High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting
Abstract
:1. Introduction
2. Electrocatalysts with High OER Selectivity
2.1. Noble Metal-Based Electrocatalysts
2.2. Non-Noble Metal-Based Electrocatalysts
3. Anti-Chlorine Corrosion Electrocatalysts and Strategies
3.1. Inherent Corrosion-Resistant Electrocatalysts
3.2. Surface Treatment and Coating Strategy
3.3. In Situ Electrochemical Activation Strategy
3.4. Other Strategies
4. Conclusions and Perspectives
- (1)
- Selection of materials with high selectivity and anti-corrosion properties. Based on data for potential candidate materials provided by previous studies, the technology of artificial intelligence could be investigated as an efficient and convenient screening approach.
- (2)
- Evaluation of anti-corrosion strategies. Electrocatalytic surface modification and structure optimization are effective methods for the fabrication of anti-corrosion materials. In situ-generated anti-corrosive species can avoid the mass transfer resistance caused by the external protective layer.
- (3)
- Novel integrated electrolytic cell unit. Reasonable design of electrolytic cells may improve the overall reaction efficiency.
- (4)
- High-temperature electrolysis. SOECs could be the next-generation electrolyzers for direct seawater splitting.
- (5)
- Due to several difficulties when using seawater directly, the preliminary desalination of sea water may be another choice.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Formal, F.; Bouree, W.; Prevot, M.; Sivula, K. Challenges towards economic fuel generation from renewable electricity: The heed for efficient electro-catalysis. Chimia 2015, 69, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Fukuzumi, S.; Lee, Y.; Nam, W. Fuel Production from seawater and fuel cells using seawater. ChemSusChem 2017, 10, 4264–4276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Wan, S.; Zhao, Y.; Gu, Y.; Wang, Y.; Qin, Y.; Zhang, Z.; Ge, X.; Zhong, Q.; Bu, Y. Recent advances in bismuth-based multimetal oxide photocatalysts for hydrogen production from water splitting: Competitiveness, challenges, and future perspectives. Mater. Rep. Energy 2021, 1, 100019. [Google Scholar] [CrossRef]
- Hausmann, J.; Schlogl, R.; Driess, M.; Hausmann, J.; Schlögl, R.; Menezes, P.; Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 2021, 7, 3679–3685. [Google Scholar] [CrossRef]
- Yang, H.; Driess, M.; Menezes, P. Self-supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 2021, 11, 2102074. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, X.; Meng, X. Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 9087–9100. [Google Scholar] [CrossRef]
- Farràs, P.; Strasser, P.; Cowan, A. Water electrolysis: Direct from the sea or not to be? Joule 2021, 5, 1921–1923. [Google Scholar] [CrossRef]
- Badreldin, A.E.; Abusrafa, A.; Abdel-Wahab, A. Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting. ChemSusChem 2021, 14, 10–32. [Google Scholar] [CrossRef]
- Peng, J.; Dong, W.; Wang, Z.; Meng, Y.; Liu, Z. Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Mater. Today Adv. 2020, 8, 100081–100098. [Google Scholar] [CrossRef]
- Wang, C.; Shang, H.; Jin, L.; Xu, H.; Du, Y. Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale 2021, 13, 7897–7912. [Google Scholar] [CrossRef]
- Ke, S.; Chen, R.; Ma, X. Mini review on electrocatalyst design for seawater splitting: Recent progress and perspectives. Energy Fuels 2021, 35, 12948–12956. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, L.; Ren, Z. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498. [Google Scholar] [CrossRef]
- Bolar, S.; Shit, S.; Kuila, T. Progress in theoretical and experimental investigation on seawater electrolysis: Opportunities and challenges. Sustain. Energy Fuels 2021, 5, 5915–5945. [Google Scholar] [CrossRef]
- Khatun, S.; Hirani, H.; Roy, P. Seawater electrocatalysis: Activity and selectivity. J. Mater. Chem. A 2021, 9, 74–86. [Google Scholar] [CrossRef]
