On Optimal Barium Promoter Content in a Cobalt Catalyst for Ammonia Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Textural Characteristics (N2 Physisorption)
2.2. Reduction Behavior of the Studied Catalysts (H2-TPR)
2.3. Chemisorption Characteristics of the Active Phase Surface (H2-TPD)
2.4. Phase Composition of the Precursors and Catalysts in the Reduced form (XRPD)
2.5. Morphology and Element Distribution of the Catalysts in the Reduced form (SEM-EDX)
2.6. Activity in NH3 Synthesis (Catalytic Activity Measurements)
3. Materials and Methods
3.1. Preparation of the Catalysts
3.2. Catalyst Characterisation
3.3. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamaru:, K. The history of the development of ammonia synthesis. In Catalytic Ammonia Synthesis: Fundamentals and Practice; Jennings, J.R., Ed.; Plenum Press: New York, NY, USA, 1991; pp. 1–18. [Google Scholar]
- Aika, K.; Hori, H.; Ozaki, A. Activation of nitrogen by alkali metal promoted transition metal I: Ammonia synthesis over ruthenium promoted by alkali metal. J. Catal. 1972, 27, 424–431. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Sentek, J.; Jodzis, S.; Mizera, E.; Góralski, J.; Paryjczak, T.; Diduszko, R. An alkali-promoted ruthenium catalyst for the synthesis of ammonia, supported on thermally modified active carbon. Catal. Lett. 1997, 45, 65–72. [Google Scholar] [CrossRef]
- Hutchings, G.J. Promotion in Heterogeneous Catalysis: A Topic Requiring a New Approach? Catal. Lett. 2001, 75, 1–12. [Google Scholar] [CrossRef]
- Stoltz, P. Structure and surface chemistry of industrial ammonia synthesis catalysts. In Ammonia. Catalysis and Manufacture; Nielsen, A., Ed.; Springer-Verlag: Berlin, Germany, 1995; pp. 17–102. [Google Scholar]
- Vayenas, C.G.; Bebelis, S.; Pliangos, C.; Brosda, S.; Tsiplakides, D. Promotion in Heterogeneous Catalysis. In Electrochemical Activation of Catalysis; Kluwer Academic Publishers: New York, NY, USA, 2002; pp. 15–90. [Google Scholar]
- Rase, H.F. Ammonia Converter. In Handbook of Commercial Catalysts: Heterogeneous Catalysts; CRC Press: Boca Raton, FL, USA, 2000; pp. 449–454. [Google Scholar]
- Ertl, G.; Lee, S.B.; Weiss, M. Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces. Surf. Sci. 1982, 114, 527–545. [Google Scholar] [CrossRef]
- Strongin, D.R.; Somorjai, G.A. The effects of potassium on ammonia synthesis over iron single-crystal surfaces. J. Catal. 1988, 109, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Aika, K.; Kubota, J.; Kadowaki, Y.; Niwa, Y.; Izumi, Y. Molecular sensing techniques for the characterization and design of new ammonia catalysts. Appl. Surf. Sci. 1997, 121–122, 488–491. [Google Scholar] [CrossRef]
- Raróg, W.; Kowalczyk, Z.; Sentek, J.; Składanowski, D.; Zieliński, J. Effect of K, Cs and Ba on the kinetics of NH3 synthesis over carbon-based ruthenium catalysts. Catal. Lett. 2000, 68, 163–168. [Google Scholar] [CrossRef]
- Rossetti, I.; Pernicone, N.; Forni, L. Promoters effect in Ru/C ammonia synthesis catalyst. Appl. Catal. A 2001, 208, 271–278. [Google Scholar] [CrossRef]
- Forni, L.; Molinari, D.; Rossetti, I.; Pernicone, N. Carbon-supported promoted Ru catalyst for ammonia synthesis. Appl. Catal. A 1999, 185, 269–275. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Krukowski, M.; Raróg-Pilecka, W.; Szmigiel, D.; Zielinski, J. Carbon-based ruthenium catalyst for ammonia synthesis: Role of the barium and caesium promoters and carbon support. Appl. Catal. A 2003, 248, 67–73. [Google Scholar] [CrossRef]
