Visible-Light-Active Vanadium and Copper Co-Doped gCN Nanosheets with Double Direct Z-Scheme Heterojunctions for Photocatalytic Removal of Monocrotophos Pesticide in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystallographic Studies
2.2. Study of Absorption and Optical Properties
2.3. PL Study
2.4. Surface Morphology Studies
2.5. Surface Chemical Distribution Studies
3. Catalytic Degradation of Monocrotophos
3.1. Effect of pH and Radical Scavengers
3.2. Photocatalytic Reaction Mechanisms
3.3. Possible Degradation Pathway of MCP
4. Materials and Methods
4.1. Preparation of V/P-gCN Nanosheets
4.2. Analysis of Prepared Nanosheets
4.3. Photocatalytic Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilager, D.; Shetti, N.P.; Reddy, K.R.; Tuwar, S.M.; Aminabhavi, T.M. Nanostructured Graphitic Carbon Nitride (g-C3N4)-CTAB Modified Electrode for the Highly Sensitive Detection of Amino-Triazole and Linuron Herbicides. Environ. Res. 2022, 204, 111856. [Google Scholar] [CrossRef] [PubMed]
- Sraw, A.; Kaur, T.; Thakur, I.; Verma, A.; Wanchoo, R.K.; Toor, A.P. Photocatalytic Degradation of Pesticide Monocrotophos in Water Using W-TiO2 in Slurry and Fixed Bed Recirculating Reactor. J. Mol. Struct. 2022, 1265, 133392. [Google Scholar] [CrossRef]
- Elatmani, K.; Plantara, G.; Goetz, V. 3D Photocatalytic Media for Decontamination of Water from Pesticides. Mater. Res. Bull. 2018, 101, 6–11. [Google Scholar] [CrossRef]
- Suo, F.; Liu, X.; Li, C.; Yuan, M.; Zhang, B.; Wang, J.; Ma, Y.; Lai, Z.; Ji, M. Mesoporous Activated Carbon from Starch for Superior Rapid Pesticides Removal. Int. J. Biol. Macromol. 2019, 121, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Sraw, A.; Kaur, T.; Pandey, Y.; Sobti, A.; Wanchoo, R.K.; Toor, A.P. Fixed Bed Recirculation Type Photocatalytic Reactor with TiO2 Immobilized Clay Beads for the Degradation of Pesticide Polluted Water. J. Environ. Chem. Eng. 2018, 6, 7035–7043. [Google Scholar] [CrossRef]
- Hanh, N.T.; Tri, N.L.M.; Van Thuan, D.; Tung, M.H.T.; Pham, T.-D.; Minh, T.D.; Trang, H.T.; Binh, M.T.; Nguyen, M.V. Monocrotophos Pesticide Effectively Removed by Novel Visible Light Driven Cu Doped ZnO Photocatalyst. J. Photochem. Photobiol. A Chem. 2019, 382, 111923. [Google Scholar] [CrossRef]
- Madhavan, J.; Kumar, P.S.S.; Anandan, S.; Grieser, F.; Ashokkumar, M. Sonophotocatalytic Degradation of Monocrotophos Using TiO2 and Fe3+. J. Hazard. Mater. 2010, 177, 944–949. [Google Scholar] [CrossRef]
- Anandan, S.; Vinu, A.; Lovely, K.L.P.S.; Gokulakrishnan, N.; Srinivasu, P.; Mori, T.; Murugesan, V.; Sivamurugan, V.; Ariga, K. Photocatalytic Activity of La-Doped ZnO for the Degradation of Monocrotophos in Aqueous Suspension. J. Mol. Catal. A Chem. 2007, 266, 149–157. [Google Scholar] [CrossRef]
- Amalraj, A.; Pius, A. Photocatalytic Degradation of Monocrotophos and Chlorpyrifos in Aqueous Solution Using TiO2 under UV Radiation. J. Water Process Eng. 2015, 7, 94–101. [Google Scholar] [CrossRef]
- Gurusamy, K.; Thangadurai, S. Separation and Detection of Monocrotophos by Chromatography Methods in Forensic Samples. J. Forensic Sci. Criminol. 2019, 7, 305. [Google Scholar]
