Tuning the Catalytic Activity of Recyclable Heterogeneous Catalysts for the Direct Etherification Reaction of Glycerol Using Antagonistic Additives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Preparation of XZ-Na and XZ-K
3.3. Characterization Methods
3.4. Etherification Reaction of Glycerol
3.5. Analysis of the Etherification Reaction Mixtures
3.6. Catalyst Recycle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wilms, D.; Stiriba, S.; Frey, H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res. 2010, 43, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Calderón, M.; Quadir, M.A.; Sharma, S.K.; Haag, R. Dendritic polyglycerols for biomedical applications. Adv. Mater. 2010, 22, 190–218. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, S.; Dubé, M.A. Towards the sustainable production of higher-molecular-weight polyglycerol. Macromol. Chem. Phys. 2011, 212, 1284–1293. [Google Scholar] [CrossRef]
- Yadav, J.D.; Kulkarni, P.R.; Vaidya, K.A.; Shelke, G.T. Niosomes: A review. J. Pharm. Res. 2011, 4, 632–636. [Google Scholar]
- Magana, J.R.; Esquena, J.; Solans, C.; Rodriguez-Abrew, C. Deconstruction of technical grade diglycerol isostearate enables the controlled preparation of hexosomes and liposomes. J. Mol. Liquids 2021, 343, 117594. [Google Scholar] [CrossRef]
- Younes, G.R.; Marić, M. Bio-based thermoplastic polyhydroxyurethanes synthesized from the terpolymerization of a decarbonate and two diamines: Design, rheology, and application in melt blending. Macromolecule 2021, 54, 10189–10202. [Google Scholar] [CrossRef]
- Bowman, L.-P.; Younes, G.R.; Marić, M. Effects of poly(propylene glycol)-based triamine on the sol/gel curing and properties of hybrid non-isocyanate polyurethanes. Macromol. React. Eng. 2022, 2100055. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Ramli, I.; Taufiq-Yap, Y.H.; Muhamad, E.N. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Varma, R.S.; Len, C. Glycerol valorization under continuous flow conditions-recent advances. Curr. Opin. Green Sustain. Chem. 2019, 15, 83–90. [Google Scholar] [CrossRef]
- Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem. 2008, 10, 13–30. [Google Scholar] [CrossRef]
- Stefani, S.; Kurniasih, I.N.; Sharma, S.K.; Böttcher, C.; Servin, P.; Haag, R. Triglycerol-based hyperbranched polyesters with an amphiphilic branshed shell as novel biodegradable drug delivery systems. Polym. Chem. 2016, 7, 887–898. [Google Scholar] [CrossRef]
- Zhou, C.C.; Beltramini, J.N.; Fan, Y.; Lu, G.M. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.B.; Shen, S. One Phase Production of Polyglycerol Esters. U.S. Patent US5585506A, 17 December 1996. [Google Scholar]
- Medeiros, M.A.; Araujo, M.H.; Augusti, R.; de Oliveira, L.C.; Lago, R.M. Acid-catalyzed oligomerization of glycerol investigated by electrospray ionization mass spectrometry. J. Braz. Chem. Soc. 2009, 20, 1667–1673. [Google Scholar] [CrossRef]
- Krisnandi, Y.K.; Eckelt, R.; Schneider, M.; Martin, A.; Richter, M. Glycerol upgrading over zeolites by batch-reactor liquid-phase oligomerization: Heterogeneous versus homogeneous reaction. Chem. Sustain. Chem. 2008, 1, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Krisnandi, Y.K.; Eckelt, R.; Martin, A. Homogeneously catalyzed batch reactor glycerol etherification by CsHCO3. Catal. Commun. 2008, 9, 2112–2116. [Google Scholar] [CrossRef]