- Raróg-Pilecka, W.; Karolewska, M.; Truszkiewicz, E.; Iwanek, E.; Mierzwa, B. Cobalt catalyst doped with cerium and barium obtained by co-precipitation method for ammonia synthesis process. Catal. Lett. 2011, 141, 678–684. [Google Scholar] [CrossRef]
- Hagen, S.; Barfod, R.; Fehrmann, R.; Jacobsen, C.J.H.; Teunissen, H.T.; Chorkendorff, I. Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon. J. Catal. 2003, 214, 327–335. [Google Scholar] [CrossRef]
- Tarka, A.; Zybert, M.; Truszkiewicz, E.; Mierzwa, B.; Kępiński, L.; Moszyński, D.; Raróg-Pilecka, W. Effect of a Barium Promoter on the Stability and Activity of Carbon-Supported Cobalt Catalysts for Ammonia Synthesis. ChemCatChem 2015, 7, 2836–2839. [Google Scholar] [CrossRef]
- Zhong, Z.; Aika, K. The Effect of Hydrogen Treatment of Active Carbon on Ru Catalysts for Ammonia Synthesis. J. Catal. 1998, 173, 535–539. [Google Scholar] [CrossRef]
- Bielawa, H.; Hinrichsen, O.; Birkner, A.; Muhler, M. The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium. Angew. Chem. Int. Ed. 2001, 40, 1061–1063. [Google Scholar] [CrossRef]
- Szmigiel, D.; Bielawa, H.; Kurtz, M.; Hinrichsen, O.; Muhler, M.; Raróg, W.; Jodzis, S.; Kowalczyk, Z.; Znak, L.; Zielinski, J. The Kinetics of Ammonia Synthesis over Ruthenium-Based Catalysts: The Role of Barium and Cesium. J. Catal. 2002, 205, 205–212. [Google Scholar] [CrossRef]
- Hansen, T.W.; Wagner, J.B.; Hansen, P.L.; Dahl, S.; Topsøe, H.; Jacobsen, C.J.H. Atomic-Resolution in Situ Transmission Electron Microscopy of a Promoter of a Heterogeneous Catalyst. Science 2001, 294, 1508–1510. [Google Scholar] [CrossRef]
- Hansen, T.W.; Hansen, P.L.; Dahl, S.; Jacobsen, C.J.H. Support Effect and Active Sites on Promoted Ruthenium Catalysts for Ammonia Synthesis. Catal. Lett. 2002, 84, 7–12. [Google Scholar] [CrossRef]
- Zeng, H.S.; Inazu, K.; Aika, K. The Working State of the Barium Promoter in Ammonia Synthesis over an Active-Carbon-Supported Ruthenium Catalyst Using Barium Nitrate as the Promoter Precursor. J. Catal. 2002, 211, 33–41. [Google Scholar] [CrossRef]
- Truszkiewicz, E.; Raróg-Pilecka, W.; Szmidt-Szałowski, K.; Jodzis, S.; Wilczkowska, E.; Łomot, D.; Kaszkur, Z.; Karpiński, Z.; Kowalczyk, Z. Barium-promoted Ru/carbon catalyst for ammonia synthesis: State of the system when operating. J. Catal. 2009, 265, 181–190. [Google Scholar] [CrossRef]
- Ronduda, H.; Zybert, M.; Patkowski, W.; Ostrowski, A.; Jodłowski, P.; Szymański, D.; Kępiński, L.; Raróg-Pilecka, W. A high performance barium-promoted cobalt catalyst supported on magnesium–lanthanum mixed oxide for ammonia synthesis. RSC Adv. 2021, 11, 14218–14228. [Google Scholar] [CrossRef]
- Ronduda, H.; Zybert, M.; Patkowski, W.; Tarka, A.; Ostrowski; Raróg-Pilecka, W. Kinetic studies of ammonia synthesis over a barium-promoted cobalt catalyst supported on magnesium–lanthanum mixed oxide. J. Taiwan Inst. Chem. Eng. 2020, 114, 241–248. [Google Scholar] [CrossRef]
