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Abstract: Hyphozyma roseonigra is a dimorphic yeast used as a biocatalyst to convert sclareol, a plant
diterpenoid to ambradiol. The latter is an intermediate in the synthesis of ambrafuran, a high-value
chemical in the fragrance industry. Unfortunately, little is known about the underlying biochemistry
of this microorganism. In this study, the integration of multi-platform-based metabolomics was
used to better comprehend H. roseonigra from a biochemical perspective. The focus on metabolomic
changes during growth and development was accomplished using untargeted LC–MS and NMR
analyses. Cell suspensions were grown in batch culture over a 14-day period, and cells from the
early-, log-, and stationary phases were harvested every second day using platform-compatible
extraction procedures. Following chemometric analysis of LC–MS and NMR data acquired from both
intra- and extracellular extracts, the identified discriminatory ions annotated from the endo- and
exometabolomes (metabo-fingerprinting and metabo-footprinting) were found to fall predominantly
in the primary metabolism class. Pathway mapping and feature-based network correlation analysis
assisted in gaining insights into the active metabolic pathways during growth and development and
did not flag terpene synthesis. This study provides novel insights into the basic metabolic capabilities
of H. roseonigra and suggests that sclareol is metabolized as the detoxification of a hydrophobic
xenobiotic compound.

Keywords: biocatalysis; filamentous yeast; Hyphozyma roseonigra; liquid chromatography; mass
spectrometry; metabolomics; nuclear magnetic resonance; pathway mapping

1. Introduction

Biocatalysis is a microbial process for the specific bioconversion/biotransformation
of organic precursors, resulting in the production of different functionalized pure com-
pounds [1,2]. However, the major challenge faced by biocatalysis is the lack of knowledge
of the underlying biochemical reactions involved in the biocatalytic steps, in order to obtain
high yields [3]. Hyphozyma roseonigra sp. nov. is a filamentous yeast-like Hyphomycetes
with anamorphic qualities [4], displaying peculiar morphological and biochemical proper-
ties (accession numbers CBS 214.83 at the Centraal Bureau voor Schimmel Cultures and
ATCC 20624 at the American Type Culture Collection) [4–6]. Currently, the microorganism
is documented as Moesziomyces antarcticus with CBS 5955 and cross-referenced JCM 10317
(GenBank: BBIZ00000000). As much as the organism has been taxonomically described
and classified, very little is known about its biochemistry, capable of biotransforming
the plant metabolite, sclareol, into the fragrance valuable ambradiol in a one-step pro-
cess [5,6]. Sclareol is a diterpene from Salvia sclarea (clary sage) with a labdane carbon
skeleton that resembles that of (−)-ambrafuran, a tetranorlabdane diterpenoid. Due to this
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structural similarity, sclareol is the most promising starting material for the semi-synthesis
of ambrafuran [7].

Metabolomics is a fusion of the traditional areas of metabolite analysis supported
by bioanalytical instrumentation and chemometrics. Untargeted metabolomics seeks to
identify and quantify most metabolites in a biological system, and as such, it is a vi-
tal component of systems biology approaches. The metabolome reflects the upstream
transcriptomic and proteomic events within an organism and may be regarded as a true
reflection of its physiological status. Ultra-high-performance liquid chromatography cou-
pled to mass spectrometry (UHPLC–MS) has emerged as a central analytical platform in
several metabolomics-based approaches over the years, particularly plant studies [8,9].
Several UHPLC–MS methods have been developed for the profiling and characterization
of yeast/fungal metabolites [10,11]. In parallel, methods for the use of NMR for metabolite
fingerprinting of yeast/fungal metabolites have been developed [12–14]. NMR has distinct
advantages as a robust, highly selective, and non-destructive analytical technique [14].

Although the biocatalytic application of H. roseonigra has been documented [5,6], little
is known about the metabolic pathways operational within the microorganism. Aspects
such as whether a pathway is constitutively present and active vs. inducible under certain
experimental conditions, as well as knowledge about the availability of essential cofactors
linked to these pathways, are important for the experimental design and maintenance of
optimal bioreactor conditions. Significant knowledge gaps that limit the full deployment of
this microorganism as a biocatalyst still exist. These questions include the presence and
nature of putative intermediate products during the course of biotransformation and the
reactions leading to the formation of the main product, ambradiol/sclareol glycol [15].
Previously, we explored the non-polar metabolites using gas chromatography coupled to
mass spectrometry (GC–MS)-based profiling, where 30 metabolites including squalene,
and a variety of alkanes were annotated in non-induced cells [16]. Recently, we reported
the investigation and profiling of the bioconversion process of sclareol to ambradiol in
bioreactors by LC-MS and nuclear magnetic resonance (NMR) [17] as well as GC [18].
Proteomic data generated by [19] pointed to the upregulation of aldehyde dehydrogenases
upon sclareol addition while [15] reported that sclareol glycol and sclareolide (a co-product)
are not interconverted and are potentially synthesized via different metabolic pathways in
resting, non-growing cells.

In an attempt to broaden the understanding of H. roseonigra from a biochemical
perspective, this study applied the use of untargeted multi-platform-based metabolomics
to explore the presence of both primary and secondary metabolites present in cellular
extracts or secreted into the growth medium. Here, a UHPLC–MS-based metabolomics
study, supported by NMR, was conducted, aimed at an assessment of the H. roseonigra
metabolome linked to the different growth/developmental stages. Such knowledge would
eventually facilitate the optimization of the biocatalytic process with regard to the reaction
conditions and type of culture process.

2. Results

The major goal was to investigate intracellular and secreted extracellular metabolites in
an untargeted manner in the context of the growth and developmental stages of H. roseonigra
during fermentative batch culture (Figure S1 illustrates the growth profile in batch culture
under the experimental conditions as described over the period of investigation). This
results section is thus further subdivided into two main subsections: (i) Profiling metabolic
changes in H. roseonigra over the growth period based on UHPLC–MS and NMR acquired
data and (ii) pathway mapping and network correlation analysis by using all the annotated
compounds, including the 30 metabolites previously annotated [16]. The numbers referring
to the annotated metabolites (# 1–45) continue from Table 1 (# 1–17) to Table 2 (# 18–45).
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Table 1. List of annotated metabolites present in acetonic and methanolic extracts of H. roseonigra
grown in batch culture and annotated from UHPLC–MS data *.

