Effect of Sr-Doping on the Photocatalytic Performance of LaNiO3−σ
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology
2.1.1. X-ray Diffractometer
2.1.2. Scanning Electron Microscopy
2.2. X-ray Photoelectron Spectroscopy
2.3. Photocatalytic Performance
2.4. First-Principle Calculations
2.4.1. Band Structure
2.4.2. Density of States
3. Materials and Methods
3.1. Materials
3.2. Preparation and Characterization
3.3. Photocatalytic Performance Test
3.4. First-Principle Calculations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Pena, M.; Fierro, J. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.-h.; Noh, Y.S.; Hong, G.H.; Moon, D.J. Combined steam and CO2 reforming of methane over La1−xSrxNiO3 perovskite oxides. Catal. Today 2018, 299, 242–250. [Google Scholar] [CrossRef]
- Bhosale, S.S.; Kharade, A.K.; Jokar, E.; Fathi, A.; Chang, S.-M.; Diau, E.W.-G. Mechanism of photocatalytic CO2 reduction by bismuth-based perovskite nanocrystals at the gas–solid interface. J. Am. Chem. Soc. 2019, 141, 20434–20442. [Google Scholar] [CrossRef]
- Kumar, S.; Regue, M.; Isaacs, M.A.; Freeman, E.; Eslava, S. All-inorganic CsPbBr3 nanocrystals: Gram-scale mechanochemical synthesis and selective photocatalytic CO2 reduction to methane. ACS Appl. Energy Mater. 2020, 3, 4509–4522. [Google Scholar] [CrossRef]
- Shyamal, S.; Dutta, S.K.; Das, T.; Sen, S.; Chakraborty, S.; Pradhan, N. Facets and defects in perovskite nanocrystals for photocatalytic CO2 reduction. J. Phys. Chem. Lett. 2020, 11, 3608–3614. [Google Scholar] [CrossRef]
- Bui, D.-N.; Mu, J.; Wang, L.; Kang, S.-Z.; Li, X. Preparation of Cu-loaded SrTiO3 nanoparticles and their photocatalytic activity for hydrogen evolution from methanol aqueous solution. Appl. Surf. Sci. 2013, 274, 328–333. [Google Scholar] [CrossRef]
- Kim, I.S.; Pellin, M.J.; Martinson, A.B. Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett. 2019, 4, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, G.; He, X.; Xu, J. Electronic structure and photocatalytic properties of Ag–La codoped CaTiO3. J. Alloys Compd. 2012, 516, 91–95. [Google Scholar] [CrossRef]
- Mao, M.; Xu, J.; Li, L.; Zhao, S.; Li, X.; Li, Y.; Liu, Z. High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. Ionics 2019, 25, 4533–4546. [Google Scholar] [CrossRef]
- Huerta-Flores, A.M.; Sánchez-Martínez, D.; del Rocío Hernández-Romero, M.; Zarazua-Morin, M.E.; Torres-Martínez, L.M. Visible-light-driven BaBiO3 perovskite photocatalysts: Effect of physicochemical properties on the photoactivity towards water splitting and the removal of rhodamine B from aqueous systems. J. Photochem. Photobiol. A Chem. 2019, 368, 70–77. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, Q.; Wang, S.; Komvokis, V.G.; Amiridis, M.D.; Heyden, A.; Ma, S.; Chen, F. Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells. J. Power Sources 2012, 202, 63–69. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Dass, R.I.; Xing, Z.-L.; Goodenough, J.B. Double perovskites as anode materials for solid-oxide fuel cells. Science 2006, 312, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Afroze, S.; Karim, A.; Cheok, Q.; Eriksson, S.; Azad, A.K. Latest development of double perovskite electrode materials for solid oxide fuel cells: A review. Front. Energy 2019, 13, 770–797. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Liang, G.; Croft, M.; Lehtimaki, M.; Karppinen, M.; Goodenough, J.B. Double-perovskite anode materials Sr2MMoO6 (M = Co, Ni) for solid oxide fuel cells. Chem. Mater. 2009, 21, 2319–2326. [Google Scholar] [CrossRef]
