Pyrolysis and Co-Combustion of Semi-Dry Sewage Sludge and Bituminous Coal: Kinetics and Combustion Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pyrolysis Characteristics of Semi-Dry SS
2.2. Combustion of Semi-Dry SS and BC
2.2.1. Single Combustion Characteristics of Semi-Dry SS
2.2.2. Co-Combustion of Semi-Dry SS and BC
2.3. Emission Characteristics of Gas Pollutants during Co-Combustion
3. Materials and Methods
3.1. Materials
3.2. Thermogravimetric Analysis
3.3. Thermogravimetry–Fourier Transform Infrared Spectroscopy Analysis
3.4. Combustion Index
3.5. Kinetic Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Li, J.; Li, C.; Xue, Y.; Wang, H.; He, Y.; Zhang, L. Current Application Situation and Development Trend of Sludge Treatment and Disposal Technologies in China. China Water Wastewater 2016, 32, 26. [Google Scholar]
- Dickman, R.; Aga, D. Efficient workflow for suspect screening analysis to characterize novel and legacy per- and polyfluoroalkyl substances (PFAS) in biosolids. Anal. Bioanal. Chem. 2022, 414, 4497–4507. [Google Scholar] [CrossRef]
- Minh Trang, N.; Dao Ho, N.; Babel, S. Reuse of waste sludge from water treatment plants and fly ash for manufacturing of adobe bricks. Chemosphere 2021, 284, 131367. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Pawłowski, A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Judex, J.W.; Gaiffi, M.; Burgbacher, H.C. Gasification of dried sewage sludge: Status of the demonstration and the pilot plant. Waste Manag. 2012, 32, 719–723. [Google Scholar] [CrossRef]
- Lin, H.; Ma, X. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator. Waste Manag. 2012, 32, 561–567. [Google Scholar] [CrossRef]
- Magdziarz, A.; Werle, S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 2014, 34, 174–179. [Google Scholar] [CrossRef]
- Xie, Z.; Ma, X. The thermal behaviour of the co-combustion between paper sludge and rice straw. Bioresour. Technol. 2013, 146, 611–618. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Sung, J.-H.; Back, S.-K.; Jeong, B.-M.; Kim, J.-H.; Choi, H.S.; Jang, H.-N.; Seo, Y.-C. Oxy-fuel co-combustion of sewage sludge and wood pellets with flue gas recirculation in a circulating fluidized bed. Fuel Process. Technol. 2018, 172, 79–85. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Lu, Q.; Zhu, J.; Yao, Y.; Bao, S. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units. Waste Manag. 2014, 34, 2561–2566. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Li, Y.; Zhou, Z. Numerical Study of Thermochemistry and Trace Element Behavior during the Co-Combustion of Coal and Sludge in Boiler. Energies 2022, 15, 888. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Deng, H.; Jin, M.; Xiao, H.; Yao, H. Deep dewatering of sewage sludge and simultaneous preparation of derived fuel via carbonaceous skeleton-aided thermal hydrolysis. Chem. Eng. J. 2020, 402, 126255. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Xiao, K.; Liu, X.; Hu, H.; Li, X.; Yao, H. Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: Influence of moisture, carbohydrates, proteins and lipids. Bioresour. Technol. 2019, 272, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Liang, J.; Zhang, S.; Huang, J.; Dai, Y.; Huang, S.; Zheng, L.; Sun, S. Effects of Fenton/CaO as conditioner on the combustion characteristics of deeply dewaterd sewage sludge. Acta Sci. Circumstantiae 2018, 38, 2711–2720. [Google Scholar]
