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Abstract: Coating the catalyst with a nanoporous layer has been demonstrated to be an effective
approach to improve catalyst stability. Herein, we systematically investigate two types of core-shell
mesoporous silica nanoparticles with a platinum nanocatalyst using a variety of characterization
methods. One of the mesoporous particles has a unique amine ring structure in the middle of a shell
(Ring-mSiO2/Pt-5.0/SiO2), and the other one has no ring structure (mSiO2/Pt-5.0/SiO2). Brunauer–
Emmett–Teller/Barrett–Joyner–Halenda (BET/BJH) presented a similar surface area for both particles,
and the pore size was 2.4 nm. Ultra-Small-Angle X-ray Scattering (USAXS)/ Small-Angle X-ray
Scattering (SAXS) showed the size of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2 were 420 nm
and 272 nm, respectively. It also showed that the ring structure was 30 nm above the silica core.
Using high-resolution Transmission Electron Microscopy (TEM), it was found that the platinum
nanoparticles are loaded evenly on the surface of the silica. In situ SAXS heating experiments and
Thermogravimetric Analysis (TGA) indicated that the mSiO2/Pt-5.0/SiO2 were more stable during
the high temperature, while the Ring-mSiO2/Pt-5.0/SiO2 had more change in the particle.

Keywords: mesoporous materials; USXAS/SXAS

1. Introduction

Since the past century, plastic has played an essential role in people’s daily lives
and industry development due to many advantages, such as being economy-friendly,
lightweight, and chemical-resistant [1–3]. However, since plastic materials take centuries to
degrade, recycling plastic waste is a thorny problem worldwide. Even one piece of plastic
waste can cause chemical and physical hazards to wildlife and the environment [4–6], not
to mention that 4.8 to 12.7 million tons of plastic waste leak into the ocean every year [7,8].
The United States generates approximately 30 million tons of plastic waste each year,
most of which goes to landfills, and less than 10% has been recycled [9]. Currently, the
effective recycling of plastic waste and the production of high-value chemicals are research
hotspots [10–12]. The use of metal catalysts to degrade waste plastics is a promising
approach for plastic recycling because this helps to convert those synthetic polymers into
useful liquid fuels or other valuable materials [13–15].

One issue of this recycling is the high temperature required, which will make the
nanocatalyst sintered. To address this issue, a series of materials have been introduced.
For example, carbon support [16], SrTiO3 perovskite nanocuboid [17–19], atomic layer
deposition (ALD) overcoats [20–22], mesoporous silica nanoparticles [23], mesoporous
aluminosilica spheres [24], and many other materials have been studied as the support
and protective layer to prevent deactivation of the catalysts. Among the above materials,
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mesoporous silica nanoparticles are an excellent candidate to stabilize catalysts. Xiao et al.
confined Pt nanoparticles inside mesoporous SiO2 wells and proved their stability [23].
Recently, the Pt NPs have been replaced by intermetallic nanoparticles, which were also
stable at high temperatures [25]. Tennakoon et al. also utilized the mesoporous silica
nanoparticles to protect Pt NPs from the harsh environment during the process of upcycling
high-density polyethylene [26].

Mesoporous silica nanoparticles also have many applications in other fields, such as
cancer theranostics [27,28], tissue engineering [29], and contaminated-water treatment [30].
Although much progress has been made to show that mesoporous silica nanoparticles are
eligible for many applications, there has not been a thorough study on the characterization
of the particles’ structure. We began with a model system, named mesoporous silica
shell/5 nm Pt nanoparticle/solid silica, (mSiO2/Pt-5.0/SiO2) structure nanoparticle as
reported before [31–33]. For comparison, a new structure with an amine ring added
in the shell was first synthesized, which potentially can be functionalized as a spatial-
selective site for a single-site catalyst. In addition, we utilized advanced characterization
techniques such as Brunauer–Emmett–Teller (BET), Ultra-Small-Angle X-ray Scattering
(USAXS)/Small-Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy
(TEM) to study these particles’ structure. The BET theory and the Barrett–Joyner–Halenda
(BJH) model showed that the pore size was 2.4 nm, and the surface area was similar.
USAXS/SAXS showed the size of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2 were
420 nm and 272 nm, respectively. It also showed that the ring structure was 30 nm above
the silica core. TEM showed that the platinum nanoparticles are loaded evenly on the
surface of the silica. The SAXS heating experiment has been deployed to understand
thermally induced morphological changes. The changes in particle size and dspacing of
Ring-mSiO2/Pt-5.0/SiO2 are both greater than the changes of mSiO2/Pt-5.0/SiO2.