- Tarka, A.; Patkowski, W.; Zybert, M.; Ronduda, H.; Wieciński, P.; Adamski, P.; Sarnecki, A.; Moszyński, D.; Raróg-Pilecka, W. Synergistic Interaction of Cerium and Barium-New Insight into the Promotion Effect in Cobalt Systems for Ammonia Synthesis. Catalysts 2020, 10, 658. [Google Scholar] [CrossRef]
- Karolewska, M.; Truszkiewicz, E.; Mierzwa, B.; Kępiński, L.; Raróg-Pilecka, W. Ammonia synthesis over cobalt catalysts doped with cerium and barium. Effect of the ceria loading. Appl. Catal. A 2012, 445–446, 280–286. [Google Scholar] [CrossRef]
- Lin, S.S.Y.; Kim, D.H.; Ha, S.Y. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide. Appl. Catal. A 2009, 355, 69–77. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chen, Y.W. The mechanism of reduction of cobalt by hydrogen. Mater. Chem. Phys. 2004, 85, 171–175. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, C.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B 2007, 75, 167–174. [Google Scholar] [CrossRef]
- Ronduda, H.; Zybert, M.; Patkowski, W.; Ostrowski, A.; Jodłowski, P.; Szymański, D.; Kępiński, L.; Raróg-Pilecka, W. Development of cobalt catalyst supported on MgO–Ln2O3 (Ln=La, Nd, Eu) mixed oxide systems for ammonia synthesis. Int. J. Hydrog. Energy 2022, 47, 6666–6678. [Google Scholar] [CrossRef]
- Nishi, M.; Chen, S.Y.; Takagi, H. Mild ammonia synthesis over Ba-promoted Ru/MPC catalysts: Effect of the Ba/Ru ratio and the mesoporous structure. Catalysts 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Bardwell, C.J.; Bickley, R.I.; Poulston, S.; Twigg, M.V. Thermal decomposition of bulk and supported barium nitrate. Thermochim. Acta 2015, 613, 94–99. [Google Scholar] [CrossRef]
- Patkowski, W.; Kowalik, P.; Antoniak-Jurak, K.; Zybert, M.; Ronduda, H.; Mierzwa, B.; Próchniak, W.; Raróg-Pilecka, W. On the effect of flash calcination method on the characteristics of cobalt catalysts for ammonia synthesis process. Eur. J. Inorg. Chem. 2021, 15, 1518–1529. [Google Scholar] [CrossRef]
- Zybert, M.; Wyszyńska, M.; Tarka, A.; Patkowski, W.; Ronduda, H.; Mierzwa, B.; Kępiński, L.; Sarnecki, A.; Moszyński, D.; Raróg-Pilecka, W. Surface enrichment phenomenon in the Ba-doped cobalt catalyst for ammonia synthesis. Vacuum 2019, 168, 108831. [Google Scholar] [CrossRef]
- Tarka, A.; Zybert, M.; Kindler, Z.; Szmurło, J.; Mierzwa, B.; Raróg-Pilecka, W. Effect of precipitating agent on the properties of cobalt catalysts promoted with cerium and barium for NH3 synthesis obtained by co-precipitation. Appl. Catal. A 2017, 532, 19–25. [Google Scholar] [CrossRef]
- Sato, K.; Miyahara, S.; Tsujimaru, K.; Wada, Y.; Toriyama, T.; Yamamoto, T.; Matsumura, S.; Inazu, K.; Mohri, H.; Iwasa, T.; et al. Barium Oxide Encapsulating Cobalt Nanoparticles Supported on Magnesium Oxide: Active Non-Noble Metal Catalysts for Ammonia Synthesis under Mild Reaction Conditions. ACS Catal. 2021, 11, 13050–13061. [Google Scholar] [CrossRef]
- Fang, B.; Liu, F.; Zhang, C.; Li, C.; Ni, J.; Wang, X.; Lin, J.; Lin, B.; Jiang, L. Sacrificial Sucrose Strategy Achieved Enhancement of Ammonia Synthesis Activity over a Ceria-Supported Ru Catalyst. ACS Sustain. Chem. Eng. 2021, 9, 8962–8969. [Google Scholar] [CrossRef]
- Zybert, M.; Truszkiewicz, E.; Mierzwa, B.; Raróg-Pilecka, W. Thermal analysis coupled with mass spectrometry as a tool to determine the cobalt content in cobalt catalyst precursors obtained by co-precipitation. Thermochim. Acta 2014, 584, 31–35. [Google Scholar] [CrossRef]
