Photocatalytic Efficacy of Heterocyclic Base Grafted Chitosan Magnetite Nanoparticles on Sorption of Pb(II); Application on Mining Effluent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sorbent Characterization
2.1.1. Textural Properties—BET, TEM, XRD, and SEM-EDX
2.1.2. TGA Analysis
2.1.3. FTIR Spectroscopy
2.1.4. Elemental Analysis
2.1.5. pHPZC
2.2. Sorption Properties
2.2.1. Effect of pH on the Sorption Properties
2.2.2. Uptake Kinetics
2.2.3. Sorption Isotherms
2.2.4. Metal Desorption and Sorbent Recycling
2.2.5. Tests on a Complex Multi-Metal Sample
2.3. Treatment of Nature Effluent
3. Materials and Methods
3.1. Materials
3.2. Preparation Sorbents
3.2.1. Preparation of Magnetite Nanoparticles
3.2.2. Preparation of Magnetite Chitosan Nanoparticles
3.2.3. Synthesis of the Activated Spacer Arm
3.2.4. Grafting of Amine Thiol Derivative
3.3. Sorbent Characterization
3.4. Sorption Tests
3.5. Recovery of Pb from Raffinate Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaseen, D.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Fouda, A.; Hassan, S.E.-D.; Abdel-Rahman, M.A.; Farag, M.M.S.; Shehal-deen, A.; Mohamed, A.A.; Alsharif, S.M.; Saied, E.; Moghanim, S.A.; Azab, M.S. Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles. Curr. Res. Biotechnol. 2021, 3, 29–41. [Google Scholar] [CrossRef]
- Mashaal, N.; Akagi, T.; Ishibashi, J. Hydrochemical and isotopic study of groundwater in Wadi El-Natrun, Western Desert, Egypt: Implication for salinization processes. J. Afr. Earth Sci. 2020, 172, 104011. [Google Scholar] [CrossRef]
- Saied, E.; Eid, A.M.; Hassan, S.E.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, H.A.; Saied, E.M.; Fouda, A. The Catalytic Activity of Biosynthesized Magnesium Oxide Nanoparticles (MgO-NPs) for Inhibiting the Growth of Pathogenic Microbes, Tanning Effluent Treatment, and Chromium Ion Removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Azab, M.S. An eco-friendly approach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (Kw). J. Environ. Chem. Eng. 2021, 9, 104693. [Google Scholar] [CrossRef]
- Sana, Y.; Hina, R. Irrigation of Zea mays with UASB-treated textile wastewater; effect on early irrigation of Zea mays with UASB-treated textile wastewater; effect on early growth and physiology. Environ. Sci. Pollut. Res. Int. 2020, 27, 15305–15324. [Google Scholar]
- Daud, M.; Rizvi, H.; Akram, M.F.; Ali, S.; Rizwan, M.; Nafees, M.; Jin, Z.S. Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. J. Chem. 2018, 2018, 1596319. [Google Scholar] [CrossRef] [Green Version]
- Salem, S.S.; Mohamed, A.; El-Gamal, M.; Talat, M.; Fouda, A. Biological decolorization and degradation of azo dyes from textile wastewater effluent by Aspergillus niger. Egypt. J. Chem. 2019, 62, 1799–1813. [Google Scholar]
- Kong, L.J.; Zhang, H.M.; Ji, W.; Shih, K.M.; Su, M.H.; Diao, Z.H.; Xu, R.M.; Hou, L.A.; Song, G.; Chen, D.Y. Recovery of phosphorus rich krill shell biowaste for uranium immobilization: A study of sorption behavior, surface reaction, and phase transformation. Environ. Pollut. 2018, 243, 630–636. [Google Scholar] [CrossRef]
- Guilhen, S.N.; Rovani, S.; Araujo, L.G.d.; Tenório, J.A.S.; Mašek, O. Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation. Environ. Pollut. 2021, 272, 116022. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef] [PubMed]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of heavy metal ions by sodium alginate based adsorbent—A review and new perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef] [PubMed]