2. Results and Discussion
2.1. Synthesis of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2

As shown in Scheme 1, two types of mesoporous structure silica nanoparticles were
synthesized. The first one was the core-shell mesoporous silica nanoparticle with Pt
nanoparticle (mSiO2/Pt-5.0/SiO2), while the second was the core-shell mesoporous silica
nanoparticle with ring structure (Ring-mSiO2/Pt-5.0/SiO2). The synthesis methods for both
were the same during the first several steps. After those silica spheres were successfully
obtained, the Pt NPs were added to the surface with the help of the -NH2 functional
group. The benefit of introducing the -NH2 was to increase the binding force between
the silica and the Pt NPs [23]. The above steps were identical for mSiO2/Pt-5.0/SiO2
and Ring-mSiO2/Pt-5.0/SiO2. The processes to grow the mesoporous structure were
different. For mSiO2/Pt-5.0/SiO2, the hexadecyltrimethylammonium bromide (C16TAB)
and the tetraethyl orthosilicate (TEOS) were used as the templating agent and the precursor,
respectively. For the synthesis of the ring structure, the addition of TEOS was divided into
two steps, between which the 3-aminopropyl trimethoxy silane (ATPS) was added to the
system to form the ring structure in the shell.

2.2. Surface Area Analysis

Next, it is important to understand the porous structures of these two materials.
To investigate the surface area and porosity difference, N2 adsorption and desorption
experiments were performed. Figure 1a shows that both samples show a type IV isotherm
based on the International Union of Pure and Applied Chemistry (IUPAC) classification,
and all analytical data are presented in the Table 1. No shape difference can be obtained
from the isotherm. Then, the Barrett–Joyner–Halenda (BJH) model was used to analyze
the mesopore size based on the data between 0.1–0.3 p/p0. As seen in Figure 1b, both
samples have a sharp peak at the pore size of 24 Å. No other peaks were observed in
the BJH model. The BET surface area for normal-mSiO2/SiO2 is 1020 m2/g, larger than
950 m2/g for Ring-mSiO2/SiO2 sample, and pore volume data shows the same trend as



Catalysts 2022, 12, 183 3 of 10

the normal sample has a larger pore volume than ring sample. These two data were also
reflected on the isotherm and BJH pore size distribution. Concerning the ring area may
have a much narrower pore, nonlocal density function theory (NLDFT) was used to probe
the micropore range, as shown in Figure 1c. No apparent difference can be obtained from
the comparison based on NLDFT pore size distribution. One thing worth noting is that
the negligible difference between these two samples does not mean the two samples are
identical in their pore structure. Because the APTS/TEOS ratio is 1:35, the change of the
pore may be too small for the instrument to detect but has the potential to impact catalysis.
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Figure 1. (a) Nitrogen adsorption/desorption isotherm curves; (b) Pore size distributions from
Barrett–Joyner–Halenda (BJH) model; (c) Pore size distribution from nonlocal density functional
theory (NLDFT) of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2.

Table 1. Average parameters for mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2.

BET Surface Area
(m2/g)

Pore Volume
(cm3/g)

BJH Pore Size-Ads
(Å)

BJH Pore Size-Des
(Å)

mSiO2/Pt-5.0/SiO2 1020 0.81 24 24
Ring-mSiO2/Pt-5.0/SiO2 950 0.71 24 24

2.3. Ultra-Small-Angle X-Ray Scattering (USAXS)/Small-Angle X-Ray Scattering(SAXS)

Furthermore, the USAXS/SAXS measurements were used to obtain structural informa-
tion such as the shell thickness and the ring position, as shown in Figure 2. SAXS has been
demonstrated to be a powerful technique to study porous material [34–37]. The principal
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peak positions q1 at low q region for mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2 are
0.169 Å−1 and 0.168 Å−1, respectively. The pore center-to-center distances (dspacing) should
be 3.718 nm for both particles, which is calculated from dspacing = 2π

q1
[38]. By considering

the pore size diameter of 2.400 nm from the BET theory, the thickness of the pore’s wall is
estimated to be 1.300 nm. To know the thickness of the shell, the electron density of silica
was calculated and processed based on the USAXS data from Figure 2a and displayed as
the function of radius in Figure 2b. The highest electron density at 0.7 Å−3 comes from the
silica spheres as the core. The clifflike drop in electron density near the radius of 60 nm
proved the successful synthesis of 120 nm silica spheres. The peak around 90 nm indicated
the position of the ring structure, which is about 30 nm above the silica spheres. The
second and third clifflike declines around 136 nm and 210 nm indicate the radius of the
entire nanoparticles. Based on that, we know the diameters of mSiO2/Pt-5.0/SiO2 and
Ring-mSiO2/Pt-5.0/SiO2 are around 420 nm and 272 nm, respectively.
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2.4. Transmission Electron Microscopy (TEM) Characterization