- Yu, J.; Dai, Y.; He, Q.; Zhao, D.; Shao, Z.; Ni, M. A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes. Mater. Rep. Energy 2021, 1, 100024. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Shao, Z. Cation-deficient perovskites for clean energy conversion. Acc. Mater. Res. 2021, 2, 477–488. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Chen, Y.; Yang, G.; Xu, X.; Tadé, M.O.; Shao, Z. SrCo0.9Ti0.1O3−δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance. ACS Appl. Mater. Interfaces 2015, 7, 17663–17670. [Google Scholar] [CrossRef] [PubMed]
- She, S.; Zhu, Y.; Wu, X.; Hu, Z.; Shelke, A.; Pong, W.; Chen, Y.; Song, Y.; Liang, M.; Chen, C.; et al. Realizing high and stable electrocatalytic oxygen evolution for iron-based perovskites by co-doping-induced structural and electronic modulation. Adv. Funct. Mater. 2021, 2111091. [Google Scholar] [CrossRef]
- Xu, X.; Sun, H.; Jiang, S.; Shao, Z. Modulating meta-organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.K.; et al. High-performance perovskite composite electrocatalysts enabled by controllable interface engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef]
- Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R.; Strasser, P.; Cowan, A.; Farras, P. Electrolysis of low-grade andsaline surface water. Nat. Energy 2020, 5, 367–377. [Google Scholar] [CrossRef]
- Izumiya, K.; Akiyama, E.; Habazaki, H.; Kumagai, N.; Kawashima, A.; Hashimoto, K. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater. Electrochim. Acta 1998, 43, 3303–3312. [Google Scholar] [CrossRef]
- Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 1984, 29, 1503–1512. [Google Scholar] [CrossRef]
- Hansen, H.; Man, I.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Rossmeisl, J. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys. Chem. Chem. Phys. 2010, 12, 283–290. [Google Scholar] [CrossRef]
- Exner, K.; Anton, J.; Jacob, T.; Over, H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angew. Chem. Int. Ed. Engl. 2014, 126, 11212–11215. [Google Scholar]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. MWH’s Water Treatment: Principles and Design, 3rd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Karlsson, R.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982. [Google Scholar] [CrossRef]
- Abe, H.; Murakami, A.; Tsunekawa, S.; Okada, T.; Wakabayashi, T.; Yoshida, M.; Nakayama, M. Selective catalyst for oxygen evolution in neutral brine electrolysis: An oxygen-deficient manganese oxide film. ACS Catal. 2021, 11, 6390–6397. [Google Scholar] [CrossRef]
- Amikam, G.; Natiu, P.; Gendel, Y. Chlorine-free alkaline seawater electrolysis for hydrogen production. Int. J. Hydrogen Energy 2018, 43, 6504–6514. [Google Scholar] [CrossRef]
- Vos, J.G.; Koper, M. Measurement of competition between oxygen evolution and chlorine evolution using rotating ringdisk electrode voltammetry. J. Electroanal. Chem. 2018, 819, 260–268. [Google Scholar] [CrossRef]
- Lim, T.; Jung, G.; Joo, S.; Lim, T.; Jung, G.; Kim, J.; Park, S.; Park, J.; Kim, Y.; Kang, S.; et al. Atomically dispersed Pt-N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Goryachev, A.; Pascuzzi, M.; Francesco, C.; Weber, T.; Over, H.; Hensen, E.; Hofmann, J. Electrochemical stability of RuO2(110)/Ru(0001) model electrodes in the oxygen and chlorine evolution reactions. Electrochim. Acta 2020, 336, 135713. [Google Scholar] [CrossRef]
- KO, J.; Johnson, J.; Johnson, P.; Xia, Z. Decoupling oxygen and chlorine evolution reactions in seawater using iridium-based electrocatalysts. ChemCatChem 2020, 12, 4526–4532. [Google Scholar] [CrossRef]
- Sulay, S.; Pralay, G.; Vijay, R. Facet-dependent chlorine and oxygen evolution selectivity on RuO2: An Ab initio atomistic thermodynamic study. ChemCatChem 2020, 12, 4922–4929. [Google Scholar]
- Maiyalagan, T.; Jarvis, K.; Therese, S.; Ferreira, P.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Prevot, M.; Fagan, R.; Zhang, Z.; Sedach, P.; Siu, M.; Trudel, S.; Berlinguette, C. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63. [Google Scholar] [CrossRef]