- Garti, N.; Aserin, A.; Zaidman, B. Polyglycerol esters—optimization and techno-economic evaluation. J. Am. Oil Chem. Soc. 1981, 58, 878–883. [Google Scholar] [CrossRef]
- Ayoub, M.; Khayoon, M.S.; Abdullah, A.Z. Synthesis of oxygenated fuel additives via the solventless etherification of glycerol. Bioresour. Technol. 2012, 112, 308–312. [Google Scholar] [CrossRef]
- Ayoub, M.; Inayat, A.; Hailegiorgis, S.M.; Bhat, A.H. Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2016; Volume 1133, pp. 33–37. [Google Scholar]
- Karam, A.; Sayoud, N.; Vigier, K.D.O.; Lai, J.; Liebens, A.; Oldani, C.; Jérôme, F. Heterogeneously-acid catalyzed oligomerization of glycerol over recyclable superacid Aquivion® PFSA. J. Mol. Catal. A Chem. 2016, 422, 84–88. [Google Scholar] [CrossRef]
- Barros, F.; Moreno-Tost, R.; Cecilia, J.A.; Ledesma-Muñoz, A.L.; De Oliveira, L.; Luna, F.; Vieira, R.S. Glycerol oligomers production by etherification using calcined eggshell as catalyst. Mol. Catal. 2017, 433, 282–290. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.K.; Ryu, J.; Lee, H.; Lee, J.S. Solventless catalytic etherification of glycerol using acetate salts as efficient catalysts. Bull. Korean Chem. Soc. 2018, 39, 722–725. [Google Scholar] [CrossRef]
- Barros, F.J.S.; Cecilia, J.A.; Moreno-Tost, R.; de Oliveira, M.F.; Rodríguez-Castellón, E.; Luna, F.M.T.; Vieira, R.S. Glycerol oligomerization using low cost dolomite catalyst. Waste Biomass Valorization 2020, 11, 1499–1512. [Google Scholar] [CrossRef]
- Ebadipour, N.; Paul, S.; Katryniok, B.; Dumeignil, F. Alkaline-based catalysts for glycerol polymerization reaction: A review. Catalysts 2020, 10, 1021. [Google Scholar] [CrossRef]
- Han, T.; Lee, J.S. Positive effect of antagonistic additives on the homogeneous catalytic etherification reaction of glycerol. Catalysts 2021, 11, 1000. [Google Scholar] [CrossRef]
- Gholami, Z.; Abdullah, A.Z.; Lee, K. Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renew. Sustain. Energy Rev. 2014, 39, 327–341. [Google Scholar] [CrossRef]
- Sangkhum, P.; Yanamphorn, J.; Wangriya, A.; Ngamcharussrivichai, C. Ca—Mg—Al ternary mixed oxides derived from layered double hydroxide for selective etherification of glycerol to short-chain polyglycerols. Appl. Clay Sci. 2019, 173, 79–87. [Google Scholar] [CrossRef]
- Padula, I.D.; Santos, B.M.A.; Rodrigues, A.P.H.; Gastelois, P.L.; Mendes, I.M.C.; Portilho, M.F.; Oliveira, L.C.A.; Oliveira, C.C. Niobium-modified hydrotalcite catalysts: Sustainable conversion of waste glycerol to valuable chemicals. Appl. Catal. A Gen. 2020, 606, 117814. [Google Scholar] [CrossRef]
- Aloui, M.; Cecilia, J.A.; Moreno-Tost, R.; Ghorbel, S.B.; Zina, M.S.; Rodríguez-Castellón, E. Glycerol etherification towards selective diglycerol over mixed oxides derived from hydrotalcites: Effect of Ni loading. J. Sol.-Gel Sci. Technol. 2021, 97, 351–364. [Google Scholar] [CrossRef]
- Barrault, J.; Clacens, J.; Pouilloux, Y. Selective oligomerization of glycerol over mesoporous catalysts. Top. Catal. 2004, 27, 137–142. [Google Scholar] [CrossRef]
- Cottin, K.; Clacens, J.; Pouilloux, Y.; Barrault, J. Preparation of diglycerol and triglycerol by the direct polymerization of glycerol in the presence of the new solid catalysts. Ocl-Ol. Corps Gras Lipides 1998, 5, 407–412. [Google Scholar]
- Park, S.K.; Kim, D.W.; Lee, S.Y.; Lee, J.S. Direct etherification reaction of glycerol using alkali metal cation (Li+, Na+ and K+) containing X-type zeolites as heterogeneous catalysts: Optimization of the reaction conditions. Catalysts 2021, 11, 1323. [Google Scholar] [CrossRef]