- Zheng, L. Thermochemical and Toxic Element Behavior during Co-Combustion of Coal and Municipal Sludge. Molecules 2021, 26, 4170. [Google Scholar]
- Yu, G.-H.; He, P.J.; Shao, L.M. Characteristics of Different Extracellular Polymeric Substances (EPS) Fractions of Sludge Flocs from Brewery Wastewater Treatment Plant (WWTP). J. Residuals Sci. Technol. 2009, 6, 105–111. [Google Scholar]
- Siedlecka, E.; Siedlecki, J. Influence of Valorization of Sewage Sludge on Energy Consumption in the Drying Process. Energies 2021, 14, 4511. [Google Scholar] [CrossRef]
- Đurđević, D.; Blecich, P.; Jurić, Ž. Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies 2019, 12, 1927. [Google Scholar] [CrossRef]
- Li, M.; Xiao, B.; Wang, X.; Liu, J. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis. Waste Manag. 2015, 35, 141–147. [Google Scholar] [CrossRef]
- Xu, J.; Liao, Y.; Yu, Z.; Cai, Z.; Ma, X.; Dai, M.; Fang, S. Co-combustion of paper sludge in a 750 t/d waste incinerator and effect of sludge moisture content: A simulation study. Fuel 2018, 217, 617–625. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Shahbaz, M.; Naqvi, M.; Aslam, M.; Khan, Z.; Mackey, H.; McKay, G.; Al-Ansari, T. Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Comput. Chem. Eng. 2021, 150, 107325. [Google Scholar] [CrossRef]
- Gao, N.; Li, J.; Qi, B.; Li, A.; Duan, Y.; Wang, Z. Thermal analysis and products distribution of dried sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2014, 105, 43–48. [Google Scholar] [CrossRef]
- Francioso, O.; Rodriguez-Estrada, M.T.; Montecchio, D.; Salomoni, C.; Caputo, A.; Palenzona, D. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production. J. Hazard. Mater. 2010, 175, 740–746. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Silva, J.; Filho, G.R.; da Silva Meireles, C.; Ribeiro, S.D.; Vieira, J.G.; da Silva, C.V.; Cerqueira, D.A. Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil. Thermochim. Acta 2012, 528, 72–75. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Jiang, X.; Li, F.; Lei, Y.; Lin, Q. The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw. Fuel Process. Technol. 2019, 189, 1–14. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, J.; Lu, Y.; Zeng, X.; Zhang, Y.; Zheng, Q.; An, Y. Combustion Characteristics of Lignite Residue from Rapid Hydropyrolysis at High Temperature and High Pressure. Coal Convers. 2019, 42, 28–34. [Google Scholar]
- Ruan, M.; Zeng, Z.; Huang, J.; Sun, Y.; Wu, X.; Zhang, W.; Yin, Y.; Xu, H.; Feng, L.; Hu, Z.; et al. Co-combustion Kinetics and Synergistic Characteristics of Sewage Sludge and Spent Coffee Grounds. Heat Transf. Res. 2021, 52, 79–94. [Google Scholar] [CrossRef]
- Liu, J.; Fu, J.; Sun, S.; Zhuo, Z.; Kuo, J.; Sun, J.; Wang, Y.; Li, X. Co-combustion of various sources of sludge and its combustion performance. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2016, 36, 940–952. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, C.; Yan, F.; Shao, N.; Tang, Y.; Zhang, Z. Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals. Energy 2018, 153, 921–932. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; He, Y.; Huang, L.; Sun, S.; Sun, J.; Chang, K.; Kuo, J.; Huang, S.; Ning, X. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresour. Technol. 2017, 225, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Wang, Z.Q.; Cheng, X.X.; Ma, C.Y. Non-isothermal TGA study on the combustion reaction kinetics and mechanism of low-rank coal char. Rsc Adv. 2018, 8, 22909–22916. [Google Scholar] [CrossRef]