- Sutirman, Z.A.; Sanagi, M.M.; Aini, W.I.W. Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review. Int. J. Biol. Macromol. 2021, 174, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zou, H.; Wang, Y.; Liu, Z.; Le, Z.; Huang, G.; Luo, T.; Adesina, A.A. Immobilization of in situ generated Fe-0-nanoparticles in tripolyphosphate-crosslinking chitosan membranes for enhancing U(VI) adsorption. J. Radioanal. Nucl. Chem. 2017, 311, 779–787. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Z.; Zheng, L.; Zhou, L.; Chai, Z.; Wang, X.; Shi, W. Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem. Eng. J. 2017, 328, 1066–1074. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, L.; Le, Z.; Wang, Y.; Liu, Z.; Huang, G.; Adesina, A.A. Preparation of porous chitosan/carboxylated carbon nanotube composite aerogels for the efficient removal of uranium(VI) from aqueous solution. Int. J. Biol. Macromol. 2020, 160, 1000–1008. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Benettayeb, A.; Wang, X.; Guibal, E. Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J. Mater. Sci. 2020, 55, 4193–4212. [Google Scholar] [CrossRef]
- Hamza, M.F.; Gamal, A.; Hussein, G.; Nagar, M.S.; Abdel-Rahman, A.A.H.; Wei, Y.; Guibal, E. Uranium(VI) and zirconium(IV) sorption on magnetic chitosan derivatives—Effect of different functional groups on separation properties. J. Chem. Technol. Biotechnol. 2019, 94, 3866–3882. [Google Scholar] [CrossRef]
- Selim, M.T.; Salem, S.S.; Mohamed, A.A.; El-Gamal, M.S.; Awad, M.F.; Fouda, A. Biological treatment of real textile effluent using Aspergillus flavus and Fusarium oxysporium and their consortium along with the evaluation of their phytotoxicity. J. Fungi 2021, 7, 193. [Google Scholar] [CrossRef]
- Eid, A.M.; Fouda, A.; Niedbała, G.; Hassan, S.E.-D.; Salem, S.S.; Abdo, A.M.; Hetta, H.F.; Shaheen, T.I. Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics 2020, 9, 641. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Fouda, A.; Abdel-Rahman, M.A.; Hassan, S.E.-D.; El-Gamal, M.S.; Salem, S.S.; Shaheen, T.I. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal. Agric. Biotechnol. 2019, 19, 101103. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Abdel-Rahman, M.A.; EL-Belely, E.F.; Awad, M.A.; Hassan, S.E.-D.; AL-Faifi, Z.E.; Hamza, M.F. Enhanced Antimicrobial, Cytotoxicity, Larvicidal, and Repellence Activities of Brown Algae, Cystoseira crinita-Mediated Green Synthesis of Magnesium Oxide Nanoparticles. Front. Bioeng. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Hamza, M.F. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 105346. [Google Scholar] [CrossRef]
- Soliman, A.M.; Abdel-Latif, W.; Shehata, I.H.; Fouda, A.; Abdo, A.M.; Ahmed, Y.M. Green Approach to Overcome the Resistance Pattern of Candida spp. Using Biosynthesized Silver Nanoparticles Fabricated by Penicillium chrysogenum F9. Biol. Trace Elem. Res. 2021, 199, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Eid, A.M.; Barghoth, M.G.; El-Sadany, M.A.-H. Monitoring the effect of biosynthesized nanoparticles against biodeterioration of cellulose-based materials by Aspergillus niger. Cellulose 2019, 26, 6583–6597. [Google Scholar] [CrossRef]
- Hamza, M.F.; Abdel-Rahman, A.A.H.; Guibal, E. Magnetic glutamine-grafted polymer for the sorption of U(VI), Nd(III) and Dy(III). J. Chem. Technol. Biotechnol. 2018, 93, 1790–1806. [Google Scholar] [CrossRef]
- Hamza, M.F.; Ahmed, F.Y.; El-Aassy, I.; Fouda, A.; Guibal, E. Groundwater purification in a polymetallic mining area (SW Sinai, Egypt) using functionalized magnetic chitosan particles. Water Air Soil Pollut. 2018, 229, 360. [Google Scholar] [CrossRef]
- Alsharif, S.M.; Salem, S.S.; Abdel-Rahman, M.A.; Fouda, A.; Eid, A.M.; Hassan, S.E.-D.; Awad, M.A.; Mohamed, A.A. Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 2020, 6, e03943. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.; Abdelfattah, N.A.H.; Salem, S.S.; Awad, M.F.; Fouda, A. Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat (Triticum aestivum L.) Plant. Biology 2021, 10, 233. [Google Scholar] [CrossRef]