- Wang, F.; Xu, J.; Wang, Z.; Lou, Y.; Pan, C.; Zhu, Y. Unprecedentedly Efficient Mineralization Performance of Photocatalysis-Self-Fenton System towards Organic Pollutants over Oxygen-Doped Porous g-C3N4 Nanosheets. Appl. Catal. B Environ. 2022, 312, 121438. [Google Scholar] [CrossRef]
- Tan, L.; Xu, J.; Zhang, X.; Hang, Z.; Jia, Y.; Wang, S. Synthesis of G-C3N4/CeO2 Nanocomposites with Improved Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2015, 356, 447–453. [Google Scholar] [CrossRef]
- Chen, J.; Cui, P.; Zhao, G.; Rui, K.; Lao, M.; Chen, Y.; Zheng, X.; Jiang, Y.; Pan, H.; Dou, S.X. Low-coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angew. Chemie Int. Ed. 2019, 58, 12540–12544. [Google Scholar] [CrossRef]
- Qiao, F.; Wang, J.; Ai, S.; Li, L. As a New Peroxidase Mimetics: The Synthesis of Selenium Doped Graphitic Carbon Nitride Nanosheets and Applications on Colorimetric Detection of H2O2 and Xanthine. Sens. Actuators B Chem. 2015, 216, 418–427. [Google Scholar] [CrossRef]
- Fang, J.; Fan, H.; Li, M.; Long, C. Nitrogen Self-Doped Graphitic Carbon Nitride as Efficient Visible Light Photocatalyst for Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 13819–13826. [Google Scholar] [CrossRef]
- Thaweesak, S.; Wang, S.; Lyu, M.; Xiao, M.; Peerakiatkhajohn, P.; Wang, L. Boron-Doped Graphitic Carbon Nitride Nanosheets for Enhanced Visible Light Photocatalytic Water Splitting. Dalt. Trans. 2017, 46, 10714–10720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwin, E.; Nowicki, W.; Wojcieszak, R.; Zieliński, M.; Pietrowski, M. Elucidating the Structure of the Graphitic Carbon Nitride Nanomaterials via X-Ray Photoelectron Spectroscopy and X-Ray Powder Diffraction Techniques. Dalt. Trans. 2020, 49, 12805–12813. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.S.; Sami, A.; Lee, J.-H. Electrocatalytic Hydrogen Evolution Using Graphitic Carbon Nitride Coupled with Nanoporous Graphene Co-Doped by S and Se. J. Mater. Chem. A 2015, 3, 12810–12819. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Nadeem, M.S.; Manzoor, S.; Ashiq, M.N.; Mahmood, K.; Batool, S.; Hasan, M.; Iqbal, F. Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J. Alloy. Compd. 2022, 898, 162779. [Google Scholar] [CrossRef]
- Reddy, I.N.; Reddy, L.V.; Jayashree, N.; Reddy, C.V.; Cho, M.; Kim, D.; Shim, J. Vanadium-Doped Graphitic Carbon Nitride for Multifunctional Applications: Photoelectrochemical Water Splitting and Antibacterial Activities. Chemosphere 2021, 264, 128593. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Jiang, Y.; Li, C.; Fan, W.; Yan, X.; Yan, M.; Shi, W. In-Situ Synthesis of Direct Solid-State Z-Scheme V2O5/g-C3N4 Heterojunctions with Enhanced Visible Light Efficiency in Photocatalytic Degradation of Pollutants. Appl. Catal. B Environ. 2016, 180, 663–673. [Google Scholar] [CrossRef]
- Jayaraman, T.; Raja, S.A.; Priya, A.; Jagannathan, M.; Ashokkumar, M. Synthesis of a Visible-Light Active V2O5–GC3N4 Heterojunction as an Efficient Photocatalytic and Photoelectrochemical Material. New J. Chem. 2015, 39, 1367–1374. [Google Scholar] [CrossRef]
- Ding, G.; Wang, W.; Jiang, T.; Han, B.; Fan, H.; Yang, G. Highly Selective Synthesis of Phenol from Benzene over a Vanadium-doped Graphitic Carbon Nitride Catalyst. ChemCatChem 2013, 5, 192–200. [Google Scholar] [CrossRef]
