The Zr Modified γ-Al2O3 Catalysts for Stable Hydrolytic Decomposition of CF4 at Low Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts as Prepared
2.2. Catalytic Performance of CF4 Decomposition
2.3. Mechanism Analysis of Hydrolytic Decomposition of CF4
3. Experimental Section
3.1. Catalyst Preparation
3.2. Catalytic Activity Test
3.3. Catalyst Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mühle, J.; Ganesan, A.L.; Miller, B.R.; Salameh, P.K.; Harth, C.M.; Greally, B.R.; Rigby, M.; Porter, L.W.; Steele, L.P.; Trudinger, C.M.; et al. Perfluorocarbons in the global atmosphere: Tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmos. Chem. Phys. 2010, 10, 5145–5164. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Hannus, I. Adsorption and transformation of halogenated hydrocarbons over zeolites. Appl. Catal. A Gen. 1999, 189, 263–276. [Google Scholar] [CrossRef]
- Pan, K.L.; Chen, Y.S.; Chang, M.B. Effective Removal of CF4 by Combining Nonthermal Plasma with γ-Al2O3. Plasma Chem. Plasma Process. 2019, 39, 877–896. [Google Scholar] [CrossRef]
- Chang, M.B.; Lee, H.M. Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment. Catal. Today 2004, 89, 109–115. [Google Scholar] [CrossRef]
- Setareh, M.; Farnia, M.; Maghari, A.; Bogaerts, A. CF4 decomposition in a low-pressure ICP: Influence of applied power and O2 content. J. Phys. D Appl. Phys. 2014, 47, 355205. [Google Scholar] [CrossRef]
- Takita, Y.; Ninomiya, M.; Miyake, H.; Wakamatsu, H.; Yoshinaga, Y.; Ishihara, T. Catalytic decomposition of perfluorocarbons Part II. Decomposition of CF4 over AlPO4-rare earth phosphate catalysts. Phys. Chem. Chem. Phys. 1999, 1, 4501–4504. [Google Scholar] [CrossRef]
- Xu, X.-F.; Jeon, J.Y.; Choi, M.H.; Kim, H.Y.; Choi, W.C.; Park, Y.-K. A Strategy to Protect Al2O3-based PFC Decomposition Catalyst from Deactivation. Chem. Lett. 2005, 34, 364–365. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Xu, X.-F.; Choi, M.H.; Kim, H.Y.; Park, Y.-K. Hydrolytic decomposition of PFCs over AlPO4–Al2O3catalyst. Chem. Commun. 2003, 2003, 1244–1245. [Google Scholar] [CrossRef]
- El-Bahy, Z.M.; Ohnishi, R.; Ichikawa, M. Hydrolysis of CF4 over alumina-based binary metal oxide catalysts. Appl. Catal. B Environ. 2003, 40, 81–91. [Google Scholar] [CrossRef]
- Rosenberg, D.J.; Coloma, F.; Anderson, J.A. Modification of the Acid Properties of Silica–Zirconia Aerogels by in situ and ex situ Sulfation. J. Catal. 2002, 210, 218–228. [Google Scholar] [CrossRef]
- Reddy, B.M.; Sreekanth, P.M.; Yamada, Y.; Kobayashi, T. Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3–ZrO2 solid acid catalysts. J. Mol. Catal. A Chem. 2005, 227, 81–89. [Google Scholar] [CrossRef]
- Luo, Y.-J.; Zhou, Y.-H.; Huang, Y.-B. A New Lewis Acidic Zr Catalyst for the Synthesis of Furanic Diesel Precursor from Biomass Derived Furfural and 2-Methylfuran. Catal. Lett. 2019, 149, 292–302. [Google Scholar] [CrossRef]
- Takita, Y.; Morita, C.; Ninomiya, M.; Wakamatsu, H.; Nishiguchi, H.; Ishihara, T. Catalytic Decomposition of CF4 over AlPO4-Based Catalysts. Chem. Lett. 1999, 28, 417–418. [Google Scholar] [CrossRef]
- Xu, X.-F.; Jeon, J.Y.; Choi, M.H.; Kim, H.Y.; Choi, W.C.; Park, Y.-K. The modification and stability of γ-Al2O3 based catalysts for hydrolytic decomposition of CF4. J. Mol. Catal. A Chem. 2007, 266, 131–138. [Google Scholar] [CrossRef]
- Medeiros, R.L.; Figueredo, G.P.; Macedo, H.P.; Oliveira, Â.A.; Rabelo-Neto, R.C.; Melo, D.M.; Braga, R.M.; Melo, M.A. One-pot microwave-assisted combustion synthesis of Ni-Al2O3 nanocatalysts for hydrogen production via dry reforming of methane. Fuel 2021, 287, 119511. [Google Scholar] [CrossRef]