- Lashin, I.; Fouda, A.; Gobouri, A.A.; Azab, E.; Mohammedsaleh, Z.M.; Makharita, R.R. Antimicrobial and In Vitro Cytotoxic Efficacy of Biogenic Silver Nanoparticles (Ag-NPs) Fabricated by Callus Extract of Solanum incanum L. Biomolecules 2021, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Kabay, N.; Solak, O.; Arda, M.; Topal, U.; Yuksel, M.; Trochimczuk, A.; Streat, M. Packed column study of the sorption of hexavalent chromium by novel solvent impregnated resins containing aliquat 336: Effect of chloride and sulfate ions. React. Funct. Polym. 2005, 64, 75–82. [Google Scholar] [CrossRef]
- El-Hussaini, O.M.; Lasheen, T.A.; Helmy, E.M.; Hady, M.A.; Manaa, A.-S.A. Liquid-liiquid extraction/recovery of chromium(VI) from some industrial waste solutions using Alamine 336 in kerosene. J. Dispers. Sci. Technol. 2012, 33, 1179–1187. [Google Scholar] [CrossRef]
- Morales, D.V.; Kusku, O.; Rivas, B.L.; Arda, M.; Kabay, N.; Bryjak, M. Removal of Cr(VI) by stabilized solvent impregnated resin (SIR) prepared by using a hydrophilic polymer adsorbent and Aliquat 336. J. Chil. Chem. Soc. 2019, 64, 4432–4436. [Google Scholar] [CrossRef] [Green Version]
- Hamza, M.F.; El-Aassy, I.E.; Guibal, E. Integrated treatment of tailing material for the selective recovery of uranium, rare earth elements and heavy metals. Miner. Eng. 2019, 133, 138–148. [Google Scholar] [CrossRef]
- Hamza, M.F.; Roux, J.-C.; Guibal, E. Metal valorization from the waste produced in the manufacturing of Co/Mo catalysts: Leaching and selective precipitation. J. Mater. Cycles Waste Manag. 2019, 21, 525–538. [Google Scholar] [CrossRef]
- Hamza, M.F. Grafting of quaternary ammonium groups for uranium (VI) recovery: Application on natural acidic leaching liquor. J. Radioanal. Nucl. Chem. 2019, 322, 519–532. [Google Scholar] [CrossRef]
- Yao, F.; Jia, M.; Yang, Q.; Luo, K.; Chen, F.; Zhong, Y.; He, L.; Pi, Z.; Hou, K.; Wang, D.; et al. Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III). Chemosphere 2020, 260, 127537. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Mira, H.; Adel, A.-H.; Guibal, E. Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery. Chem. Eng. J. 2019, 362, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Javadian, H.; Ruiz, M.; Saleh, T.A.; Sastre, A.M. Ca-alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 magnetic bionanocomposite: Synthesis, characterization and application for single adsorption of Nd+3, Tb+3, and Dy+3 rare earth elements from aqueous media. J. Mol. Liq. 2020, 306, 112760. [Google Scholar] [CrossRef]
- Javadian, H.; Ruiz, M.; Taghavi, M.; Sastre, A.M. Synthesis of magnetic CMC bionanocomposite containing a novel biodegradable nanoporous polyamide selectively synthesized in ionic liquid as green media: Investigation on Nd+3, Tb+3, and Dy+3 rare earth elements adsorption. J. Mol. Liq. 2020, 308, 113017. [Google Scholar] [CrossRef]
- Stopa, L.C.B.; Yamaura, M. Uranium removal by chitosan impregnated with magnetite nanoparticles: Adsorption and desorption. Int. J. Nucl. Energy Sci. Technol. 2010, 5, 283–289. [Google Scholar] [CrossRef]
- Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater. Sci. Eng. C 2010, 30, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.A.; de Souza Rodrigues, E.C.; de Amorim, A.S.C.M.; Soares, J.M.; Galembeck, F. Size selected synthesis of magnetite nanoparticles in chitosan matrix. Appl. Surf. Sci. 2013, 275, 71–74. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Al-Bogami, A.S.; Elgarahy, A.M. Efficient retention of chromate from industrial wastewater onto a green magnetic polymer based on shrimp peels. J. Polym. Environ. 2018, 26, 2018–2029. [Google Scholar] [CrossRef]
- Freire, T.M.; Fechine, L.M.U.D.; Queiroz, D.C.; Freire, R.M.; Denardin, J.C.; Ricardo, N.M.P.S.; Rodrigues, T.N.B.; Gondim, D.R.; Junior, I.J.S.; Fechine, P.B.A. Magnetic porous controlled Fe3O4-chitosan nanostructure: An ecofriendly adsorbent for efficient removal of azo dyes. Nanomaterials 2020, 10, 1194. [Google Scholar] [CrossRef] [PubMed]