- Zang, Y.-N.; Yang, S.-S.; Ding, J.; Zhao, S.-Y.; Chen, C.-X.; He, L.; Ren, N.-Q. A Biochar-Promoted V2O5/GC3N4 Z-Scheme Heterostructure for Enhanced Simulated Solar Light-Driven Photocatalytic Activity. RSC Adv. 2021, 11, 15106–15117. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Han, Z.; Fan, H.; Ai, S. Copper Nanoparticles Modified Graphitic Carbon Nitride Nanosheets as a Peroxidase Mimetic for Glucose Detection. RSC Adv. 2015, 5, 91302–91307. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; Qian, X.; Dong, Y.; Xu, H.; Song, R.; Yan, C.; Zhu, H.; Zhong, Q.; Qian, G. One-Pot Synthesis of Copper-Doped Graphitic Carbon Nitride Nanosheet by Heating Cu–Melamine Supramolecular Network and Its Enhanced Visible-Light-Driven Photocatalysis. J. Solid State Chem. 2015, 228, 60–64. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.; Yin, Q.; Li, W.; Yang, Y. Graphitic Carbon Nitride Nanosheets Decorated with Cu-Doped Carbon Dots for the Detection and Degradation of Phenolic Pollutants. ACS Appl. Nano Mater. 2022, 5, 1925–1934. [Google Scholar] [CrossRef]
- Le, S.; Jiang, T.; Zhao, Q.; Liu, X.; Li, Y.; Fang, B.; Gong, M. Cu-Doped Mesoporous Graphitic Carbon Nitride for Enhanced Visible-Light Driven Photocatalysis. RSC Adv. 2016, 6, 38811–38819. [Google Scholar] [CrossRef]
- Li, L.; Liang, M.; Huang, J.; Zhang, S.; Liu, Y.; Li, F. Fe and Cu Co-Doped Graphitic Carbon Nitride as an Eco-Friendly Photo-Assisted Catalyst for Aniline Degradation. Environ. Sci. Pollut. Res. 2020, 27, 29391–29407. [Google Scholar] [CrossRef]
- Cometto, C.; Ugolotti, A.; Grazietti, E.; Moretto, A.; Bottaro, G.; Armelao, L.; Di Valentin, C.; Calvillo, L.; Granozzi, G. Copper Single-Atoms Embedded in 2D Graphitic Carbon Nitride for the CO2 Reduction. npj 2D Mater. Appl. 2021, 5, 63. [Google Scholar] [CrossRef]
- Moradi, M.; Hasanvandian, F.; Isari, A.A.; Hayati, F.; Kakavandi, B.; Setayesh, S.R. CuO and ZnO Co-Anchored on g-C3N4 Nanosheets as an Affordable Double Z-Scheme Nanocomposite for Photocatalytic Decontamination of Amoxicillin. Appl. Catal. B Environ. 2021, 285, 119838. [Google Scholar] [CrossRef]
- Mei, H.; Shu, H.; Lv, M.; Liu, W.; Wang, X. Fluorescent Assay Based on Phenyl-Modified g-C3N4 Nanosheets for Determination of Thiram. Microchim. Acta 2020, 187, 159. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Banerjee, D.; Das, B.; Das, N.S.; Chattopadhyay, K.K. Effect of Cobalt Doping into Graphitic Carbon Nitride on Photo Induced Removal of Dye from Water. Mater. Res. Bull. 2017, 89, 170–179. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, D.; Mondal, M.; Shett, A.; Das, B.; Das, N.S.; Ghorai, U.K.; Chattopadhyay, K.K. Nickel Doped Graphitic Carbon Nitride Nanosheets and Its Application for Dye Degradation by Chemical Catalysis. Mater. Res. Bull. 2018, 101, 291–304. [Google Scholar] [CrossRef]
- Pattnayak, S.; Sahoo, U.; Choudhury, S.; Hota, G. Silver Nanoparticles Embedded Sulfur Doped Graphitic Carbon Nitride Quantum Dots: A Fluorescent Nanosensor for Detection of Mercury Ions in Aqueous Media. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 648, 129377. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Chen, J.; Wang, A.-J.; Bao, N.; Feng, J.-J.; Wang, W.; Shao, L. Facile Synthesis of Oxygen and Sulfur Co-Doped Graphitic Carbon Nitride Fluorescent Quantum Dots and Their Application for Mercury (II) Detection and Bioimaging. J. Mater. Chem. C 2015, 3, 73–78. [Google Scholar] [CrossRef]