- Romano, P.N.; Filho, J.F.S.D.C.; de Almeida, J.M.A.R.; Sousa-Aguiar, E.F. Screening of mono and bimetallic catalysts for the dry reforming of methane. Catal. Today 2021. [Google Scholar] [CrossRef]
- Jomard, G.; Petit, T.; Pasturel, A.; Magaud, L. First-principles calculations to describe zirconia pseudopolymorphs. MRS Online Proc. Libr. 1997, 492, 79–84. [Google Scholar] [CrossRef]
- Janampelli, S.; Darbha, S. Highly efficient Pt-MoOx/ZrO2 catalyst for green diesel production. Catal. Commun. 2019, 125, 70–76. [Google Scholar] [CrossRef]
- Li, L.; Huo, M.; Zhang, Y.; Li, J. Synthesis of nickel catalysts supported on Zr-doped ordered mesoporous Al2O3 and their catalytic performance for low-temperature CO2 reforming of CH4. J. Porous Mater. 2017, 24, 1613–1625. [Google Scholar] [CrossRef]
- Patel, S.; Pant, K.K. Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol. J. Porous Mater. 2006, 13, 373–378. [Google Scholar] [CrossRef]
- Song, J.-Y.; Chung, S.-H.; Kim, M.-S.; Seo, M.-G.; Lee, Y.-H.; Lee, K.-Y.; Kim, J.-S. The catalytic decomposition of CF4 over Ce/Al2O3 modified by a cerium sulfate precursor. J. Mol. Catal. A Chem. 2013, 370, 50–55. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl. Catal. B Environ. 2014, 156–157, 428–437. [Google Scholar] [CrossRef]
- Xia, Y.; Hua, W.; Gao, Z. A new catalyst for n-butane isomerization: Persulfate-modified Al2O3–ZrO2. Appl. Catal. A Gen. 1999, 185, 293–300. [Google Scholar] [CrossRef]
- García-Sancho, C.; Jimenez-Gomez, C.P.; Viar-Antunano, N.; Cecilia, J.A.; Moreno-Tost, R.; Merida-Robles, J.M.; Requires, J.; Maireles-Torres, P. Evaluation of the ZrO2/Al2O3 system as catalysts in the catalytic transfer hydrogenation of furfural to obtain furfuryl alcohol. Appl. Catal. A Gen. 2021, 609, 117905. [Google Scholar] [CrossRef]
- Jing-Long, H.; Shiue, A.; Yu-Yun, S.; Den-Wei, H.; Chang-Tang, C. Catalytic decomposition of CF4 over copper promoted mesoporous catalysts. Sustain. Environ. Res. 2013, 23, 307–314. [Google Scholar]
- Chen, C.-K.; Shiue, A.; Huang, D.-W.; Chang, C.-T. Catalytic Decomposition of CF4 Over Iron Promoted Mesoporous Catalysts. J. Nanosci. Nanotechnol. 2014, 14, 3202–3208. [Google Scholar] [CrossRef]
- Xu, X.; Niu, X.; Fan, J.; Wang, Y.; Feng, M. CF4 decomposition without water over a solid ternary mixture consisting of NaF, silicon and one metal oxide. J. Nat. Gas Chem. 2011, 20, 543–546. [Google Scholar] [CrossRef]
- Takita, Y.; Tanabe, T.; Ito, M.; Ogura, M.; Muraya, T.; Yasuda, S.; Nishiguchi, H.; Ishihara, T. Decomposition of CH2FCF3 (134a) over Metal Phosphate Catalysts. Ind. Eng. Chem. Res. 2002, 41, 2585–2590. [Google Scholar] [CrossRef]
- Swamidoss, C.M.A.; Sheraz, M.; Anus, A.; Jeong, S.; Park, Y.-K.; Kim, Y.-M.; Kim, S. Effect of Mg/Al2O3 and Calcination Temperature on the Catalytic Decomposition of HFC-134a. Catalysts 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Takita, Y.; Moriyama, J.-I.; Nishiguchi, H.; Ishihara, T.; Hayano, F.; Nakajo, T. Decomposition of CCl2F2 over metal sulfate catalysts. Catal. Today 2004, 88, 103–109. [Google Scholar] [CrossRef]
- Armelao, L.; Eisenmenger-Sittner, C.; Groenewolt, M.; Gross, S.; Sada, C.; Schubert, U.; Tondello, E.; Zattin, A. Zirconium and hafnium oxoclusters as molecular building blocks for highly dispersed ZrO2 or HfO2 nanoparticles in silica thin films. J. Mater. Chem. 2005, 15, 1838–1848. [Google Scholar] [CrossRef]