Assigned Feature
Number

Metabolite
Annotation

Biological
Role

Intra-
Cellular

Extra-
Cellular

Acetone extracts
1 5-Aminoimidazole ribonucleotide Intermediate X
2 Pantothenic acid Vitamin X
3 Thymine diphosphate Nucleotide X
4 Glycyl-leucine Dipeptide X
5 Xanthosine-5-phosphate Purine X
6 N6,N6-Dimethyladenosine Ribonucleoside X
7 Maculosin Dipeptide X
8 2-Deoxyribose-1-phosphate Intermediate X
9 S-Adenosyl-L-homo-cysteine Methyl donor X
10 18-Acetoxy-1-alpha-25-dihydroxy vit. D3 Vitamin X
11 5-Methyl-tetrahydrofolate DNA synthesis X
12 Reynosin Diterpene X
13 Broussonin C Polyketide/phenolic X

Methanol extracts
14 Deoxyuridine Ribonucleoside X
15 Biotin Vitamin X
16 UDP-glucuronate Sugar X
17 Xanthosine-5-phosphate Purine X

* Additional experimental details in support of the annotations are provided in Table S1.

Table 2. Annotation of metabolites in methanolic extracts of Hyphozyma roseonigra analyzed by
1H NMR *.

Assigned
Feature Number

Metabolite
Annotation

Assigned
Feature Number

Metabolite
Annotation

Amino acids and derivatives
18 Aspartate 19 Glutamine
20 Valine 21 Threonine
22 Alanine 23 Glutamate
24 Isoleucine 25 Leucine
26 Cysteine 27 Ornithine
28 Serine 29 N-acetyl aspartate

Fatty acids and derivatives
30 Linoleic acid 31 Hexadecyl octanoate ester
32 Nonadecanoic acid 33 Palmitic acid (OCH3)
34 2-Hydroxy-isobutyric acid

Sugars and derivatives
35 Galactose-1-phosphate 36 Glucose
37 Galactitol 38 Myo-inositol

Organic acids
39 Lactate

* Additional experimental details in support of the annotations are provided in Table S2.

2.1. UHPLC–MS Analyses

Cells were harvested by centrifugation from cell suspensions and the cells (pellets)
and growth medium (supernatants) were separately processed by extraction with methanol
and acetone in order to gather information about the polar vs. semi-polar metabolites.
Chromatographic analyses revealed variations in peak intensities across all the samples,
and base peak intensity (BPI) MS chromatograms of methanolic-/acetonic intracellular
extracts (Figure 1) and extracellular extracts (Figure S2) clearly indicated time-dependent
changes across the different growth/developmental stages.
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The differences detected in the chromatographically distinct metabolite profiles are 
indicative of metabolic variations across the different stages of growth. Although limited 
and not fully informative, variations observed through MS chromatograms are the first 
indication of differential chemical compositions. Geared toward a more holistic under-
standing of these growth- and development-related differences, advanced multivariate 
data processing and chemometric analyses of the complex and multidimensional data 
were subsequently applied. 

2.1.1. Multivariate Data Analysis 
MVDA was performed for data exploration to reveal trends within the metabolome 

across the time points, and to detect similarities/differences in the metabolite profiles at 
the different growth stages. Amongst the MVDA performed, principal component analy-
sis (PCA) modeling was undertaken as an unsupervised explorative tool to reduce the 

Figure 1. Ultra-high performance liquid chromatography (UHPLC) separation with high-
definition mass spectrometry (HD–MS) detection in electrospray ionization (ESI) negative mode of
(A) methanolic- and (B) and acetonic cellular extracts of Hyphozyma roseonigra. Cells were harvested
from selected days over a 14 d period representing the different growth stages, i.e., early, logarithmic
and stationary. The representative base peak intensity (BPI—the most intense peaks at a specific
retention time) chromatograms show evident differential peak populations across the different days.
The X-axes are staggered across the retention time scale and the Y-axes linked to allow comparison of
peak intensities.

The differences detected in the chromatographically distinct metabolite profiles are
indicative of metabolic variations across the different stages of growth. Although limited
and not fully informative, variations observed through MS chromatograms are the first
indication of differential chemical compositions. Geared toward a more holistic under-
standing of these growth- and development-related differences, advanced multivariate
data processing and chemometric analyses of the complex and multidimensional data were
subsequently applied.

2.1.1. Multivariate Data Analysis

MVDA was performed for data exploration to reveal trends within the metabolome
across the time points, and to detect similarities/differences in the metabolite profiles
at the different growth stages. Amongst the MVDA performed, principal component
analysis (PCA) modeling was undertaken as an unsupervised explorative tool to reduce



Catalysts 2022, 12, 1225 5 of 19

the complexity and multidimensionality of the raw UHPLC–MS data. The PCA models of
intracellular- and extracellular extracts analyzed using UHPLC–MS in ESI(−) mode are
shown in Figure 2 and Figure S3, respectively. Considering the UHPLC–MS was carried
out in both ionization modes, the PCA models of intracellular- and extracellular extracts
analyzed in ESI(+) mode are shown in Figures S4 and S5, respectively.
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Figure 2. Principal component analysis (PCA) score plots of (A) methanolic- and (B) and acetonic in-
tracellular extracts of H. roseonigra cells analyzed using UHPLC–MS in ESI (−) mode. The scores plots,
constructed from the first two components, show clustering according to different growth stages repre-
sented as the early-, log-, and stationary stages. The ellipse indicates Hotelling’s T2 at 95% confidence
interval. The Pareto-scaled 2D scores plots (A) with PC1 and PC2 showing 36.7% and 32.7%, respec-
tively, explaining a total variation of 69.4%, and (B) with PC1 and PC2 showing 22.3% and 19.4%,
respectively, explaining a total variation of 41.7%, shows clear separation of the stages.

Although only minor variations on peak presence/absence of peaks could be observed
on the BPI MS chromatograms (Figure 1 and Figure S2), differential stage-related clustering
of the samples was observed with the PCA models (Figure 2). This differential clustering
revealed by PCA relates to the differences previously visualized by the chromatographic
separation. The models illustrate both similarities and differences within (PC2) and between
(PC1) extracts generated from the different growth stages. The PCA scatter plot models thus
revealed differential changes in the intra- and extracellular metabolite profiles, indicating
changes in the metabolite profile of the metabolome as the cell culture ages.

2.1.2. Metabolite Annotation and Relative Quantification of UHPLC–MS
Analyzed Compounds

Annotation of the m/z ions identified from the high-resolution MS analyses was
carried out as described [20–23]. Different annotation approaches, involving four different
levels (as defined by the Metabolomics Standards Initiative, MSI), were proposed [24].
Metabolite annotation in this study was carried out to MSI-level 2, i.e., ‘tentatively identified’
compounds (e.g., without chemical reference standards, based upon physicochemical
properties and/or spectral similarity with public/commercial spectral libraries such as
MS-DIAL, [23]). Data from both ESI modes were used for the annotation of ions present in
methanolic- and acetonic intra- and extracellular extracts. Although a large percentage of
the m/z features contained in the raw data could not be successfully annotated/identified
(due to the lack of suitable databases), a wide range of metabolites, predominantly linked
to primary metabolism, was revealed (Table 1, # 1–17).