- Voa, V.; Tran, D.; Le, H.; Kim, N.; Lee, J. Hierarchically porous nickelcobalt phosphide nanoneedle arrays loaded micro-carbon spheres as an advanced electrocatalyst for overall water splitting application. Appl. Catal. B Environ. 2019, 253, 235–245. [Google Scholar]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metalbased electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2019, 31, 1806326. [Google Scholar]
- Ling, T.; Zhang, T.; Ge, B.; Han, L.; Zheng, L.; Lin, F.; Xu, Z.; Hu, W.; Du, X.; Davey, K.; et al. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 2019, 31, 1807771. [Google Scholar] [CrossRef]
- Ahn, H.; Tilley, T. Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 anode. Adv. Funct. Mater. 2013, 23, 227–233. [Google Scholar] [CrossRef]
- Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design Criteria, Operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962–972. [Google Scholar] [CrossRef]
- Cheng, F.; Feng, X.; Chen, X.; Lin, W.; Rong, J.; Yang, W. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochim. Acta 2017, 251, 336–343. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, K.; Hu, Y.; Li, Q.; Deng, Y.; Bao, J.; Lei, Y. Zr-doped CoFe-layered double hydroxides for highly efficient seawater electrolysis. J. Colloid Interface Sci. 2021, 604, 767–775. [Google Scholar] [CrossRef]
- Song, F.; Hu, X. Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484. [Google Scholar] [CrossRef]
- Vos, J.; Wezendonk, T.A.; Jeremiasse, A.; Koper, M. MnOx/IrOx as selective oxygen Evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270–10281. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Abe, H.; Murakami, A.; Shimizu, T.; Fujii, K.; Wakabayashi, T.; Nakayama, M. A bilayer structure composed of Mg|Co-MnO2 deposited on a Co(OH)2 film to realize selective oxygen evolution from chloride-containing water. Langmuir 2020, 36, 5227–5235. [Google Scholar] [CrossRef]
- Singh, R.; Pandey, J.; Anitha, K. Preparation of electrodeposited thin films of nickel-iron alloys on mild steel for alkaline water electrolysis. Part I: Studies on oxygen evolution. Int. J. Hydrogen Energy 1993, 18, 467–473. [Google Scholar] [CrossRef]
- Jayalakshmi, M.; Puspitasari, I.; Jung, K.; Joo, O. Effect of different substrates on the electrochemical behavior of Ni-Mo-Fe-Co-S composite film in alkali solutions. Int. J. Electrochem. Sci. 2008, 3, 787–796. [Google Scholar]
- Balram, A.; Zhang, H.; Santhanagopalan, S. Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests. ACS Appl. Mater. Interfaces 2017, 9, 28355–28365. [Google Scholar] [CrossRef]
- Huang, X.; Chang, S.; Lee, W.; Ding, J.; Xue, J. Three-dimensional printed cellular stainless steel as a high-activity catalytic electrode for oxygen evolution. J. Mater. Chem. A 2017, 5, 18176–18182. [Google Scholar] [CrossRef]
- Cheng, P.; Yuan, C.; Zhou, Q.; Hu, X.; Li, J.; Lin, X.; Wang, X.; Jin, M.; Shui, L.; Gao, X. Core-shell MoS2 @ CoO electrocatalyst for water splitting in neural and alkaline solutions. J. Phys. Chem. C 2019, 123, 5833–5839. [Google Scholar] [CrossRef]
- Gayen, P.; Saha, S.; Ramani, V. Selective seawater splitting using pyrochlore electrocatalyst. ACS Appl. Energy Mater. 2020, 3, 3978–3983. [Google Scholar] [CrossRef]
- Gupta, S.; Forster, M.; Yadav, A.; Cowan, A.; Patel, N.; Patel, M. Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. ACS Appl. Energy Mater. 2020, 3, 7619–7628. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wu, B.; Guo, X.; Wang, Y.; Chen, D.; Zhang, Y.; Du, K.; Oguzie, E.; Ma, X. Unmasking chloride attack on the passive film of metals. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Gong, M.; Xiao, D.; Deng, S.; Liang, J.; Zhao, T.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. Turning waste into treasure: Regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, 2000663. [Google Scholar] [CrossRef]