- Arumugam, M.; Tahir, M.; Praserthdam, P. Effect of Nonmetals (B, O, P, and S) Doped with Porous g-C3N4 for Improved Electron Transfer towards Photocatalytic CO2 Reduction with Water into CH4. Chemosphere 2022, 286, 131765. [Google Scholar] [CrossRef]
- Ureña-Begara, F.; Crunteanu, A.; Raskin, J.-P. Raman and XPS Characterization of Vanadium Oxide Thin Films with Temperature. Appl. Surf. Sci. 2017, 403, 717–727. [Google Scholar] [CrossRef]
- Silversmit, G.; Depla, D.; Poelman, H.; Marin, G.B.; De Gryse, R. Determination of the V2p XPS Binding Energies for Different Vanadium Oxidation States (V5+ to V0+). J. Electron Spectros. Relat. Phenomena 2004, 135, 167–175. [Google Scholar] [CrossRef]
- Ren, Q.; Qin, N.; Liu, B.; Yao, Y.; Zhao, X.; Deng, Z.; Li, Y.; Dong, Y.; Qian, D.; Su, B.-L. An Oxygen-Deficient Vanadium Oxide@ N-Doped Carbon Heterostructure for Sodium-Ion Batteries: Insights into the Charge Storage Mechanism and Enhanced Reaction Kinetics. J. Mater. Chem. A 2020, 8, 3450–3458. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Jung, D.; Park, C.-Y.; Kang, D.J. Synthesis of Single-Crystalline Sodium Vanadate Nanowires Based on Chemical Solution Deposition Method. Mater. Chem. Phys. 2015, 165, 19–24. [Google Scholar] [CrossRef]
- Uthirakumar, P.; Devendiran, M.; Van Dao, D.; Son, H.; Cho, Y.H.; Lee, I.-H. Scalable Cu/Cu2O-CuO/CuI Heterojunction Platform Realizing an Extended Charge Carrier Separation Suitable for Photoreduction and Photodegradation. J. Environ. Chem. Eng. 2021, 9, 106396. [Google Scholar] [CrossRef]
- Soe, T.; Jityen, A.; Kongkaew, T.; Subannajui, K.; Sinsarp, A.; Osotchan, T. X-Ray Photoelectron Spectroscopy Study of Chromium and Magnesium Doped Copper Ferrite Thin Film. AIP Conf. Proc. AIP Publ. LLC 2020, 2279, 140002. [Google Scholar]
- Alam, M.M.; Rahman, M.M.; Asiri, A.M.; Fazal, M.A. A Reliable Electrochemical Approach for Detection of Testosterone with CuO-Doped CeO2 Nanocomposites-Coated Glassy Carbon Electrode. J. Mater. Sci. Mater. Electron. 2021, 32, 5259–5273. [Google Scholar] [CrossRef]
- Wang, Y.; Lü, Y.; Zhan, W.; Xie, Z.; Kuang, Q.; Zheng, L. Synthesis of Porous Cu2O/CuO Cages Using Cu-Based Metal–Organic Frameworks as Templates and Their Gas-Sensing Properties. J. Mater. Chem. A 2015, 3, 12796–12803. [Google Scholar] [CrossRef]
- Sun, H.; Zelekew, O.A.; Chen, X.; Guo, Y.; Kuo, D.-H.; Lu, Q.; Lin, J. A Noble Bimetal Oxysulfide CuVOS Catalyst for Highly Efficient Catalytic Reduction of 4-Nitrophenol and Organic Dyes. RSC Adv. 2019, 9, 31828–31839. [Google Scholar] [CrossRef] [Green Version]
- Vineesh, T.V.; Yarmiayev, V.; Zitoun, D. Tailoring the Electrochemical Hydrogen Evolution Activity of Cu3P through Oxophilic Surface Modification. Electrochem. Commun. 2020, 113, 106691. [Google Scholar] [CrossRef]
- Sharma, K.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Kumar, R.; Thakur, V.K.; Nguyen, V.H.; Pardeep, S. Fabrication of efficient CuO/graphitic carbon nitride based heterogeneous photo-Fenton like catalyst for degradation of 2, 4 dimethyl phenol. Process Saf. Environ. Prot. 2020, 142, 63–75. [Google Scholar] [CrossRef]