To assist in the exploration of changes in the metabolite composition of the metabolome
as related to the growth stage, heat maps were generated (Figure S6), using peak intensities
of selected metabolites representing each class using the ‘Metaboanalyst bioinformatics
tool suite’ software. Distinct clusters separating the selected metabolites were observed:
(i) Metabolites with a relatively lower concentration during the early adaptation stage that
increases as H. roseonigra develops into the log stage and (ii) metabolites that increase in
relative concentration towards the stationary stage. For some metabolites, the mid- and
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late stages of growth are more similar (in the same cluster) than the early stage of growth
based on relative concentrations and vice-versa.

2.2. NMR Multivariate Analyses, Metabolite Annotation and Relative Quantification
1H NMR analyses were carried out to focus on the yet uncharacterized H. roseonigra

as shown in Figure 3A. The cells were harvested over the 14 d period (0, 4, 6, 10, 14 d).
The intracellular metabolites were extracted with methanol and the dried samples were
reconstituted with D2O.
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Figure 3. (A) 1H NMR spectra (500 Hz) of intracellular metabolites present in methanolic extracts of H.
roseonigra. The cells were harvested from selected days (0, 4, 6, 10, 14 d) over a 14 d period representing
the different growth stages, i.e., early- (blue line), logarithmic- (red line), and stationary (green line).
The representative spectra show evident differences in peak intensities across the different days,
where the intensities decrease or increase for some peaks. The resonance from the internal standard
(TSP) is at 0.00 ppm. (B) Multivariate data analysis showing a representative principal components
analysis (PCA) scores plot. The plots, constructed from the first two components, show clustering
according to different developmental stages represented as early-, logarithmic-, and stationary with
gradual overlap between the early- and log stages. The Pareto-scaled 2D scores plot with PC1 and
PC2 showing 34.8% and 28.6%, respectively, explaining a total variation of 63.4%.

The general pattern observed in Figure 3A is the increase in the intensity of peaks with
aging of the culture. Complex resonances are clearly visible due to aliphatic amino acid
methyl groups (0–3.5 ppm) and sugar anomeric positions (3.0–6.5 ppm). However, due to
the complexity of the obtained raw data shown on the 1H spectra, statistical multivariate
analyses were also performed to define both similarities and differences across samples of
different growth stages as shown in Figure 3B. The graphical visualization generated by
the model reveals separation/clustering in the score space between samples from different
growth stages. The computed PCA model facilitated the evaluation of the distribution of
samples, with gradual overlapping of metabolomic features associated with the early- and
log stages.

Metabolite Annotation and Relative Quantification of NMR Analyzed Compounds

Annotation of the metabolites was carried out at level 2 of the Metabolomic Standards
Initiative (MSI) using a reference to the literature where 1H NMR metabolite profiling of
fungal species was reported [25,26], as well as the Yeast Metabolome Database (YMBD,
http://www.ymdb.ca/, accessed on 15 June 2020). The 1H spectra were characterized
by three main regions as shown in Figure S7, namely, a low-field region between 4.0
and 3.2 ppm with intense signals due to anomeric protons of sugar units, a mid-field region
between 3.1 and 1.8 with signals associated with amino acids, and a high-field region
between 1.6 and 0.8 ppm with strong signals due to aliphatic protons of fatty acids [11]. A
total of 27 metabolites were annotated across the different growth/developmental stages
as listed in Table 2.

http://www.ymdb.ca/
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Similar to the workflow for the UHPLC–MS analysis, the calculation of relative con-
centrations was carried out for a few selected metabolites (representative of the assigned
classes), analyzed on the 1H NMR platform. Average peak intensity values were used
to obtain the semi-quantitative approximation of the selected metabolites (Table 2). The
alcohol ethanol (43) seemingly has the highest concentration, followed by the amino acid
valine (20), with the fatty acids linoleic acid (30) and palmitic acid (-OCH3 derivative) (33)
and the sugar alcohol galactitol (37) with relatively similar concentrations, and lastly, citrate
and succinate as the organic acids (40 and 41) (Figure S8).

2.3. Pathway Mapping and Network Correlation Analysis

Although based on a relatively small number of annotated metabolites, eight pathways
were found to be significantly active with a high impact factor in H. roseonigra across the
growth/developmental stages as summarized in Figure 4 and listed in Table S2. The path-
ways with the highest impact were selected to reveal the inter-relations of the participating
metabolites as well as the shift in pathways as the cells progress through the different
stages of growth (Figure 5A,B), revealing primary metabolism to be more active in the early
growth stage.
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Figure 4. Overview of pathway topology analysis: MetPA-computed metabolic pathways. A visual
representation of information showing all matched pathways according to the log p-values and
impact scores (Table S3). Pathways are displayed according to their significance (pathway impact)
indicating pathways with high impact to low impact (bright red to light yellow, respectively) active
in H. roseonigra.

The MetPA module facilitated the pathway network topological analysis and visualiza-
tion using a hypergeometric test algorithm and ‘relative betweenness centrality’ parameter
as shown in Figure 5A,B. Thus, based on the annotated metabolites (Tables 1 and 2), path-
way analysis with MetPA revealed that eight metabolic pathways out of a total of 35
(Table S3) had a significant impact (impact score >0.12). These most significant pathways
include alanine-, aspartate-, and glutamate metabolism, glutathione metabolism, citrate
cycle (TCA cycle), glycerolipid metabolism, and fatty acid degradation, among others.
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Figure 5. Metabolomics pathway topology analysis. A visual representation of information showing
(A) alanine, aspartate, and glutamate metabolism, and (B) pantothenate and coenzyme A pathways
displaying some tentatively annotated metabolites found to be present in H. roseonigra. Annotated
metabolites participating in the pathways are pantothenic acid (2), L-aspartate (18), glutamine (19),
valine (20), alanine (22), succinate (41), and CoA (45). The charts represent the relative concentration
across the growth/developmental stages (Blue = early, Pink = log, Black = stationary). The figure
only represents the metabolites that could be mapped using the MetPA tool.