- Sherif, E.; Erasmus, R.; Comins, J. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions. Electrochim. Acta 2010, 55, 3657–3663. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.; Han, E. Study on the corrosion inhibition mechanism of the gas phase corrosion inhibitor of cyclohexene on thin film of zinc. Chin. J. Corros. Prot. 2003, 3, 175–178. [Google Scholar]
- Finke, C.; Omelchenko, S.; Jasper, J.; Lichterman, M.; Read, C.; Lewis, N.; Hoffmann, M. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ. Sci. 2019, 12, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Kai, S.; Sohrabnejad-Eskan, I.; Over, H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catal. 2018, 8, 1864–1879. [Google Scholar]
- Yan, Z.; Song, L.; Tang, M.; Feng, Z. Oxygen Evolution Efficiency and Chlorine Evolution Efficiency for Electrocatalytic Properties of MnO2-based Electrodes in Seawater. J. Wuhan Univ. Technol. Mater. 2019, 34, 69–74. [Google Scholar] [CrossRef]
- Dong, G.; Xie, F.; Kou, F.; Chen, T.; Wang, F.; Zhou, Y.; Wu, K.; Du, S.; Fang, M.; Ho, J. NiFe-layered double hydroxide arrays for oxygen evolution reaction in fresh water and seawater. Mater. Today Energy 2021, 22, 100883. [Google Scholar] [CrossRef]
- Song, H.; Yoon, H.; Ju, B.; Lee, D.; Kim, D. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1–xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2019, 10, 702–709. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, H.; Wang, S.; Liu, Z.; Pei, S.J.; Yang, W.; Zhao, P.; Qiu, J. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and Seawater. Adv. Energy Mater. 2019, 9, 1901333. [Google Scholar] [CrossRef]
- Hou, X.; Gao, L.; Cui, Z.; Yin, J. Corrosion and protection of metal in the seawater desalination. IOP Conf. Ser. EES 2018, 108, 022037. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.; et al. Non-noble Metal-nitride Based Electrocatalysts for High-performance Alkaline Seawater Electrolysis. Nat. Commun. 2019, 10, 5106. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, A.; Kumar, A.; Lee, J.; Yang, T.; Na, S.; Lee, J.; Luo, Y.; Liu, X.; Whang, J.; Liu, Y. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. J. Mater. Chem. A 2020, 8, 24501–24514. [Google Scholar] [CrossRef]
- Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Wang, Y.; Wilkinson, D.; Zhang, J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651. [Google Scholar] [CrossRef]
- Ding, R.; Li, W.; Wang, X.; Gui, T.; Li, B.; Han, P.; Tian, H.; Liu, A.; Wang, X.; Liu, X. A brief review of corrosion protective fifilms and coatings based on graphene and graphene oxide. J. Alloys Compd. 2018, 764, 1039–1055. [Google Scholar] [CrossRef]
- Chauhan, D.; Quraishi, M.; Ansari, K.; Saleh, T. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Prog. Org. Coat. 2020, 147, 105741. [Google Scholar] [CrossRef]
- Wang, M.; Tang, M.; Chen, S.; Ci, H.; Wang, K.; Shi, L.; Lin, L.; Ren, H.; Shan, J.; Gao, P. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery. Adv. Mater. 2017, 29, 1703882. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.; Potts, J.; Ruoff, R. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Vikas, B. Impermeability of graphene and its applications. Carbon 2013, 62, 1–10. [Google Scholar]
- Wu, Z.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang, C.; Cheng, H. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3, 411–417. [Google Scholar] [CrossRef]
- Kang, D.; Kwon, J.; Cho, H.; Sim, J.; Hwang, H.; Kim, C.; Kim, Y.; Ruoff, R.; Shin, H. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 2012, 6, 7763–7769. [Google Scholar] [CrossRef]
- Prasai, D.; Tuberquia, J.; Harl, R.; Jennings, G.; Rogers, B.; Bolotin, I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108. [Google Scholar] [CrossRef]
- Kirkland, N.; Schiller, T.; Medhekar, N.; Birbilis, N. Exploring graphene as a corrosion protection barrier. Corros. Sci. 2012, 56, 1–4. [Google Scholar] [CrossRef]
- Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.; Edgeworth, J.; Li, X.; Magnuson, C.; Velamakanni, A.; Piner, R.; et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Lo, T.; Chao, C.; Whang, W. Anti-corrosion characteristics of polyimide/h-boron nitride composite films with different polymer configurations. Surf. Coat. Technol. 2014, 260, 113–117. [Google Scholar] [CrossRef]