- Valverde Duran, S.; Lapo, B.; Meneses, M.; Maria Sastre, A. Recovery of neodymium (III) from aqueous phase by chitosan-manganese-ferrite magnetic beads. Nanomaterials 2020, 10, 1204. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, S.M.; Sathiya, S.M.; Manivannan, G.; Rajan, M.A.J. A comparative study on the biopolymer functionalized iron oxide nanocomposite for antimicrobial activity. Mater. Today-Proc. 2016, 3, 3866–3871. [Google Scholar] [CrossRef]
- Hamza, M.F.; Fouda, A.; Wei, Y.; El Aassy, I.E.; Alotaibi, S.H.; Guibal, E.; Mashaal, N.M. Functionalized biobased composite for metal decontamination–Insight on uranium and application to water samples collected from wells in mining areas (Sinai, Egypt). Chem. Eng. J. 2022, 431, 133967. [Google Scholar] [CrossRef]
- Hamza, M.F.; Fouda, A.; Elwakeel, K.Z.; Wei, Y.; Guibal, E.; Hamad, N.A. Phosphorylation of guar gum/magnetite/chitosan nanocomposites for uranium (VI) sorption and antibacterial applications. Molecules 2021, 26, 1920. [Google Scholar] [CrossRef]
- Fouda, A.; Salem, S.S.; Wassel, A.R.; Hamza, M.F.; Shaheen, T.I. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 2020, 6, e04896. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Sastre, A.; Guibal, E. Pd and Pt recovery using chitosan gel beads. I. influence of the drying process on diffusion properties. Sep. Sci. Technol. 2002, 37, 2143–2166. [Google Scholar] [CrossRef]
- Djelad, A.; Morsli, A.; Robitzer, M.; Bengueddach, A.; di Renzo, F.; Quignard, F. Sorption of Cu(II) ions on chitosan-zeolite X composites: Impact of gelling and drying conditions. Molecules 2016, 21, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohuriaan, M.J.; Shokrolahi, F. Thermal studies on natural and modified gums. Polym. Test. 2004, 23, 575–579. [Google Scholar] [CrossRef]
- Gad, Y.H. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat. Phys. Chem. 2008, 77, 1101–1107. [Google Scholar] [CrossRef]
- Duarte, M.L.; Ferreira, M.C.; Marvao, M.R.; Rocha, J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef]
- Hamza, M.F.; Abdel-Rahman, A.A.-H. Extraction studies of some hazardous metal ions using magnetic peptide resins. J. Dispers. Sci. Technol. 2015, 36, 411–422. [Google Scholar] [CrossRef]
- Hamza, M.F.; Hamad, N.A.; Hamad, D.M.; Khalafalla, M.S.; Abdel-Rahman, A.A.-H.; Zeid, I.F.; Wei, Y.; Hessien, M.M.; Fouda, A.; Salem, W.M. Synthesis of Eco-Friendly Biopolymer, Alginate-Chitosan Composite to Adsorb the Heavy Metals, Cd(II) and Pb(II) from Contaminated Effluents. Materials 2021, 14, 2189. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.F.; Salih, K.A.; Adel, A.-H.; Zayed, Y.E.; Wei, Y.; Liang, J.; Guibal, E. Sulfonic-functionalized algal/PEI beads for scandium, cerium and holmium sorption from aqueous solutions (synthetic and industrial samples). Chem. Eng. J. 2021, 403, 126399. [Google Scholar] [CrossRef]
- Corazzari, I.; Nistico, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Wei, Y.; Salih, K.A.; Lu, S.; Hamza, M.F.; Fujita, T.; Vincent, T.; Guibal, E. Amidoxime functionalization of algal/polyethyleneimine beads for the sorption of Sr (II) from aqueous solutions. Molecules 2019, 24, 3893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Salih, K.A.; Hamza, M.F.; Fujita, T.; Rodríguez-Castellón, E.; Guibal, E. Synthesis of a New Phosphonate-Based Sorbent and Characterization of Its Interactions with Lanthanum (III) and Terbium (III). Polymers 2021, 13, 1513. [Google Scholar] [CrossRef] [PubMed]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2006; pp. 1–23. [Google Scholar]