The metabolic pathways significantly active in H. roseonigra, as revealed by pathway
analysis above using MetPA, are evidently highly interconnected, as demonstrated by the
pathway topology (Figure 5B). However, the topology analysis could only highlight the
compounds in a metabolic pathway. Thus, a network correlation analysis (Figure S9) was
carried out using the KEGG mapper module to highlight the interconnectedness of these
significant pathways as well as to reveal the participation of each metabolite in different
pathways. These pathways belong to the closest species available (Saccharomyces cerevisiae)
in the KEGG database. The network correlation analysis revealed the major metabolic
pathways in H. roseonigra over the growth period to include carbohydrate metabolism, lipid
metabolism, amino acid metabolism, metabolism of cofactors and vitamins, biosynthesis of
terpenoids and polyketides, and biosynthesis of other secondary metabolites.

3. Discussion

In a separate study, the bioconversion of sclareol under bioreactor conditions (mon-
itored by LC-MS and NMR) showed that the production of ambradiol by cells in the
stationary phase was essentially completed over a period of 3–4 days [17]. In batch culture,
the culture environment is continuously changing due to substrate consumption and by-
product production. In addition, differential gene expression during the growth stages of an
organism may allow the organism to metabolize new or added (e.g., xenobiotic) substrates.
Here, we set out to explore a spectrum of both primary and secondary metabolites (from
the endo- and exo-metabolomes) of H. roseonigra that are detectable in any of the growth
stages. To accomplish this goal, cells were grown in Erlenmeyer flasks and equal volume
aliquots of the suspensions were harvested on specified days and extracted using technique
(LC–MS and NMR)-compatible protocols as described.

Untargeted metabolomics experiments function on the premise that there is little to no
prior knowledge of the metabolites in the sample being analyzed. Experiments therefore
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rely on the collection of as many data as possible. As a result, data analysis is more complex
and challenging. This contribution presents the use of parallel analytical platforms (UHPLC,
MS, and NMR) for metabolomic profiling. While the majority of metabolomic studies use
a single analytical platform, there is an increasing appreciation of the inherent value of
combining NMR and MS as highly complementary techniques for metabolomics [27].

The utilization of different solvent extraction techniques and parallel analytical plat-
forms, along with several multivariate data analytical tools, afforded a reasonable coverage
and comprehension of the metabolome under study. In addition, the variables of the endo-
and exometabolomes (metabo-fingerprinting and metabo-footprinting, respectively), as
well as the mode of ionization, were also introduced to widen the chemical space of the
extractable metabolome of H. roseonigra. A total of 45 discriminatory metabolites were
annotated at different stages of growth and development, belonging to chemical classes
such as vitamins, sugars, amino acids, dipeptides, fatty acids, organic acids, purine interme-
diates, ribonucleotides, hydrocarbons (alkanes), and terpenes. The annotated metabolites,
in addition to 30 other non-polar metabolites (including squalene and a range of alkanes),
annotated from a previous study [16], were effectively mapped into the corresponding
metabolic pathways.

3.1. UHPLC–MS and Multivariate Data Analyses

Here, methanolic- and acetonic intracellular extracts were analyzed on UHPLC–MS
using both ESI(−) and (+) modes as shown in Figure 1. To increase the informational
content of the metabolomic space, metabolites secreted into the extracellular medium were
also of interest. Methanolic- and acetonic extracellular extracts were accordingly analyzed
by UHPLC–MS using both ESI modes as shown in Figure S2. A differential stage-related
clustering of the samples was observed with the PCA models (Figures 3 and S3–S5).

Wittmann and colleagues [28] investigated the effect of culture age on metabolite pools
by profiling intracellular metabolites during the yeast cell cycle using LC–MS. Using a
similar approach, the differences highlighted across the samples, i.e., the presence or ab-
sence of several intracellular metabolites over the period of growth, therefore demonstrate
the effect of culture age on the endo-metabolome of H. roseonigra. In essence, a particular
growth/development stage is evidently represented by a specific subset of intracellular
metabolites. A substantial amount of fungal secondary metabolism is represented by a
significant subset of the exo-metabolome (the secreted metabolites) [29]. Noteworthily, as
observed above, the general peak intensity, as evident from the BPI-MS chromatograms,
was found to increase with the growth/developmental stage, confirming that the culture
age (e.g., in the nutrient-limited stationary stage) seemingly influences the exo-metabolome
of H. roseonigra.

The data represent an initial report on UHPLC–MS-based metabolite profiling of
H. roseonigra. The parallel use of methanol and acetone solvents also facilitated the extrac-
tion of metabolites with differing polarities and physicochemical properties. According
to the best of our knowledge, this is the first study reporting on the collective presence of
metabolites belonging to different classes such as vitamins, signaling molecules, dipeptides,
nucleotide intermediates, fatty acids, and sugars in intra- and extracellular extracts of
H. roseonigra.

In essence, the different growth/developmental stages seemingly possess different
and dynamic metabolome compositions and concentrations, in agreement with the ob-
servation obtained from the PCA models. The structurally diverse metabolites, either
increasing or decreasing in relative concentration over the growth/developmental stages,
are potentially related to the lifestyle of the dimorphic H. roseonigra. Metabolites were
categorized as indicated in Table 1 (# 1–17) and included metabolites involved in purine-
and nucleotide metabolism, vitamins/co-enzymes associated with primary metabolism
and energy production, and terpenes associated with secondary metabolism.
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3.2. NMR and Multivariate Analyses

Similar to the results obtained from UHPLC–MS, the early growth stage seems to
possess metabolite profiles similar to the logarithmic stage whereas the stationary stage pos-
sesses a different set of metabolites. As already mentioned, the biosynthesis of metabolites
is generally associated with cell growth, i.e., differentiation or development [30].

Generally, the observed pattern of the relative concentration of the metabolites is
highest in the stationary stage, followed by the log- and early growth/developmental
stages, respectively. Noteworthily, the relative quantification could explain the observed
pattern distribution on the PCA analysis (Figure 3B), where the early and log stages were
observed to be more similar in relation to the stationary stage. Again, the shifting relative
concentration patterns across the growth/developmental stages are potentially related to
the lifestyle of the dimorphic H. roseonigra. Overall, primary metabolites play essential roles
in the growth and development of organisms (as explained below) [3]. Accordingly, these
primary metabolites are expected to dominate in extracts from the single cells in the culture
during the exponential stage of growth. As listed in Table 2, the metabolites annotated
based on NMR analyses (# 18–45) included amino acids, sugars, fatty acids, organic acids,
alcohols, antioxidants, and co-factors. Fungal species seem to biosynthesize most of the
secondary metabolites at the filamentous stage of growth [30], which could explain the
difference in the relative concentration patterns of these secondary metabolites compared
to the late log- to stationary stages.