- Lv, Q.; Han, J.; Tan, X.; Wang, W.; Dong, B. Feather-like NiCoP Holey Nanoarrys for Efficient and Stable Seawater Splitting. ACS Appl. Energy Mater. 2019, 2, 3910–3917. [Google Scholar] [CrossRef]
- Shang, X.; Dong, B.; Chai, Y.; Liu, C. In-situ electrochemical activation designed hybrid electrocatalysts for water electrolysis. Sci. Bull. 2018, 63, 853–876. [Google Scholar] [CrossRef] [Green Version]
- Kou, Z.; Yu, Y.; Liu, X.; Gao, X.; Wang, J. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water uxidation. ACS Catal. 2020, 10, 4411–4419. [Google Scholar] [CrossRef]
- Jiang, K.; Liu, W.; Lai, W.; Wang, M.; Li, Q.; Wang, Z.; Yuan, J.; Deng, Y.; Bao, J.; Ji, H. NiFe layered double hydroxide/FeOOH heterostructure nanosheets as an efficient and durable bifunctional electrocatalyst for overall seawater splitting. Inorg. Chem. 2021, 60, 17371–17378. [Google Scholar] [CrossRef]
- Wu, H.; Lu, Q.; Zhang, J.; Wang, J.; Han, X.; Zhao, N.; Hu, W.; Li, J.; Chen, Y.; Deng, Y. Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. NanoMicro Lett. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Samo, I.; Zhang, X.; Sun, X. Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production. Research 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Dresp, S.; Thanh, T.; Klingenhof, M.; Brueckner, S.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729. [Google Scholar] [CrossRef]
- Grigoriev, S.; Millet, P.; Fateev, V. Evaluation of carbon supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J. Power Sources 2008, 177, 281–285. [Google Scholar] [CrossRef]
- Millet, P.; Ngameni, R.; Grigoriev, S.; Mbemba, N.; Brisset, F.; Ranjbari, A.; Etievant, C. PEM water electrolyzers: From electrocatalysis to stack development. Int. J. Hydrogen Energy 2010, 35, 5043–5052. [Google Scholar] [CrossRef]
- Rossi, R.; Hall, D.; Shi, L.; Cross, N.; Gorski, C.; Hickner, M.; Logan, B. Using a vapor-fed anode and saline catholyte to manage ion transport in a proton exchange membrane electrolyzer. Energy Environ. Sci. 2021, 14, 6041–6049. [Google Scholar] [CrossRef]
- Liu, Z.; Han, B.; Lu, Z.; Guan, W.; Li, Y.; Song, C.; Chen, L.; Singhal, S. Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells. Appl. Energy 2021, 300, 117439. [Google Scholar] [CrossRef]
Catalysts | Electrolyte | Overpotential η (mV) | Tafel Slope (mV dec−1) | Selectivity | Ref. |
---|---|---|---|---|---|
Ir @ AC | 0.1 M HClO4 + 3.5 wt% NaCl | 243 @ 10 mA cm−2 | 92 | 78.1% | [34] |
Ir @ AC | Synthetic seawater | 560 @ 10 mA cm−2 | / | 98.5% | [34] |
Pb2Ru2O7-x | Neutral seawater | 480 @ 10 mA cm−2 | / | 68% | [53] |
Pb2Ru2O7-x | Alkaline seawater | ~200 @ 10 mA cm−2 | / | ~99% | [53] |
Co(PO3)2 | Phosphate-buffered water | ~405 @ 10 mA cm−2 | 74.1 | 98 ± 4% | [41] |
Ni-Fe LDH | Borate buffer + NaCl | 490 ± 4 @ 10 mA cm−2 | 51 ± 3 | ~100% | [42] |
Co-Fe LDH | Simulated seawater | 530 @ 10 mA cm−2 | / | 94 ± 4% | [43] |
Co-Fe-O-B | 1 M KOH + 0.5 M NaCl | 294 @ 10 mA cm−2 | 52.6 ± 0.4 | ~100% | [54] |
MnOx/IrOx | Acidic saline water | 300 @ 5 mA cm−2 | ~43 | ~100% | [46] |
Mg/Co-MnO2/Co(OH)2 | MgCl2 solution | / | 151 | 79.1% | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Liu, Y.; Qiu, H.; Su, C.; Shao, Z. High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts 2022, 12, 261. https://doi.org/10.3390/catal12030261
Jiang S, Liu Y, Qiu H, Su C, Shao Z. High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts. 2022; 12(3):261. https://doi.org/10.3390/catal12030261
Chicago/Turabian StyleJiang, Shanshan, Yang Liu, Hao Qiu, Chao Su, and Zongping Shao. 2022. "High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting" Catalysts 12, no. 3: 261. https://doi.org/10.3390/catal12030261
APA StyleJiang, S., Liu, Y., Qiu, H., Su, C., & Shao, Z. (2022). High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts, 12(3), 261. https://doi.org/10.3390/catal12030261