- Zhao, R.; Qin, J.; Chen, T.; Wang, L.; Wu, J. Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR. Waste Manag. 2020, 116, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, R.; Zhang, L.; Shi, B. Effects of alkali and alkaline earth metal species on the combustion characteristics and synergistic effects: Sewage sludge and its blend with coal. Waste Manag. 2022, 146, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.C.; Chen, W.-H.; Singh, Y.; Gan, Y.Y.; Chen, C.-Y.; Show, P.L. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach. Energy Convers. Manag. 2020, 209, 112634. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Chiang, K.-Y. Sewage and textile sludge thermal degradation kinetic study using multistep approach. Thermochim. Acta 2021, 698, 178871. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, G.; Wang, Q.; Cui, Z.; Wang, L. Pyrolysis characteristics, kinetics, and evolved gas determination of chrome-tanned sludge by thermogravimetry-Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry. Waste Manag. 2019, 93, 130–137. [Google Scholar] [CrossRef]
- Souza, B.S.; Moreira, A.P.D.; Teixeira, A. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J. Therm. Anal. Calorim. 2009, 97, 637–642. [Google Scholar] [CrossRef]
- Jiang, Y.; Zong, P.; Ming, X.; Wei, H.; Zhang, X.; Bao, Y.; Tian, B.; Tian, Y.; Qiao, Y. High-temperature fast pyrolysis of coal: An applied basic research using thermal gravimetric analyzer and the downer reactor. Energy 2021, 223, 119977. [Google Scholar] [CrossRef]
- Qin, H.; Yue, Y.; Zhang, L.; Liu, Y.; Chi, M.; Liu, H.; Wang, Q.; Liu, B. Study on Co-combustion Kinetics of Oil Shale Sludge and Semicoke. Energy Fuels 2016, 30, 2373–2384. [Google Scholar] [CrossRef]
- Ni, Z.; Bi, H.; Jiang, C.; Sun, H.; Zhou, W.; Tian, J.; Lin, Q. Investigation of co-combustion of sewage sludge and coffee industry residue by TG-FTIR and machine learning methods. Fuel 2022, 309, 122082. [Google Scholar] [CrossRef]
- Magdziarz, A.; Wilk, M. Thermal characteristics of the combustion process of biomass and sewage sludge. J. Therm. Anal. Calorim. 2013, 114, 519–529. [Google Scholar] [CrossRef]
- Iscan, A.G.; Kok, M.V.; Bagci, A.S. Kinetic analysis of central anatolia oil shale by combustion cell experiments. J. Therm. Anal. Calorim. 2007, 88, 653–656. [Google Scholar] [CrossRef]
- Fang, S.; Yu, Z.; Lin, Y.; Lin, Y.; Fan, Y.; Liao, Y.; Ma, X. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis. Bioresour. Technol. 2016, 209, 265–272. [Google Scholar] [CrossRef]
- Gómez, C.J.; Mészáros, E.; Jakab, E.; Velo, E.; Puigjaner, L. Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques. J. Anal. Appl. Pyrolysis 2007, 80, 416–426. [Google Scholar] [CrossRef]
- Zhai, Y.; Peng, W.; Zeng, G.; Fu, Z.; Lan, Y.; Chen, H.; Wang, C.; Fan, X. Pyrolysis characteristics and kinetics of sewage sludge for different sizes and heating rates. J. Therm. Anal. Calorim. 2011, 107, 1015–1022. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Yang, Q.; Liang, R. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy 2009, 33, 50–56. [Google Scholar] [CrossRef]