- Li, F.-T.; Liu, Y.; Liu, R.-H.; Sun, Z.-M.; Zhao, D.-S.; Kou, C.-G. Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity. Mater. Lett. 2010, 64, 223–225. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, W.; Song, Y.; Chen, J.; Xu, J.; Wang, D.; Mao, Z. Enhanced photocatalytic performance of SrTiO3 powder induced by europium dopants. J. Rare Earths 2021, 39, 541–547. [Google Scholar] [CrossRef]
- Shah, A.A.; Ahmad, S.; Azam, A. Investigation of structural, optical, dielectric and magnetic properties of LaNiO3 and LaNi1−xMxO3 (M = Fe, Cr & Co; x = 5%) nanoparticles. J. Magn. Magn. Mater. 2020, 494, 165812. [Google Scholar]
- Jayapandi, S.; Prakasini, V.A.; Anitha, K. Ag modified LaCoO3 perovskite oxide for photocatalytic application. In Proceedings of the AIP Conference Proceedings, Maharashtra, India, 5–6 July 2018; p. 140048. [Google Scholar] [CrossRef]
- Chen, L.; Pradhan, S. Low temperature synthesis of metal doped perovskites catalyst for hydrogen production by autothermal reforming of methane. Int. J. Hydrog. Energy 2016, 41, 14605–14614. [Google Scholar] [CrossRef]
- Zhang, W.; Du, L.; Bi, F.; He, H. A novel SrTiO3/HZSM-5 photocatalyst prepared by sol–gel method. Mater. Lett. 2015, 157, 103–105. [Google Scholar] [CrossRef]
- Moraes Júnior, E.; Leite, J.; Santos, A.; Souza, M.; Pedrosa, A. Nickel-based perovskite catalysts: Synthesis and catalytic tests in the production of syngas. Cerâmica 2018, 64, 436–442. [Google Scholar] [CrossRef]
- Ghafoor, A.; Bibi, I.; Ata, S.; Majid, F.; Kamal, S.; Iqbal, M.; Iqbal, S.; Noureen, S.; Basha, B.; Alwadai, N. Energy band gap tuning of LaNiO3 by Gd, Fe and Co ions doping to enhance solar light absorption for efficient photocatalytic degradation of RhB dye: A mechanistic approach. J. Mol. Liq. 2021, 343, 117581. [Google Scholar] [CrossRef]
- Wei, K.; Faraj, Y.; Yao, G.; Xie, R.; Lai, B. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chem. Eng. J. 2021, 414, 128783. [Google Scholar] [CrossRef]
- Rehman, S.U.; Shaur, A.; Song, R.-H.; Lim, T.-H.; Hong, J.-E.; Park, S.-J.; Lee, S.-B. Nano-fabrication of a high-performance LaNiO3 cathode for solid oxide fuel cells using an electrochemical route. J. Power Sources 2019, 429, 97–104. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, L.; Yuan, S.; Wu, Y. Solid defect structure and catalytic activity of perovskite-type catalysts La1–xSrxNiO3–λ and La1–1.333xThxNiO3–λ. J. Chem. Soc. Faraday Trans. 1992, 88, 3245–3249. [Google Scholar] [CrossRef]
- Kagomiya, I.; Jimbo, K.; Kakimoto, K.-i. Distribution change of oxygen vacancies in layered perovskite type (Sr, La)n+1FenO3n+1 (n = 3). J. Solid State Chem. 2013, 207, 184–189. [Google Scholar] [CrossRef]
- Guan, L.; Liu, B.; Jin, L.; Guo, J.; Zhao, Q.; Wang, Y.; Fu, G. Electronic structure and optical properties of LaNiO3: First-principles calculations. Solid State Commun. 2010, 150, 2011–2014. [Google Scholar] [CrossRef]
- Malashevich, A.; Ismail-Beigi, S. First-principles study of oxygen-deficient LaNiO3 structures. Phys. Rev. B 2015, 92, 144102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Liu, P.; Li, Z.; Song, X. Synthesis of two-dimensional Sr-doped LaNiO3 nanosheets with improved electrochemical performance for energy storage. Nanomaterials 2021, 11, 155. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Zhang, J.; Zhang, Z. Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance. J. Phys. Chem. C 2016, 120, 9750–9763. [Google Scholar] [CrossRef]