3.3. Pathway Mapping and Network Correlation Analysis

Since a large section of an organism’s metabolome remains obscure (even with different
solvent extraction procedures and different analytical platforms), mapping annotated
metabolites to metabolic pathways might generate deeper insights by looking at a set
of metabolites with some relationship between them. In this regard, MetaboAnalyst is
a comprehensive pathway analysis web-based tool, designed for processing, analyzing,
and visualizing metabolomic data within the biological context of metabolic pathways
and supplies a ‘biochemical roadmap’ of metabolic pathways. The significant metabolic
pathways involved in a particular metabolomic study are determined by MetPA through
pathway topological characteristics analysis (Figure 5) [21].

The impact of a metabolic pathway is measured as the collective of the significant mea-
sures of the corresponding metabolites normalized by the sum of the significant measures
of the total metabolites in each pathway [31,32]. Although based on a limited number of an-
notated metabolites with KEGG identifiers, these results suggest that the basal metabolism
of H. roseonigra involves a multifaceted cellular metabolism network characterized by
several metabolic pathways, i.e., eight significant pathways. As already mentioned, the con-
stituents of these three metabolic pathways (carbohydrate metabolism, lipid metabolism,
and amino acid metabolism) are fundamental in all living organisms, demonstrating a wide
spectrum of essential biological roles. Glutathione metabolism is involved in maintaining
redox homeostasis and a balanced physiological state. It is therefore not surprising that this
pathway has the highest impact as GSH is evidently present at high concentrations in yeasts
and filamentous fungi [33]. During the growth phase, nitrogen is essential for the synthesis
of nucleic acids and proteins, required for cell proliferation. When nitrogen becomes limit-
ing, these processes are slowed, and the rate of growth decreases rapidly. The excess carbon
is then channeled towards alternative pathways, e.g., the synthesis of lipids [34]. Highlight-
ing the fatty acid degradation pathway could therefore explain the presence of alkanes as
they participate in energy generation [35,36]. In a prior communication, we reported that
the relative concentrations of alkanes increased as the microorganism developed, where
they were at their highest at the stationary stage [16], likely resulting from further fatty
acid breakdown with time. On the other hand, the nitrogen metabolism/ammonium as-
similation is reported to be a fundamental biological step to most soil microorganisms [37],
therefore explaining the high impact of the alanine, aspartate, and glutamate metabolism.
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The sugar derivatives (such as 2-deoxyribose 5-phosphate (8) and galactose-1-phosphate
(35)) and fatty acids (such as linoleic acid (30)) reflect nucleotide synthesis and lipid
metabolism, respectively, and evidently provide the intermediates and energy necessary
for the fundamental cellular functionality [38]. A number of primary/secondary amino
acids and the derivatives thereof serve as precursors for the biosynthesis of secondary
metabolites such as terpenoids. In turn, the metabolism of cofactors and vitamins serves
the purpose of facilitating all the other essential biosynthetic pathways [39].

The presence of precursors and final products (such as 5-methyl-tetrahydrofolate (11)
and serine (28), respectively) [40] belonging to different metabolism pathways confirms the
interconnectedness displayed in the network correlation analysis (Figure S9). Furthermore,
this is further validated by the presence of metabolites that serve as co-factors in both
primary and secondary metabolism, such as the role played by thiamine diphosphate (3) as
a co-factor in amino acid biosynthesis [41].

Although not identified amongst the annotated metabolites, isopentenyl diphosphate
is the central intermediate in the biosynthesis of fungal terpenes and steroids and an es-
sential precursor in this pathway [42]. A range of terpenes do occur in both yeasts and
fungi, and the presence of a functional terpene pathway is suggested by the presence of
reynosin (12). Metabolic pathways involved in specialized fungal metabolism are often
silent or ‘cryptic’, and only detectable under certain conditions or growth stages [43].
This could potentially explain the inducible ability of H. roseonigra to metabolize sclareol,
a diterpene metabolite [20,44,45]. In this regard, from a biological perspective, the bio-
transformation of sclareol may be regarded as an elimination of a hydrophobic xenobiotic
chemical through detoxifying steps. Potentially, these might involve oxidoreductases,
cytochrome P450 monooxygenases, lactonases, aldehyde dehydrogenases [19], racemases,
and epimerases [17].

4. Materials and Methods
4.1. Growth of Hyphozyma roseonigra

The H. roseonigra strain used in this study was purchased from the ATCC: The Global
Bioresource Centre (https://www.atcc.org/, accessed on 15 January 2017), with the ac-
cession number 20624. Saturated cultures prepared in potato dextrose broth (PDB) as the
growth medium was stored as 15% glycerol stocks at −80 ◦C. Working cultures were grown
at 28 ◦C for a period of 14 d on potato dextrose agar (Merck, Wadeville, South Africa) as
described by [16] and exhibited a typical growth pattern of yeast with pink coloration as
the cultures aged and progressed to a filamentous morphology.

Batch culture in liquid medium—H. roseonigra suspension cultures grown in PDB
(24 g/L, Becton Dickinson, Woodmead, South Africa) were initiated from frozen cell
stocks stored at −80 ◦C. Saturated overnight cultures were prepared, and the sterile PDB
growth medium (20 mL in 250 mL Erlenmeyer flasks) was inoculated to reach a starting
A600 = 0.015. Cells were grown in Erlenmeyer flasks on an orbital shaker at 140 r.p.m.
in a temperature-controlled room at 22–24 ◦C for 14 d. These growth conditions were
established in shake-based batch cultures [18], similar to bioreactor conditions but with
the purpose of slowing down the growth rate in order to study the metabolomes of the
growth stages in detail. The growth profile under these conditions during the period of
investigation is shown in Figure S1.

Aliquots of the cell suspensions were harvested every second day over a total growth
period of 14 d. At each harvest point, the optical density was measured at 600 nm as a
quantitative measure of cell growth (Figure S1). Each determination was performed in
triplicate and based on three independent biological replicates.

4.2. Harvesting of Cells, Metabolite Extraction, and Sample Preparation

For harvesting, the suspensions were centrifuged in a bench-top swinging-bucket
centrifuge (Beckman Allegra, Midrand, South Africa) at 5525× g for 15 min at 4 ◦C using
pre-weighed 5 mL Eppendorf tubes (Lasec, Midrand, South Africa) to pellet the cells and

https://www.atcc.org/
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determine the accumulated wet weight of the cells. The samples were kept in an ice
bucket to reduce metabolic activity and limit possible non-enzymatic reactions before and
after each mentioned step. Harvesting of cells was conducted in duplicate (2 × 10 mL,
10 mL for each analytical platform) at different time points over the two-week period by
centrifugation at 5525× g for 15 min at 4 ◦C, allowing for the separation of the supernatant
(growth medium) and the pelleted cells. Both sample sets (supernatants and cell pellets)
were snap-frozen to quench metabolic activity and stored at −80 ◦C.