- Li, P.; You, F.; Zhou, H.; Wang, W.; Zhu, Z. On the spontaneous combustion and the thermal stability properties of the coal-based activated carbon powders. J. Saf. Environ. 2017, 17, 435–439. [Google Scholar]
- Liu, Z.; Zhang, J. Study on the combustion characteristics and kinetics of Caragana korshinskii Kom. Acta Energ. Sol. Sin. 2017, 38, 2611–2618. [Google Scholar]
- Xian, X.; Du, Y.; Zhang, G. Combustion characteristics of coal blending by tg-dtg/dta. Coal Convers. 2011, 34, 67–70. [Google Scholar]
- Yu, L.J.; Wang, S.; Jiang, X.M.; Wang, N.; Zhang, C.Q. Thermal analysis studies on combustion characteristics of seaweed. J. Therm. Anal. Calorim. 2008, 93, 611–617. [Google Scholar] [CrossRef]
- Starink, M.J. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochim. Acta 2003, 404, 163–176. [Google Scholar] [CrossRef]
- Sima-Ella, E.; Yuan, G.; Mays, T. A simple kinetic analysis to determine the intrinsic reactivity of coal chars. Fuel 2005, 84, 1920–1925. [Google Scholar] [CrossRef]
- Yang, K.; Ding, Z.J.; Xiao, L.C.; Li, Q. Pyrolysis Characteristics and Kinetic Analysis of Municipal Sewage Sludge Coupled with Sawdust. Reneng Dongli Gongcheng. J. Eng. Therm. Energy Power 2018, 33, 112–118. [Google Scholar] [CrossRef]
Samples | Heating Rate (°C/min) | (dw1/dt)max /%·min−1 | T1max /°C | Ts /°C | (dw2/dt)max /%·min−1 | T2max /°C | ∆T1/2 /°C | R /% | D × 10−8 /%·min−1·°C−3 |
---|---|---|---|---|---|---|---|---|---|
SS-50 | 20 | 8.78 | 121 | 254 | 0.570 | 299 | 242 | 57.8 | 3.1013 |
SS-50 | 10 | 6.55 | 101 | 216 | 0.298 | 286 | 182 | 54.1 | 2.6504 |
SS-50 | 15 | 7.67 | 96 | 262 | 0.825 | 290 | 223 | 55.9 | 4.8734 |
SS | 15 | 7.69 | 99 | 265 | 0.460 | 293 | 192 | 59.6 | 3.0856 |
SS-0 | 15 | 0.52 | 149 | 225 | 1.760 | 295 | 137 | 68.7 | 19.3547 |
Samples | β (°C/min) | Characteristic Temperature/°C | DTG(%/°C) | C × 10−6 | G × 10−6 | S × 10−8 | |||
---|---|---|---|---|---|---|---|---|---|
Ti | Tf | Tmax | (dw/dt)max | (dw/dt)mean | |||||
SS-0 | 15 | 190 | 577 | 303 | 2.39 | 1.21 | 66.47 | 1154.59 | 14.01 |
SS-40 | 15 | 194 | 486 | 307 | 1.28 | 0.69 | 34.05 | 571.71 | 4.84 |
SS-50 | 15 | 196 | 478 | 312 | 1.08 | 0.63 | 28.17 | 460.66 | 3.44 |
SS-60 | 15 | 198 | 444 | 312 | 0.87 | 0.53 | 22.36 | 361.95 | 2.68 |
SS | 15 | 204 | 400 | 312 | 0.53 | 0.36 | 12.85 | 201.89 | 1.16 |
SS-50 | 10 | 195 | 503 | 330 | 0.70 | 0.40 | 18.66 | 289.98 | 1.50 |
SS-50 | 20 | 198 | 503 | 307 | 1.40 | 9.04 | 35.91 | 590.76 | 64.55 |
Samples | Heating Rate (°C/min) | Characteristic Temperature | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
75–240 °C | 240–380 °C | 380–600 °C | |||||||||||
Best-Fit Model | A (s−1) | E (kJ/mol) | R2 | Best-Fit Model | A (s−1) | E (kJ/mol) | R2 | Best-Fit Model | A (s−1) | E (kJ/mol) | R2 | ||
SS-0 | 15 | 20 | 9.25 × 102 | 58.14 | 0.9493 | 9 | 4.73 × 102 | 62.07 | 0.9962 | 20 | 1.03 × 107 | 91.47 | 0.9788 |
SS-40 | 15 | 20 | 1.30 × 106 | 55.21 | 0.7355 | 21 | 1.54 | 14.32 | 0.9761 | 20 | 3.09 × 105 | 62.74 | 0.9879 |
SS-50 | 15 | 20 | 2.30 | 10.43 | 0.5827 | 20 | 3.59 × 102 | 28.80 | 0.9339 | 20 | 7.68 × 105 | 54.09 | 0.9953 |
SS-60 | 15 | 20 | 1.88 × 102 | 21.11 | 0.5284 | 6 | 6.43 × 10−3 | 2.98 | 0.7634 | 20 | 5.21 × 105 | 49.08 | 0.9933 |
SS | 15 | 9 | 2.07 × 1010 | 83.14 | 0.9947 | 20 | 1.67 | 4.91 | 0.6134 | 20 | 7.02 × 102 | 25.17 | 0.9851 |
SS-50 | 10 | 9 | 4.76 × 1013 | 105.22 | 0.9957 | 20 | 4.07 | 14.60 | 0.7967 | 20 | 3.95 × 103 | 55.85 | 0.9984 |
SS-50 | 20 | 9 | 1.19 × 1011 | 89.94 | 0.9932 | 20 | 0.18 | 4.26 | 0.6432 | 20 | 8.77 × 103 | 42.59 | 0.9931 |