In order to obtain more direct information about the morphology and other structures
of these particles, high-resolution TEM images of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-
5.0/SiO2 were taken and shown in Figure 3. Figure 3a–d shows bright-field TEM images
and High Angle Annular Dark Field (HAADF) STEM images, respectively. As shown in
Figure 3a,b, the large dark spheres in the center are the silica core. The regular striped
texture around the core should be the mesoporous shell. These high-magnification images
illuminate the Pt NPs located at the bottom of the mesoporous shell, near the surface of the
silica spheres as we expected. What is more, the ring structure has been clearly observed
in the mesoporous shell. The results in the TEM images provide a valuable and direct
perspective about the nanoparticles, which agree well with USAXS/SAXS data.

2.5. In Situ Small-Angle X-Ray Scattering (SAXS) Heating Experiment

After understanding the structure of both samples, the study of thermal stability is the
most important because the catalytic process is carried out at high temperatures. Therefore,
in situ SAXS heating experiment was deployed for both mesoporous nanoparticles. The
results are displayed as a form of color-filled contour line plot. As we can see from Figure 4a,
the q1 position of mSiO2/Pt-5.0/SiO2 has no significant change with the increase in the
temperature, which indicates that the structure of this no-ring nanoparticle is stable. In
contrast, in Figure 4b, the q1 position of Ring-mSiO2/Pt-5.0/SiO2 shifts to the high q region
after 100 ◦C. This change may indicate the change of structure of Ring-mSiO2/Pt-5.0/SiO2.
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In order to better compare the structure before and after the temperature rise, the 1D
SAXS profile for each nanoparticle at 30 ◦C and 400 ◦C is shown in Figure 4c,d. As can
be observed, q1 for mSiO2/Pt-5.0/SiO2 only changed a little from 0.170 Å−1 to 0.175 Å−1,
while q1 for Ring-mSiO2/Pt-5.0/SiO2 changed a great deal from 0.169 Å−1 to 0.180 Å−1.
The change of q1 caused the change of dspacing. The continuous change is displayed in
Figure 4e. The change of dspacing for Ring-mSiO2/Pt-5.0/SiO2 is about 0.2 nm, which is
about twice the change of mSiO2/Pt-5.0/SiO2. The changes in relative particle size are also
calculated and displayed in Figure 3f. With the temperature going up, the relative size
change of Ring-mSiO2/Pt-5.0/SiO2 is about two times larger than mSiO2/Pt-5.0/SiO2.
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2.6. Thermogravimetric Analysis (TGA)

Although in situ SAXS heating experiment clearly shows the different stability for the
two particles, it is still unclear about the cause. We used TGA to understand better the pyrol-
ysis processes of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2. The normalized TGA
curves are shown in Figure 5. There is no significant difference between both nanoparticles.
The relative weight losses were around 12.5%, which means there was not much organic
material in the system as we expected. The weight increase at the very beginning comes
from the buoyancy effect. The weight loss around 100 ◦C to 300 ◦C should be contributed
from the desorption of the water and organic solvent residue from the preparation process.
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The loss of chemisorbed water and organic solvent may be the reason for weight loss at a
higher temperature above 300 ◦C. Such results are similar to an ALD system [39].
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3. Conclusions

We utilized several characterization methods to investigate two types of core-shell
mesoporous silica nanoparticles with platinum nanoparticles loaded. Both mesoporous
nanoparticles were synthesized successfully. The surface parameters were studied by the
N2 adsorption and desorption experiment. Surface area, pore size, and pore volume were
determined. The structures of mesoporous nanoparticles were studied by synchrotron-
based USAXS/SAXS, which demonstrated the size of the particles and the pores’ diameter.
The SAXS heating experiment and the TGA experiment were used to outline the thermal
stabilities and the pyrolysis processes. High-resolution TEM was also deployed to under-
stand the structure of both nanoparticles better. The core-shell structure, the mesopores of
the shell, and the Pt nanoparticles can be observed. In addition to obtaining the detailed
data, we have thus constructed a complete set of well-established characterization methods
for mesoporous nanoparticles. We found that with these integrated methods, we were able
to obtain detailed information about morphology and thermal stability of porous nanoma-
terial and thus distinguish similar nanomaterials. In future work, we plan to determine the
role of the ring structure to see if it helps to accelerate or delay the catalyst process.