For downstream intracellular analyses (metabo-fingerprinting), 20 mL of cold (4–5 ◦C)
methanol was added to 2 g of the pellet (a 1:10 w/v ratio was maintained throughout
for matching/normalizing extraction conditions) for methanolic and acetonic extraction,
respectively, and homogenized using an ultrasonic probe homogenizer (Bandelin Sonopuls,
Berlin, Germany) at 80% intensity for 1 min × 2 cycles each prior to centrifugation
at 5525× g for 15 min at 4 ◦C. The supernatants obtained thereafter were concentrated
under vacuum to ±1 mL using a rotary evaporator, and dried overnight using a dry
heat bath at 50 ◦C. Similarly, for downstream extracellular (secreted metabolites) analyses
(metabo-footprinting), the supernatants were concentrated to ±1 mL using a rotary evap-
orator and freeze dried before extraction with 10 mL of methanol. The acetonic extracts
were prepared in a similar manner. All the dried samples were reconstituted with 500 µL
of methanol and vigorously vortexed for 30 s before filtration through 0.22 µm nylon filters
and were placed in UHPLC glass vials fitted with inserts and slitted caps. The samples
were labelled appropriately and kept at 4 ◦C until analyses.

For NMR analysis, cells were similarly harvested over the 14 d period and centrifuged
in pre-weighed 5 mL Eppendorf tubes (Lasec, Midrand, South Africa) at 5525× g for 15 min
at 4 ◦C to determine the accumulated wet weight. The obtained pellets were stored
at −80 ◦C. Methanol (3 mL) was added to the tubes and the pellets were freeze-thawed in
liquid nitrogen. Phosphate buffer saline (PBS) was then added prior to homogenization
using an ultrasonic probe sonicator as described above. Following centrifugation of the
homogenates, a speedvac instrument (centrifugal rotary evaporation under vacuum) was
used to concentrate 500 µL of the supernatants over a 10 h period. The dried samples were
reconstituted using 500 µL of 99.6% D2O (Sigma-Aldrich, Munich, Germany) and placed
into pre-labelled 5 mm NMR tubes. Prior to analysis, 0.01% trimethylsilylpropanoic acid
(TSP) was prepared and added to each sample as an internal reference/calibrant.

4.3. Ultra-High Performance Liquid Chromatography–Mass Spectrometry (UHPLC–MS)

Liquid-chromatographic separation of the extracts was performed on a Waters Acquity
UHPLC HSS T3 reverse phase column (150 × 2.1 mm, 1.7 µm) thermostatted at 60 ◦C,
with gradient elution. The UHPLC system was coupled in tandem with a SYNAPT G1
high-definition (HD)–MS–qTOF mass spectrometer (Waters Corporation, Milford, MA,
USA). A binary solvent system consisting of eluent A (0.1% formic acid in MilliQ water)
and B (0.1% formic acid in acetonitrile (Romil SpS Chemistry, Cambridge, UK)) was used.
The injection volume was set at 5 µL. The initial conditions were kept constant for 0.1 min
at 95% A at a flow rate of 0.4 mL/min. The gradient elution was then introduced to
change chromatographic conditions to 10% A over 0.1–16 min and held for 1 min. The
analytical column was restored to the initial conditions at 18 min for 2 min, resulting in
a run time of 20 min. Chromatographic elution was monitored with a photodiode array
(PDA) detector scanning between 200 and 500 nm (1.2 nm resolution) collecting 20 points/s.
Post-PDA detection, the SYNAPT G1 mass spectrometer (Waters Corporation, Manchester,
UK) was used in V-optics and operated in positive and negative electrospray ionization
(ESI) modes to detect the compounds of interest.

The MS settings were as follows: Capillary voltage of 2.5 kV, sample cone voltage
of 60 V, extraction cone voltage of 5 V, collision energy of 3 eV, detector voltage of 1660 V,
source temperature of 120 ◦C, m/z range of 100–1100, scan time of 0.2 s, and interscan time
of 0.02 s, in centroid data mode. High-purity Nitrogen gas was used as desolvation gas
at 450 ◦C and cone gas at 50 L/h. Real-time optimization of the mass accuracy was achieved
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using a lock spray source [46]. Leucine enkephalin (50 pg/mL, [M + H]+ = 556.2771 Da and
[M − H]− = 554.2615 Da) was used as a reference calibrant at a flow rate of 0.1 mL/min,
sampled every 15 s and producing an average intensity of 350 counts/scan in centroid
mode. The mass accuracy window was 0.5 Da, with a typical mass accuracy ranging from 1
to 3 mDa. Prior to analyses, the triplicate biological samples were initially randomized to
provide stochastic stratification in sample acquisition in order to reduce measurement bias.
The sample lists were inclusive of triple quality control (QC) pooled samples, included to
monitor and evaluate the robustness of the system and for non-linear signal correction,
as well as solvent blanks. Each sample was analyzed in triplicate for technical repeats,
generating n = 9 required for multivariate statistical analysis.

Downstream structure elucidation and compound identification were achieved by
generating molecular fragment information. Herein, a data-independent acquisition (DIA)
method, namely MSE, was applied. MS analyses were set to carry out non-fragmented
as well as five fragmenting experiments simultaneously by applying alternating collision
energy of 0 eV (unfragmented) and from 10 to 50 eV (fragmented).

4.4. Nuclear Magnetic Resonance Analysis

As described, the dried samples were reconstituted using 500 µL of 99.6% D2O (Sigma,
Munich, Germany) and placed into pre-labelled 5 mm NMR tubes. Prior to analysis, TSP
was prepared and added to each sample at 0.01% as a calibrant. All one-dimensional
(1D) 1H NMR spectra were acquired at 25 ◦C on a Bruker Avance III 500 MHz NMR
spectrometer operating at 500.13 MHz, using Topspin 3.2 processing software (Bruker,
Biospin, Germany). The NMR spectrometer was equipped with a broadband inverse (BBI)
probe. To ensure adequate shimming and pre-saturation, a standard 1D 1H pre-saturation
(ZGPR) was first collected for each sample. A 1D Nuclear Overhauser Effect Spectroscopy
(NOESY) presaturation sequence (NOESY-PRESET-1D) was used for effective water and
solvent suppression. 1D NOESY spectra were acquired at 25 ◦C with an acquisition
time of 1.64 s, mixing time of 0.05 s, relaxation delay of 2 s, and 128 scans collected
with a receiver gain of 203 decibels (dB) and spectral width of 19.99 parts per million
(ppm). The phase was adjusted prior to baseline correction, which was first performed
automatically. The corrected spectra were referenced to the signal of TSP at δ 0.00 ppm
(Bruker, Biospin, Germany) for segmentation into bins with an equal width of 0.04 ppm.
The water region (δ 4.4–5.5 ppm) was excluded as this region could potentially interfere
with significant regions.