- Zafari, R.; Kharat, A.N. Evaluation of mesoporous modified ferrierite zeolite performance in production of diglycerol from glycerol. Rev. Roum. de Chim. 2018, 63, 95–101. [Google Scholar]
- Byrappa, K.; Kumar, B.V.S. Characterization of zeolites by infrared spectroscopy. Asian J. Chem. 2007, 19, 4933–4935. [Google Scholar]
- Król, M.K.; Jeleń, P. The effect of heat treatment on the structure of zeolite A. Materials 2021, 14, 4642. [Google Scholar] [CrossRef] [PubMed]
- Król, M.; Koleźyński, A.; Mozgawa, W. Vibrational spectra of zeolite Y as a function of ion exchange. Molecules 2021, 26, 342. [Google Scholar] [CrossRef] [PubMed]
- Balkus, K.J.; Ly, K.T. The preparation and characterization of an X-type zeolite: An experiment in solid-state chemistry. J. Chem. Educ. 1991, 68, 875. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
Entry | Catalyst | Amount of Catalyst (wt.%) | Temp. (°C) | Time (h) | Conv. of Glycerol (%) | Selectivity (%) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
DG | TG | Others | |||||||
1 | NaX | 4 | 260 | 9 | 68.8 | 68 (46.8) | 22 (15.1) | 10 (6.9) | [31] |
2 | Na mordenite | 4 | 260 | 9 | 38.6 | 73 (28.2) | 22 (8.5) | 5 (1.9) | [31] |
3 | NaX | 2 | 260 | 24 | 100 | 25 (25) | 26 (26) | 49 (49) | [15] |
4 | NaY | 2 | 260 | 24 | 79 | 47.5 (37.5) | 18.5 (14.6) | 34 (26.9) | [15] |
5 | NaBeta | 2 | 260 | 24 | 52.5 | 44.5 (23.4) | 7.2 (3.8) | 48.3 (25.3) | [15] |
6 | Li Ferrierite | 2 | 200 | 8 | 35 | 77 (26.9) | 16 (5.6) | 7 (2.5) | [33] |
7 | Na Ferrierite | 2 | 200 | 8 | 37 | 79 (29.2) | 12 (4.5) | 9 (3.3) | [33] |
8 | K Ferrierite | 2 | 200 | 8 | 40 | 80 (32) | 14 (5.6) | 6 (2.4) | [33] |
9 | XZ-Na | 3 | 280 | 2 | 79.4 | 64.7 (51.4) | 27.6 (21.9) | 7.7 (6.1) | [32] |
10 | XZ-Na 2 | 3 | 280 | 2 | 76.3 | 66.6 (50.8) | 26.7 (20.4) | 6.7 (5.1) | This work |
11 | XZ-Na 2 | 3 | 280 | 3 | 81.5 | 57.4 (46.8) | 24.7 (20.1) | 17.9 (14.6) | This work |
12 | XZ-K | 3 | 280 | 2 | 89.3 | 53.6 (47.9) | 24.5 (21.9) | 21.9 (19.5) | [32] |
13 | XZ-K 3 | 3 | 280 | 2 | 81.2 | 68.1 (55.3) | 21.3 (17.3) | 10.6 (8.6) | This work |
14 | XZ-K 3 | 3 | 280 | 3 | 85.4 | 63.3 (54.1) | 24.9 (21.3) | 11.7 (10.0) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.S.; Jang, E.; Kim, D.W.; Park, S.K. Tuning the Catalytic Activity of Recyclable Heterogeneous Catalysts for the Direct Etherification Reaction of Glycerol Using Antagonistic Additives. Catalysts 2022, 12, 220. https://doi.org/10.3390/catal12020220
Lee JS, Jang E, Kim DW, Park SK. Tuning the Catalytic Activity of Recyclable Heterogeneous Catalysts for the Direct Etherification Reaction of Glycerol Using Antagonistic Additives. Catalysts. 2022; 12(2):220. https://doi.org/10.3390/catal12020220
Chicago/Turabian StyleLee, Je Seung, Eunji Jang, Dae Won Kim, and Seo Kyung Park. 2022. "Tuning the Catalytic Activity of Recyclable Heterogeneous Catalysts for the Direct Etherification Reaction of Glycerol Using Antagonistic Additives" Catalysts 12, no. 2: 220. https://doi.org/10.3390/catal12020220
APA StyleLee, J. S., Jang, E., Kim, D. W., & Park, S. K. (2022). Tuning the Catalytic Activity of Recyclable Heterogeneous Catalysts for the Direct Etherification Reaction of Glycerol Using Antagonistic Additives. Catalysts, 12(2), 220. https://doi.org/10.3390/catal12020220