- Nakamura, I.; Negishi, N.; Kutsuna, S.; Ihara, T.; Sugihara, S.; Takeuchi, K. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A Chem. 2000, 161, 205–212. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Y.; Jiang, J.; Rong, Y.; Wang, Y.; Wu, Y.; Pan, C. Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 2012, 116, 22619–22624. [Google Scholar] [CrossRef]
- Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. Acs Catal. 2016, 6, 2462–2472. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef]
- Wu, M.; Chen, S.; Xiang, W. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chem. Eng. J. 2020, 387, 124101. [Google Scholar] [CrossRef]
- Li, C.; Ma, D.; Mou, S.; Luo, Y.; Ma, B.; Lu, S.; Cui, G.; Li, Q.; Liu, Q.; Sun, X. Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. J. Energy Chem. 2020, 50, 402–408. [Google Scholar] [CrossRef]
- Qiu, M.; Zhu, D.; Bao, X.; Wang, J.; Wang, X.; Yang, R. WO3 with surface oxygen vacancies as an anode buffer layer for high performance polymer solar cells. J. Mater. Chem. A 2016, 4, 894–900. [Google Scholar] [CrossRef]
- Qi, K.; Liu, S.-Y.; Qiu, M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal. 2018, 39, 867–875. [Google Scholar] [CrossRef]
- Misra, D.; Kundu, T.K. Oxygen vacancy induced metal-insulator transition in LaNiO3. Eur. Phys. J. B 2016, 89, 4. [Google Scholar] [CrossRef]
- Walke, P.; Gupta, S.; Li, Q.; Major, M.; Donner, W.; Mercey, B.; Lüders, U. The role of oxygen vacancies on the weak localization in LaNiO3−δ epitaxial thin films. J. Phys. Chem. Solids 2018, 123, 1–5. [Google Scholar] [CrossRef]
- Qiao, L.; Bi, X. Direct observation of Ni3+ and Ni2+ in correlated LaNiO3−δ films. EPL (Europhys. Lett.) 2011, 93, 57002. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, Q.; Lian, J. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 2011, 257, 5083–5087. [Google Scholar] [CrossRef]
- Han, X.-G.; He, H.-Z.; Kuang, Q.; Zhou, X.; Zhang, X.-H.; Xu, T.; Xie, Z.-X.; Zheng, L.-S. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 2009, 113, 584–589. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 2013, 6, 3007–3014. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Wen, W.; Xue, L.; Yan, Y. Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. J. Alloys Compd. 2010, 491, 560–564. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist. -Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
Sample | Ni2+:Ni3+ | Sr Percentage (%) | σ |
---|---|---|---|
LaNiO3−σ | 84.83:15.17 | 0 | 0.42 |
La0.875Sr0.125NiO3−σ | 89.86:10.14 | 12.5 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Guo, L.; Xu, Q.; Zhang, Q.; Li, J.; Ma, Q. Effect of Sr-Doping on the Photocatalytic Performance of LaNiO3−σ. Catalysts 2022, 12, 1434. https://doi.org/10.3390/catal12111434
Zhang Y, Guo L, Xu Q, Zhang Q, Li J, Ma Q. Effect of Sr-Doping on the Photocatalytic Performance of LaNiO3−σ. Catalysts. 2022; 12(11):1434. https://doi.org/10.3390/catal12111434
Chicago/Turabian StyleZhang, Yuhao, Liang Guo, Qunang Xu, Qingmao Zhang, Jiaming Li, and Qiongxiong Ma. 2022. "Effect of Sr-Doping on the Photocatalytic Performance of LaNiO3−σ" Catalysts 12, no. 11: 1434. https://doi.org/10.3390/catal12111434
APA StyleZhang, Y., Guo, L., Xu, Q., Zhang, Q., Li, J., & Ma, Q. (2022). Effect of Sr-Doping on the Photocatalytic Performance of LaNiO3−σ. Catalysts, 12(11), 1434. https://doi.org/10.3390/catal12111434