times
for hydrogenation, the rhodium nanoparticles agglomerated slightly and formed small
clusters with uneven sizes (Figure 6d), resulting in a slight decrease in the catalytic activity.

2.2. Catalytic Activity of DAC-BINAP-Rh

In the presence of the DAC-BINAP-Rh catalyst, we selected 2-acetamino-3-phenylacrylate
as the classical substrate and studied its application for asymmetric hydrogenation. We
investigated the solvent effect and found that different solvents had a great influence on the
conversions and enantioselectivity (ee) values. Alcoholic solvents gave lower ee, albeit with
promising conversions (Table 1, Entries 3–4,6). Toluene gave high ee but poor conversions
(Table 1, Entry 7). When the reaction time was increased to 12 h (Table 1, Entry 10), the
catalysts exhibited excellent activity (65% conversion, 73% ee). Economical feasibility
should be considered from the following points: (1) Reaction should provide higher
conversion and selectivity at lesser reaction time; (2) Long reactions promote impurity
formation and reduce the selectivity of desired products. Thus, 12 h was the optimal time
to achieve better conversion and enantioselectivity.
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4 EtOH 4 >99 10

5 CH3CN 4 54 28

6 iPrOH 4 >99 28

7 toluene 4 45 80

8 dioxane 4 37 44

9 xylene 4 48 44

10 (c) toluene 12 65 73
[a] Unless otherwise mentioned, all reactions were carried out at room temperature under hydrogen (4 atm) for
4 h. (b) Determined by 1H NMR spectroscopy. (c) Determined by HPLC analysis using a chiral stationary phase.
Explain: * represents the chiral center.

Catalytic materials are easily separated from the substrate/product solution. The
recovery process can be repeated five times without significantly reducing selectivity and
activity (Table 2).
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Table 2. Heterogeneous catalyst recovery [b].

Cycle 1 2 3 4 5 6

Con (%) (a) 45 45 45 45 45 40

ee (%) (a) 80 78 78 76 75 75
(a) Determined by HPLC analysis using a chiral stationary phase. [b] Unless otherwise mentioned, the conditions
used for cyclic reactions are the same as in Table 1, Entry 7.

3. Materials and Methods
3.1. Materials

Microcrystalline cellulose (MCC, degree of polymerization = 180) was purchased from
Shandong Liao cheng A Hua Pharmaceutical Co., Ltd. Rh(COD)2BF4 was purchased from
Sigma-Aldrich. All reagents were ultra-dry solvents purchased directly from Aladdin.
All reagents were used as received. NMR spectra were recorded on Bruker ADVANCE
III (400 MHz) spectrometers for 1H NMR and 13C NMR. CDCl3 was the solvent used for
NMR analysis, with tetramethyl silane as the internal standard. Chemical shifts were
reported upfield to TMS (0.00 ppm) for 1H NMR and relative to CDCl3 (77.0 ppm) for
13C NMR. Optical rotation was determined using a Perkin Elmer 343 polarimeter. HPLC
analysis was conducted on an Agilent 1260 Series instrument. Column chromatography
was performed with silica gel Merck 60 (300–400 mesh). All new products were further
characterized by HRMS.

3.2. Experimental
3.2.1. Preparation of Dialdehyde Cellulose (DAC)

As reported in the literature [54], the preparation method of dialdehyde cellulose is as
follows: Firstly, 400 mL of deionized water was added into a 500-mL brown three-mouth
flask, and 5 g microcrystalline cellulose, 7.2 g LiCl, 7.2 g sodium periodate (NaIO4) were
weighed in deionized water, then the suspension was magnetically stirred in an oil bath at
75 ◦C. The mouth of the flask was covered with aluminum foil to prevent the photocatalytic
decomposition of NaIO4. After three hours, the reaction system was repeatedly pumped
and washed with deionized water and anhydrous ethanol (1:9) to remove excess iodine
compounds. The above product was vacuum-dried at 60 ◦C to obtain DAC. The aldehyde
group content of oxidized cellulose was determined to be 8.4 mmol/g by quantitatively
reacting hydroxylamine hydrochloride-methanol solution with the aldehyde group.

3.2.2. Preparation of R-5,5′-Diamino BINAP

(R)-5,5′-Diamino-BINAP was synthesized according to the literature [55].

3.2.3. Preparation of DAC-BINAP Catalyst

As reported in the literature [55], 0.012 g DAC was soaked in a pressure flask contain-
ing 10 mL of N,N-dimethylformamide (DMF), protected by nitrogen and stirred magneti-
cally in an oil bath at 50 ◦C. Then, ammonium persulfate (0.01 g) and triethylenetetramine
(TETA) (0.01 g) were added and allowed to dissolve in DMF. After 8 min, BINAP-NH2
dissolved in DMF and was added and stirred for another 3 h. The final products were
successively washed with deionized water and ethyl acetate and vacuum dried to obtain
DAC-BINAP. A stock solution was made by mixing [Rh (COD)2]BF4 with DAC-BINAP in
a 1:1.1 molar ratio in CH2Cl2 at room temperature for 30 min in a nitrogen-filled glovebox.
The resulting solid was filtered and washed with ample EtOAc. The product was kept in
an argon-protected glove box without drying.

3.2.4. General Procedure of DAC-BINAP-Rh Catalyst for Hydrogenation of Enamides

The catalyst solid (0.001 mmol) was transferred into vials charged with the same
substrates (0.1 mmol each) in different anhydrous solvents (1.0 mL). The vials were subse-
quently transferred into an autoclave into which hydrogen gas was charged. The reaction
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was then stirred under H2 (4 atm) at room temperature for 4 h. The hydrogen gas was
released slowly and carefully. The reaction system was separated by filtration (eluant:
EtOAc) to obtain each respective catalyst and product. The enantiomeric excess (ee) values
of compounds were determined by HPLC analysis on a chiral stationary phase.

3.2.5. Separation of the Catalyst and Recycling Tests

Isolation and reuse of the catalyst are crucial requirements for practical applications.
In this work, the reaction solution was filtered in a N2 atmosphere, and the supported
catalyst was filtered off and washed successively with EtOH and CH2Cl2. Then, the filter
cake was dried and reused directly without further purification.

4. Conclusions

In conclusion, we developed a simple and environmentally-friendly BINAP-modified
cellulose support for Rh complexation. We have proved that the catalyst can chemically
react with enamide without adversely affecting the support. Several analytical techniques
have been used to analyze these immobilized compounds, and finally proved that we
have indeed successfully covalently immobilized the BINAP-Rh complex on the modified
cellulose. It was an efficient catalyst for the hydrogenation of methyl 2-acetylamino-3-
phenylacrylate, which exhibited a high stereoselectivity (ee 80%). The catalytic results show
that the reduction in activity is decisive compared with the homogeneous system. However,
compared with other heterogeneous catalysts, the conversion and enantioselectivity levels
are equally good even if they are not improved. In addition, the catalyst showed repeated
high selectivity levels in six cycles. More importantly, this research has explored the
application of bio-based materials for asymmetric catalytic hydrogenation and has provided
a new green heterogeneous catalyst carrier. These advantages make this catalyst highly
valuable for practical applications.

Supplementary Materials: Detailed and complete characterization of compounds and hydrogenated
products (NMR spectra, HPLC chromatograms of racemic and enantiomerically enriched com-
pounds). This material is freely available via the Internet at https://www.mdpi.com/article/10.339
0/catal12010083/s1.
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