- Reule, R.C.; Bartholomew, C.H. The stoichiometries of H2 and CO adsorptions on cobalt: Effects of support and preparation. J. Catal. 1984, 85, 63–77. [Google Scholar] [CrossRef]
- Kowalczyk, Z. Effect of potassium on the high-pressure kinetics of ammonia synthesis over fused iron catalysts. Catal Lett. 1996, 37, 173–179. [Google Scholar] [CrossRef]
Catalyst | Ba Content 1 (mmol gCo−1) | Ba/Ce Molar Ratio 2 | SBET 3 (m2 g−1) | SR 4 (m2 g−1) | VP 5 (cm3 g−1) |
---|---|---|---|---|---|
CoCe | 0.00 | - | 85 | 7.5 | 0.34 |
CoCeBa(0.2) | 0.20 | 0.2 | 76 | 8.2 | 0.15 |
CoCeBa(0.5) | 0.48 | 0.4 | 67 | - | 0.14 |
CoCeBa(1.1) | 1.05 | 0.9 | 63 | - | 0.14 |
CoCeBa(1.4) | 1.36 | 1.2 | 52 | 10.7 | 0.12 |
CoCeBa(1.6) | 1.61 | 1.4 | 52 | - | 0.12 |
CoCeBa(2.0) | 1.95 | 1.7 | 53 | 5.0 | 0.15 |
CoCeBa(2.2) | 2.19 | 2.0 | 52 | 4.9 | 0.15 |
CoCeBa(2.6) | 2.62 | 2.3 | 52 | 2.4 | 0.14 |
Catalyst | H2 Uptake (µmol gCo−1) | β/α Peak Area Ratio | SCo 1 (m2 gCo−1) | dCo-TPD 2 (nm) | |
---|---|---|---|---|---|
α Peak | β Peak | ||||
CoCe | 121.4 | - | - | 7.7 | 88 |
CoCeBa(0.2) | 162.5 | - | - | 10.3 | 66 |
CoCeBa(0.5) | 160.8 | - | - | 10.2 | 66 |
CoCeBa(1.1) | 154.4 | - | - | 9.8 | 69 |
CoCeBa(1.4) | 100.1 | 61.4 | 0.6 | 10.2 | 66 |
CoCeBa(1.6) | 102.7 | 59.4 | 0.6 | 10.2 | 66 |
CoCeBa(2.0) | 83.2 | 62.9 | 0.8 | 9.2 | 73 |
CoCeBa(2.2) | 46.5 | 65.0 | 1.4 | 7.1 | 96 |
CoCeBa(2.6) | 43.6 | 48.0 | 1.1 | 5.6 | 117 |
Catalyst | dCo3O4-XRD 1 (nm) | dCo-XRD 2 (nm) |
---|---|---|
CoCe | 10 | 22 |
CoCeBa(0.2) | 11 | 24 |
CoCeBa(1.4) | 12 | 21 |
CoCeBa(2.0) | 11 | 21 |
CoCeBa(2.2) | - | 26 |
CoCeBa(2.6) | 10 | - |
Catalyst | Point | Element Share (%) | Elements Ratio | |||
---|---|---|---|---|---|---|
Co | Ce | Ba | Co/Ce | Co/Ba | ||
CoCe | 1. 2. | 88.5 88.4 | 11.5 11.6 | - - | 7.7 7.6 | - - |
3. | 88.0 | 12.0 | - | 7.3 | - | |
CoCeBa(0.2) | 1. 2. | 85.7 86.8 | 11.3 11.5 | 3.0 1.7 | 7.6 7.5 | 28.6 51.1 |
3. | 85.6 | 11.3 | 3.1 | 7.6 | 27.6 | |
CoCeBa(1.4) | 1. 2. | 79.4 77.9 | 9.0 9.1 | 11.7 13.0 | 8.8 8.6 | 6.8 6.0 |
3. | 69.2 | 7.8 | 23.0 | 8.9 | 3.0 | |
CoCeBa(2.2) | 1. 2. | 79.1 75.3 | 9.9 8.8 | 11.1 15.9 | 8.0 8.6 | 7.1 4.7 |
3. | 51.5 | 6.3 | 2.2 | 8.2 | 23.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarka, A.; Zybert, M.; Ronduda, H.; Patkowski, W.; Mierzwa, B.; Kępiński, L.; Raróg-Pilecka, W. On Optimal Barium Promoter Content in a Cobalt Catalyst for Ammonia Synthesis. Catalysts 2022, 12, 199. https://doi.org/10.3390/catal12020199
Tarka A, Zybert M, Ronduda H, Patkowski W, Mierzwa B, Kępiński L, Raróg-Pilecka W. On Optimal Barium Promoter Content in a Cobalt Catalyst for Ammonia Synthesis. Catalysts. 2022; 12(2):199. https://doi.org/10.3390/catal12020199
Chicago/Turabian StyleTarka, Aleksandra, Magdalena Zybert, Hubert Ronduda, Wojciech Patkowski, Bogusław Mierzwa, Leszek Kępiński, and Wioletta Raróg-Pilecka. 2022. "On Optimal Barium Promoter Content in a Cobalt Catalyst for Ammonia Synthesis" Catalysts 12, no. 2: 199. https://doi.org/10.3390/catal12020199
APA StyleTarka, A., Zybert, M., Ronduda, H., Patkowski, W., Mierzwa, B., Kępiński, L., & Raróg-Pilecka, W. (2022). On Optimal Barium Promoter Content in a Cobalt Catalyst for Ammonia Synthesis. Catalysts, 12(2), 199. https://doi.org/10.3390/catal12020199