4. Materials and Methods
4.1. Chemicals and Materials

Cyclohexane (ACS grade), polyvinylpyrrolidone (PVP-K30, Mw = 40,000), Potassium
tetrachloroplatinate (K2PtCl4, trace metal grade, 99.9%), Myristyltrimethylammonium
bromide (C14TAB, 99%), 3-aminopropyl trimethoxy silane (APTS, 97%), hexadecyltrimethy-
lammonium bromide (C16TAB, 98%), L-arginine (Reagent grade, ≥98%), and tetraethyl
orthosilicate (TEOS, 98%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Am-
monia hydroxide (NH3·H2O, 28–30%), hydrochloric acid (Reagent grade), Methanol (ACS
grade), hexanes (HPLC grade), 2-propanol (ACS grade), acetone (ACS grade), and ethanol
(200 proof) were purchased from Thermo Fischer Scientific (Waltham, MA, USA). Ethylene
glycol (BDH, 99%) was purchased from VWR (Radnor, PA, USA). All chemicals were used
as received unless otherwise notified. Ultrapure water was obtained from Milli-Q plus
(Burlington, MA, USA).
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4.2. Synthesis of mSiO2/Pt-5.0/SiO2 and Ring-mSiO2/Pt-5.0/SiO2

The synthesis process of mSiO2/Pt-5.0/SiO2 was reported in the previous article [26].
Simply put, the prepared Pt NPs were loaded on the NH2-functionalized silica spheres, then
a mesoporous SiO2 shell was grown on the surface of the Pt NPs loaded SiO2 spheres [26].
C16TAB was used as the templating agent, and TEOS was used as the SiO2 precursor [26].
The synthesis of Ring-mSiO2/Pt-5.0/SiO2 is similar to the synthesis of mSiO2/Pt-5.0/SiO2
with the difference in the silica precursor addition. After 30 min of gentle stirring with
ammonia solution added, the mixture of 100 µL of TEOS with 700 µL of TEOS was added
dropwise into the solution. After 40 min, a mixture of 20 µL APTS and 200 µL TEOS
was added to the solution dropwise. Then after 40 min of gentle stirring, a solution of
600 µL TEOS in 4 mL ethanol was added in a dropwise manner in portions (3 × 200 µL)
every 30 min to the above suspension. For both nanomaterials, after the last portion of the
TEOS addition, the whole systems were left stirring for another 6 h hours to make sure the
shell growth was finished. Then products were then isolated by centrifuge and washed
with ethanol 3 times. The surfactants were removed by acid reflux. Typically, the washed
product was redispersed into 15 mL of methanol and 1 mL of concentrate hydrochloric acid.
Then it was refluxed at 80 ◦C for 24 h. The final product was recovered by centrifuge and
washed with ethanol 5 times. Finally, the sample was vacuum-dried at room temperature.
(In a typical synthesis, ~250 mg of catalyst can be obtained.)

4.3. Surface Area Analysis

N2 adsorption and desorption isotherms were obtained on a Micromeritics 3Flex.
The sample volume of 150 mg was outgassed under dynamic vacuum at 200 ◦C for 10 h.
Surface areas were calculated using Brunauer–Emmett–Teller (BET) theory, and pore sizes
were calculated with the Barrett–Joyner–Halenda (BJH) model. Nonlocal Density Function
Theory (NLDFT) pore-size distribution was also obtained to compare the micropore range
between samples.

4.4. Ultra Small-Angle X-Ray Scattering (USAXS)

USAXS/SAXS measurements were carried out at the sector 9-ID-C of the Advanced
Photon Source at the Argonne National Laboratory [40]. The X-ray energy was 24 keV with
exposure times of 5 min.

4.5. Transmission Electron Microscopy (TEM)

A JEM-2100F field emission electron microscope took TEM images at an acceleration
voltage of 200 kV. Samples were prepared by dropping the silica nanoparticle suspension
on 400 mesh carbon-coated copper grids and allowed to dry.

4.6. SAXS Heating Experiment

The SAXS heating experiments were performed at the 12-ID-B station at the Advanced
Photon Source of the Argonne National Laboratory with an X-ray energy of 13.3 keV and
exposure time of 0.2 s. The sample to detector distance (SDD) was 1999.78 mm. The heating
ranges were from 30 ◦C to 400 ◦C.

4.7. Thermogravimetric Analysis (TGA)

A Mettler Toledo TGA SDTA851e took TGA information. The samples were heated up
from 25 ◦C to 600 ◦C at the rate of 10 ◦C/min and maintained at 600 ◦C for 10 min in the
nitrogen atmosphere. Before the heating program was initiated, we swapped the furnace
with nitrogen to remove residual oxygen.
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