4.5. Data Processing for LC–MS and NMR

Prior to data pre-processing and pre-treatment, data visualization was carried out. The
raw UHPLC–MS data were visualized and processed using MassLynx XSTM 4.1 software
(Waters Corporation, Manchester, UK). The matrix outputs obtained consisted of Rt-m/z
variable pairs, with m/z peak intensity for each sample. The raw data from centroid ESI
(+/−) ionization modes were analyzed. The parameters of the MarkerLynx application
were set to analyze the 2–20 min retention time (Rt) range of the mass chromatogram, mass
range 100–1000 Da, and alignment of peaks across samples within the range of ±0.05 Da
and ±0.20 min mass and Rt windows, respectively; and mass tolerance of 0.01 Da.

Following peak detection, the corresponding ions were analyzed (maximum intensity,
Rt. and m/z) and recorded for all the samples. Data normalization was based on total ion
intensities of each defined peak to further ensure metabolite levels by biomass concentration
were normalized to avoid misleading the biological interpretation of the results. Prior
to calculating intensities, the software performed a patented modified Savitzky-Golay
smoothing and integration. The data matrix obtained from MassLynx was exported into
SIMCA (soft independent modelling of class analogy)—ver. 15.0 software with the ‘Omics’
skin (Sartorius Stedim Biotech, Umeå, Sweden) for multivariate data analysis and modeling.

Similarly, for NMR spectra, data visualization and spectral alignment were also carried
out prior to data pre-processing. The data were Fourier Transformed (FT) using zero and
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first-order fills in TopSpin 3.1. (Bruker Biospin, Rheinstetten, Germany). All processed
spectra were subjected to the AMIX-viewer (Bruker Biospin, Germany) for segmentation.
The obtained data matrices were exported to SIMCA 15.1 software for multivariate data
analysis and modeling.

4.6. Multivariate Data Analysis and Statistical Modeling

Multivariate data analysis (MVDA) and modeling were conducted using the SIMCA
(soft independent modelling of class analogy)—ver. 15.0 software with the ‘Omics’ skin
(Sartorius Stedim Biotech, Umeå, Sweden) on Pareto-scaled data. Missing values were
managed using the default SIMCA algorithm known as the Nonlinear Iterative Partial Least
Squares (NIPALS) algorithm. In addition, an efficient cross-validation (CV) procedure was
employed during the process of computing the models. The statistical models for MVDA
generated by SIMCA included PCA (principal component analysis) and hierarchical cluster
analysis (HCA) modeling, among others.

PCA is an explorative, unsupervised method that reduces/minimizes the multidimen-
sionality of data and thus provides a visual comparison between sample groups without a
priori information on sample classes. The variance within a multivariate data set is based
on principal components (PCs), where the first component describes the greatest percentage
of variation and so forth—and ultimately models the total variance of the complete dataset.
In the process of creating a PCA model, an (X) matrix generated from a certain number
of samples (n) within a couple of parameters (e.g., peak area for MS) is projected onto a
multidimensional space [47–50].

The statistical significance of the models is determined by the outcomes of cross-
validation and represented by different quality parameters, such as R2 and Q2 metrics.
The quality of the PCA models was evaluated based on model diagnostic tools, i.e., the
goodness-of-fit parameter (explained variation), R2X (cum) and predictive ability parameter
(predicted variation), and Q2 (cum) [48].

4.7. Metabolite Annotation

Metabolite annotation/putative identification was carried out according to the four
standard levels proposed by the Chemical Analysis Working Group (CWAG) and orig-
inating from the International Metabolomics Society [24]. For UHPLC–MS analysis, an
empirical formula was calculated for each peak of interest based on the m/z values and
searched against databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/, ac-
cessed on 15 May 2021) and the Yeast Metabolome Database (http://www.ymdb.ca/,
accessed on 19 May 2021), the Dictionary of Natural Products (http://dnp.chemnetbase.
com/faces/chemical/ChemicalSearch.xhtml, accessed on 21 May 2021), and ChemSpider
(http://www.chemspider.com/, accessed on 25 May 2021), considering possible adduct
formation.

The chemical structures were confirmed by inspecting the MSE information derived
from the MS analyses under the five different fragmentation conditions. Annotation
was thus based upon physicochemical properties and/or spectral similarity with pub-
lic/commercial spectral libraries such as MS-DIAL (Mass Spectrometry-Data Indepen-
dent Analysis software, http://prime.psc.riken.jp, accessed on 27 May 2021). The NMR
metabolites were annotated using the Yeast Metabolome Database (YMBD, http://www.
ymdb.ca/) and the Human Metabolome Database, (HMDB, https://www.hmdb.ca, ac-
cessed on 31 May 2021), with a tolerance of ±4 ppm, as well as references from the
literature [11–13,25,26,51].

The Taverna workbench criteria were initially met by formatting a data matrix from
MarkerLynx-based data processing. The workflows herein include correlation analysis,
metabolic feature annotation, and metabolite annotation. The Taverna Metabolite ID pro-
cess was composed of three key workflows: (i) Pearson-based correlation analysis (List
CorrData), (ii) metabolic feature annotation (annotate Massmatch)—allowing for the group-
ing of ion peaks with comparable properties such as retention time, and annotating features

https://pubchem.ncbi.nlm.nih.gov/
http://www.ymdb.ca/
http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml
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with the type of m/z ion (molecular ion, isotope, adduct, and others) presumed to originate
from the same compound, where each m/z ion’s elemental composition/molecular formula
(MF) was then computed automatically; and (iii) metabolite annotation (matchMF-MF) of
the computed MF (from the output file from workflow 2) was automatically compared and
matched to the MF from a pre-defined reference list of metabolites [20].

Following metabolite annotation, heat maps were constructed using the Metabo-
Analyst bioinformatics tool suite (version 3.0; http://www.metaboanalyst.ca/, accessed
on 5 June 2021) [21]. Average peak intensities (n = 9) were used to construct heat maps
illustrating differences in the relative concentrations of analytes selected from different
classes. Heat maps allow the visualization of large multidimensional datasets and identify
metabolic patterns under similar experimental conditions. In addition, heat maps can
be used to locate hidden groups among identified metabolites and associations between
experimental groups and metabolic changes.