- Mukhtar, F.; Munawar, T.; Nadeem, M.S.; ur Rehman, M.N.; Mahmood, K.; Batool, S.; Hasan, M.; ur Rehman, K.; Iqbal, F. Enhancement in carrier separation of ZnO-Ho2O3-Sm2O3 hetrostuctured nanocomposite with rGO and PANI supported direct dual Z-scheme for antimicrobial inactivation and sunlight driven photocatalysis. Adv. Powder Technol. 2021, 32, 3770–3787. [Google Scholar] [CrossRef]
- Mukhtar, F.; Munawar, T.; Nadeem, M.S.; ur Rehman, M.N.; Khan, S.A.; Koc, M.; Batool, S.; Hasan, M.; Iqbal, F. Dual Z-scheme core-shell PANI-CeO2-Fe2O3-NiO heterostructured nanocomposite for dyes remediation under sunlight and bacterial disinfection. Environ. Res. 2022, 215, 114140. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Manzoor, S.; Mahmood, K.; Al-Buriahi, M.S.; Katubi, K.M.; Ashiq, M.N.; Boukhris, I.; Iqbal, F. Facile synthesis of sunlight driven photocatalysts Zn0.9Ho0. 05M0.05O (M = Pr, Sm, Er) for the removal of synthetic dyes from wastewater. Surf. Interfaces 2022, 34, 102376. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X.; Wang, X. Recent Developments of Doped G-C3N4 Photocatalysts for the Degradation of Organic Pollutants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 751–790. [Google Scholar] [CrossRef]
Sample ID | FWHM | Micro-Strain | Crystalline Size | Bandgap (eV) |
---|---|---|---|---|
gCN | 1.437 | 0.0255 | 5.95 | 2.19 |
VC-1 | 1.71603 | 0.0304 | 4.98 | 2.12 |
VC-2 | 1.6712 | 0.0296 | 5.12 | 1.93 |
VC-3 | 1.94315 | 0.0345 | 4.4 | 1.51 |
VC-4 | 1.83126 | 0.0325 | 4.67 | 1.96 |
VC-5 | 1.72968 | 0.0307 | 4.94 | 2.1 |
C1s | N1s | ||||
---|---|---|---|---|---|
Group | gCN (%) | V/Cu/gCN | Group | gCN (%) | V/Cu/gCN |
C=N-C | 61.73 | 56.88 | Pyridine N | 64.97 | 55.26 |
C-C | 30.19 | 34.22 | Pyrrolic N | 15.98 | 24.91 |
C-NH2 | 08.07 | 08.89 | Graphitic N | 10.62 | 12.22 |
- | - | - | C-N | 08.41 | 07.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasu, D.; Keyan, A.K.; Sakthinathan, S.; Yu, C.-L.; You, Y.-F.; Chiu, T.-W.; Fan, L.; Chen, P.-C. Visible-Light-Active Vanadium and Copper Co-Doped gCN Nanosheets with Double Direct Z-Scheme Heterojunctions for Photocatalytic Removal of Monocrotophos Pesticide in Water. Catalysts 2022, 12, 1489. https://doi.org/10.3390/catal12111489
Vasu D, Keyan AK, Sakthinathan S, Yu C-L, You Y-F, Chiu T-W, Fan L, Chen P-C. Visible-Light-Active Vanadium and Copper Co-Doped gCN Nanosheets with Double Direct Z-Scheme Heterojunctions for Photocatalytic Removal of Monocrotophos Pesticide in Water. Catalysts. 2022; 12(11):1489. https://doi.org/10.3390/catal12111489
Chicago/Turabian StyleVasu, Dhanapal, Arjunan Karthi Keyan, Subramanian Sakthinathan, Chung-Lun Yu, Yu-Feng You, Te-Wei Chiu, Liangdong Fan, and Po-Chou Chen. 2022. "Visible-Light-Active Vanadium and Copper Co-Doped gCN Nanosheets with Double Direct Z-Scheme Heterojunctions for Photocatalytic Removal of Monocrotophos Pesticide in Water" Catalysts 12, no. 11: 1489. https://doi.org/10.3390/catal12111489
APA StyleVasu, D., Keyan, A. K., Sakthinathan, S., Yu, C. -L., You, Y. -F., Chiu, T. -W., Fan, L., & Chen, P. -C. (2022). Visible-Light-Active Vanadium and Copper Co-Doped gCN Nanosheets with Double Direct Z-Scheme Heterojunctions for Photocatalytic Removal of Monocrotophos Pesticide in Water. Catalysts, 12(11), 1489. https://doi.org/10.3390/catal12111489