- García-Sancho, C.; Moreno-Tost, R.; Mérida-Robles, J.; Santamaría-González, J.; Jiménez-López, A.; Maireles-Torres, P. Zirconium doped mesoporous silica catalysts for dehydration of glycerol to high added-value products. Appl. Catal. A Gen. 2012, 433–434, 179–187. [Google Scholar] [CrossRef]
- Salas, P.; Wang, J.; Armendariz, H.; Angeles-Chavez, C.; Chen, L. Effect of the Si/Zr molar ratio on the synthesis of Zr-based mesoporous molecular sieves. Mater. Chem. Phys. 2009, 114, 139–144. [Google Scholar] [CrossRef]
- Limcharoen, A.; Pakpum, C.; Limsuwan, P. An X-ray Photoelectron Spectroscopy Investigation of Redeposition from Fluorine-based Plasma Etch on Magnetic Recording Slider Head Substrate. Proc. Eng. 2012, 32, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Park, B.J.; Kang, S.K.; Kong, B.H.; Cho, H.K.; Yeom, G.Y.; Heo, S.; Hwang, H. Characteristics of Al2O3 gate dielectrics partially fluorinated by a low energy fluorine beam. Appl. Phys. Lett. 2008, 93, 191506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Park, J.Y.; Huang, W.; Somorjai, G.A. Influence of reaction with XeF2 on surface adhesion of Al and Al2O3 surfaces. Appl. Phys. Lett. 2008, 93, 141905. [Google Scholar] [CrossRef]
Catalyst | Al (wt.%) | O (wt.%) | Zr (wt.%) |
---|---|---|---|
γ-Al2O3 | 26.6 | 74.4 | / |
(9%) Zr/γ-Al2O3 | 39.4 | 50.4 | 9.0 |
(16%) Zr/γ-Al2O3 | 30.1 | 53.0 | 16.1 |
(35%) Zr/γ-Al2O3 | 13.5 | 50.2 | 35.3 |
Samples | BET Surface Area (m2 g−1) | Pore Diameter (nm) | Amount of Acid Site (μmol g−1)/ Amount of Acid Site per Surface Unit (μmol g−1 m−2) | |||
---|---|---|---|---|---|---|
Weak | Moderate | Strong | Total | |||
γ-Al2O3 | 119 | 3.5 | 235/1.97 | 176/1.48 | 416/3.50 | 827/6.95 |
(9%) Zr/γ-Al2O3 | 126 | 3.7 | 261/2.07 | 191/1.52 | 716/5.62 | 1168/9.27 |
(16%) Zr/γ-Al2O3 | 132 | 4.1 | 432/3.27 | 246/1.86 | 1168/8.85 | 1846/13.98 |
(35%) Zr/γ-Al2O3 | 89 | 2.8 | 254/2.85 | 206/2.31 | 467/5.25 | 927/10.42 |
Catalysts | Temperature(°C) | Initial CF4 Conversion | Stability | Ref |
---|---|---|---|---|
16%Zr/Al2O3 | 650 | 85% | 78% after 60 h | This work |
γ-Al2O3 | 750 | 100% | 65% after 20 h | [15] |
2%Mg/Al2O3 | 750 | 100% | 60% after 30 h | [15] |
10%Ce/AlPO4 | 700 | 73% | 55% after 40 h | [7] |
20%Ce/Al2O3 | 650 | 55% | 45% after 50 h | [22] |
5%Cu-MCM-41 | 850 | 70% | / | [26] |
5%Fe-MCM-41 | 800 | 81% | / | [27] |
NaF-Si-Al2O3 | 850 | 80% | 20% after 1 h | [28] |
NaF-Si-MgO | 850 | 100% | 40% after 2 h | [28] |
Catalyst | Fluorine (Weight %) |
---|---|
γ-Al2O3 | 27.1 |
(9%) Zr/γ-Al2O3 | 23.6 |
(16%) Zr/γ-Al2O3 | 11.2 |
(35%) Zr/γ-Al2O3 | 24.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Xiang, K.; Shen, F.; Liu, H. The Zr Modified γ-Al2O3 Catalysts for Stable Hydrolytic Decomposition of CF4 at Low Temperature. Catalysts 2022, 12, 313. https://doi.org/10.3390/catal12030313
Zheng X, Xiang K, Shen F, Liu H. The Zr Modified γ-Al2O3 Catalysts for Stable Hydrolytic Decomposition of CF4 at Low Temperature. Catalysts. 2022; 12(3):313. https://doi.org/10.3390/catal12030313
Chicago/Turabian StyleZheng, Xie, Kaisong Xiang, Fenghua Shen, and Hui Liu. 2022. "The Zr Modified γ-Al2O3 Catalysts for Stable Hydrolytic Decomposition of CF4 at Low Temperature" Catalysts 12, no. 3: 313. https://doi.org/10.3390/catal12030313
APA StyleZheng, X., Xiang, K., Shen, F., & Liu, H. (2022). The Zr Modified γ-Al2O3 Catalysts for Stable Hydrolytic Decomposition of CF4 at Low Temperature. Catalysts, 12(3), 313. https://doi.org/10.3390/catal12030313