Samples | β (°C/min) | Characteristic Temperature (°C) | DTG (%/°C) | C × 10−6 | G × 10−6 | S × 10−8 | |||
---|---|---|---|---|---|---|---|---|---|
Ti | Tf | Tmax | (dw/dt)max | (dw/dt)mean | |||||
BC | 15 | 481 | 702 | 624 | 3.42 | 2.68 | 14.79 | 49.28 | 5.65 |
SS-50-BC95 | 15 | 478 | 697 | 602 | 3.29 | 2.33 | 14.43 | 50.15 | 4.83 |
SS-50-BC90 | 15 | 469 | 696 | 621 | 3.12 | 2.28 | 14.20 | 48.76 | 4.65 |
SS-50-BC85 | 15 | 475 | 690 | 621 | 3.12 | 2.38 | 13.86 | 46.99 | 4.78 |
SS-50-BC80 | 15 | 470 | 686 | 620 | 3.00 | 2.21 | 13.61 | 46.71 | 4.39 |
SS-50-BC70 | 15 | 451 | 672 | 614 | 2.68 | 1.92 | 13.19 | 47.63 | 3.79 |
SS-50-BC40 | 15 | 214 | 627 | 588 | 1.35 | 0.80 | 29.57 | 235.00 | 3.78 |
Samples | Characteristic Temperature | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
45–100 °C | 100–380 °C | 380–800 °C | ||||||||||
Best-Fit Model | A (s−1) | E (kJ/mol) | R2 | Best-Fit Model | A (s−1) | E (kJ/mol) | R2 | Best-Fit Model | A (s−1) | E (kJ/mol) | R2 | |
BC | 9 | 6.09 × 105 | 66.69 | 0.8361 | 20 | 2.22 × 105 | 20.16 | 0.9635 | 16 | 1.61 × 103 | 67.92 | 0.9958 |
SS-50-BC95 | 9 | 1.18 × 109 | 86.20 | 0.8668 | 20 | 2.03 × 10−3 | 35.30 | 0.9937 | 16 | 2.79 × 102 | 55.05 | 0.9772 |
SS-50-BC90 | 9 | 5.33 × 109 | 88.27 | 0.8515 | 20 | 1.48 × 10−3 | 24.31 | 0.9756 | 16 | 2.16 × 102 | 53.32 | 0.9613 |
SS-50-BC85 | 9 | 1.50 × 1010 | 120.09 | 0.7998 | 20 | 2.80 × 10−3 | 33.48 | 0.9346 | 16 | 3.82 × 102 | 52.19 | 0.9744 |
SS-50-BC80 | 9 | 2.06 × 1012 | 137.99 | 0.8300 | 20 | 1.05 × 10−2 | 39.10 | 0.9610 | 16 | 1.37 × 102 | 49.94 | 0.9566 |
SS-50-BC70 | 9 | 6.54 × 108 | 79.85 | 0.9406 | 20 | 9.48 × 10−2 | 28.83 | 0.9173 | 16 | 5.06 | 42.82 | 0.9102 |
SS-50-BC40 | 9 | 2.81 × 108 | 84.65 | 0.9660 | 20 | 5.66 × 10−1 | 16.52 | 0.8406 | 18 | 8.28 × 102 | 41.53 | 0.9158 |
Samples | Proximate Analysis/wt% | Ultimate Analysis/wt% | HHV (kJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Var | Aar | FCar | Car | Har | Nar | Sar | Oar * | Qnet,ar | |
SS | 88.01 | 3.76 | 7.23 | 1.00 | 2.23 | 0.39 | 0.37 | 0.06 | 1.71 | 885.36 |
BC | 6.71 | 32.88 | 19.27 | 41.14 | 61.76 | 4.16 | 1.11 | 0.52 | 6.47 | 23526.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Chen, Z.; Wu, A.; Shi, T.; Zhang, X.; Li, H.; Yang, H.; Shao, J.; Zhang, S.; Chen, H. Pyrolysis and Co-Combustion of Semi-Dry Sewage Sludge and Bituminous Coal: Kinetics and Combustion Characteristics. Catalysts 2022, 12, 1082. https://doi.org/10.3390/catal12101082
Li G, Chen Z, Wu A, Shi T, Zhang X, Li H, Yang H, Shao J, Zhang S, Chen H. Pyrolysis and Co-Combustion of Semi-Dry Sewage Sludge and Bituminous Coal: Kinetics and Combustion Characteristics. Catalysts. 2022; 12(10):1082. https://doi.org/10.3390/catal12101082
Chicago/Turabian StyleLi, Guangyang, Zhuoyuan Chen, Afeng Wu, Tao Shi, Xiong Zhang, Hui Li, Haiping Yang, Jingai Shao, Shihong Zhang, and Hanping Chen. 2022. "Pyrolysis and Co-Combustion of Semi-Dry Sewage Sludge and Bituminous Coal: Kinetics and Combustion Characteristics" Catalysts 12, no. 10: 1082. https://doi.org/10.3390/catal12101082
APA StyleLi, G., Chen, Z., Wu, A., Shi, T., Zhang, X., Li, H., Yang, H., Shao, J., Zhang, S., & Chen, H. (2022). Pyrolysis and Co-Combustion of Semi-Dry Sewage Sludge and Bituminous Coal: Kinetics and Combustion Characteristics. Catalysts, 12(10), 1082. https://doi.org/10.3390/catal12101082