4.8. Metabolomics Pathway Analysis and Network Correlation Analyses

Global metabolic interrelationships such as metabolic pathway mapping and feature-
based network correlation analyses were generated using annotated metabolite data, i.e.,
metabolite identity, changes in levels and relationships between metabolites. Signifi-
cant metabolic pathways defining physiological responses of H. roseonigra to develop-
mental growth stages were determined using Metabolomics Pathway Analysis (MetPA),
an integral module of the MetaboAnalyst bioinformatics tool suite (version 3.0; http:
//www.metaboanalyst.ca/, accessed on 5 June 2021). This online software predicts path-
way activity from ranked UHPLC-MS peaks based on matching patterns of putatively
annotated metabolites. This enabled the elucidation of the annotated metabolites and
altered metabolic pathways involved in the conditions under study [21].

The identified significant metabolites (with their respective Kyoto Encyclopedia of Genes
and Genomes (KEGG; https://www.genome.jp/kegg/identifiers, accessed on 8 June 2021)
were uploaded into the MetPA tool for pathway topological analysis and the possible
biological roles were inferred/evaluated by enrichment analysis [20,21]. The overall signifi-
cance of a pathway enrichment is estimated by ranking the p-value from real data among
the p-values from permutation data to adjust for type I error [21]. As a complementary
approach, the interconnectedness of the active pathways was modeled using KEGG MAP-
PER (https://www.genome.jp/kegg/mapper.html, accessed on 8 June 2021) by uploading
KEGG identifiers of the tentatively annotated metabolites via a searcher pathway option,
where compounds are searched against KEGG pathway maps.

Network correlation analyses were developed to examine direct biochemical associa-
tions. Again, assigned KEGG identifiers of each annotated metabolite were uploaded on
the KEGG mapping tool (https://www.genome.jp/kegg/tool/map_pathway1.html, ac-
cessed on 8 June 2021), using the organism-specific search mode for Saccharomyces cerevisiae.
The network was visualized using Cytoscape version 2.8.2 tool (https://cytoscape.org/,
accessed on 12 June 2021), and network characteristic mapping reflected chemometric
modeling information via network edge (or link) and nodes (or vertices) features [22]. The
centrality parameter is a quantitative measure of the position of a node relative to the other
nodes, commonly applied in the estimation of a node’s relative significance in network
organization. Considering that metabolic networks are directed graphs, the significant
role played by a compound is determined using ‘relative betweenness centrality’ and ‘out
degree centrality’ in MetPA. The pathway impact is measured as the collective of the signif-
icant measures of the corresponding metabolites normalized by the sum of the significant
measures of the total metabolites in each pathway.

5. Conclusions

We set out to explore the ‘chemical space’, of H. roseonigra, i.e., the spectrum of
metabolites from the intracellular- and extracellular metabolomes, detectable in any of
the growth stages and extractable by methanol or acetone. The adopted approach was

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
https://www.genome.jp/kegg/identifiers
https://www.genome.jp/kegg/mapper.html
https://www.genome.jp/kegg/tool/map_pathway1.html
https://cytoscape.org/
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developed to gain insight into the metabolome of the organism in order to ultimately
improve the understanding of its metabolic capabilities.

The metabolome profiles obtained from LC-MS analyses are indications of the metabolic
events operative at that particular point in time or growth stage. Generally, the initial and
logarithmic stage is associated with primary metabolism and the stationary stage with
secondary metabolism. H. roseonigra may therefore have different metabolic capabilities
depending on its stage of growth. This is information that is useful in optimizing conditions
conducive to biocatalytic applications. The biological roles of the annotated metabolites
range from housekeeping functions such as energy production to secondary metabolism
in support of the adaptation to environmental variables such as nutrient limitation and
stress conditions. Noteworthily, the detection of terpene metabolites such as squalene and
reynosin suggests the presence of some latent terpene pathway activity. However, this
was not found to be among the identified significant pathways under the applied exper-
imental conditions. This suggests that pre-induction with sclareol, a diterpenoid, might
be required to upregulate the appropriate pathways and enzymes for its metabolism (e.g.,
enzymes involved in functionalization of terpene scaffolds). Therefore, the exploration
of the underlying biochemistry of H. roseonigra established a foundation and facilitated
the comprehension required for the investigation into its biocatalytic ability. The use of
UHPLC–MS and NMR for metabolite profiling illustrated the ability of a metabolomics
approach to gain some understanding of the metabolism of less-characterized microorgan-
isms. Interesting to note is the similar findings regarding the predominance of primary
metabolic pathways across both the UHPLC–MS and NMR platforms.

Future investigations involving other -omics approaches will facilitate establishing
the association between the biosynthesis of the annotated metabolites and the differenti-
ation processes of H. roseonigra. Considering the relevance of this microorganism for the
production of high-value compounds, such a link would support the exploitation of the
underlying biochemistry in order to improve bioconversion yields. In conclusion, this study
has generated novel findings about the active metabolic pathways of H. roseonigra and
established a metabolomics-based framework to gain deeper insight into the biochemical
processes in support of its use as a cellular biocatalyst and cell factory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12101225/s1, Figure S1: Assessment of the growth of the
Hyphozyma roseonigra in batch culture, Figure S2: UHPLC–MS separation and detection of extracel-
lular methanolic- and acetonic extracts of H. roseonigra, Figure S3: The PCA models of methanolic-
and acetonic extracellular extracts of H. roseonigra analyzed using UHPLC–MS in ESI(−) mode,
Figure S4: PCA models of methanolic- and acetonic intracellular extracts of H. roseonigra analyzed
using LC–MS in ESI(+) mode, Figure S5: PCA models of methanolic- and acetonic extracellular ex-
tracts of H. roseonigra analyzed using LC–MS in ESI(+) mode, Figure S6: Heat map showing selected
annotated metabolites of acetonic and methanolic extracts of H. roseonigra across the early adaptation-,
stationary-, and log stages, Figure S7: 1H NMR spectrum and class annotation of metabolites present
in methanolic extracts of H. roseonigra, Figure S8: Semi-quantitative presentation of intracellular
metabolites present in methanolic extracts of H. roseonigra, Figure S9: Biochemical roadmap: A net-
work correlation analysis of metabolic pathways active in Hyphozyma roseonigra when grown in potato
dextrose broth medium in batch culture, Table S1: List of annotated features (metabolites) present
in acetonic and methanolic extracts of Hyphozyma roseonigra grown in batch culture and annotated
from UHPLC–MS data, Table S2: Annotation of metabolites in methanolic extracts of Hyphozyma
roseonigra analyzed by 1H NMR, Table S3: Significant metabolic pathways determined to be active in
Hyphozyma roseonigra, inferred from Metabolomics Pathway Analysis. References [25,26,51] are cited
in the Supplementary Materials.
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