- Imran, M.; Sajwan, M.; Alsuwayt, B.; Asif, M. Synthesis, characterization and anticoagulant activity of chitosan derivatives. Saudi Pharm. J. 2020, 28, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Yang, M.; Guo, Z.; Cui, Z. Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J. Membr. Sci. 2009, 337, 318–323. [Google Scholar] [CrossRef]
- Caetano, C.S.; Caiado, M.; Farinha, J.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Esterification of free fatty acids over chitosan with sulfonic acid groups. Chem. Eng. J. 2013, 230, 567–572. [Google Scholar] [CrossRef]
- Hamza, M.F.; Roux, J.-C.; Guibal, E. Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem. Eng. J. 2018, 344, 124–137. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Persson, I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010, 82, 1901–1917. [Google Scholar] [CrossRef]
- Yang, Y.J.; Alexandratos, S.D. Affinity of polymer-supported reagents for lanthanides as a function of donor atom polarizability. Ind. Eng. Chem. Res. 2009, 48, 6173–6187. [Google Scholar] [CrossRef]
- Pearson, R.G. Acids and bases. Science 1966, 151, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Ion Properties; Marcel Dekker, Inc.: New York, NY, USA, 1997; p. 259. [Google Scholar]
- Giraldo, J.D.; Rivas, B.L.; Elgueta, E.; Mancisidor, A. Metal ion sorption by chitosan-tripolyphosphate beads. J. Appl. Polym. Sci. 2017, 134, 45511. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, X.; Yao, X.; Ji, H. Thiourea modified hyper-crosslinked polystyrene resin for heavy metal ions removal from aqueous solutions. J. Appl. Polym. Sci. 2018, 135, 45568. [Google Scholar] [CrossRef]
- Gomez-Serrano, V.; Macias-Garcia, A.; Espinosa-Mansilla, A.; Valenzuela-Calahorro, C. Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Res. 1998, 32, 1–4. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Tuzun, I.; Celik, G.; Yilmaz, M.; Arica, M.Y. Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int. J. Miner. Process. 2006, 81, 35–43. [Google Scholar] [CrossRef]
- Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman, C.U., Jr. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem. Eng. J. 2014, 236, 513–528. [Google Scholar] [CrossRef]
- Ahmed, S.A. Removal of lead and sodium ions from aqueous media using natural wastes for desalination and water purification. Desalin. Water Treat. 2016, 57, 8911–8926. [Google Scholar] [CrossRef]
- Bao, S.Y.; Li, K.; Ning, P.; Peng, J.H.; Jin, X.; Tang, L.H. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms. Appl. Surf. Sci. 2017, 393, 457–466. [Google Scholar] [CrossRef]
- Deniz, S.; Tasci, N.; Yetimoglu, E.K.; Kahraman, M.V. New thiamine functionalized silica microparticles as a sorbent for the removal of lead, mercury and cadmium ions from aqueous media. J. Serb. Chem. Soc. 2017, 82, 215–226. [Google Scholar] [CrossRef]
- Tofan, L.; Paduraru, C.; Cretescu, I.; Ceica, A.; Neagu, V. Chelating sorbent containing two types of functional groups—Hydroxamic acid and amidoxime for lead(II) ions effluent management. Environ. Eng. Manag. J. 2010, 9, 113–118. [Google Scholar]
- Othman, M.K.; Al-Qadri, F.A.; Al-Yusufy, F.A. Synthesis, physical studies and uptake behavior of: Copper(II) and lead(II) by Schiff base chelating resins. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2011, 78, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Abo-Farha, S.A.; Abdel-Aal, A.Y.; Ashour, I.A.; Garamon, S.E. Removal of some heavy metal cations by synthetic resin purolite C100. J. Hazard. Mater. 2009, 169, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Khalil, T.E.; El-Dissouky, A.; Rizk, S. Equilibrium and kinetic studies on Pb2+, Cd2+, Cu2+ and Ni2+ adsorption from aqueous solution by resin 2,2′-(ethylenedithio)diethanol immobilized Amberlite XAD-16 (EDTDE-AXAD-16) with chlorosulphonic acid. J. Mol. Liq. 2016, 219, 533–546. [Google Scholar] [CrossRef]
- Arar, O. Removal of lead(II) from water by di(2-ethylhexyl) phosphate containing ion exchange resin. Desalin. Water Treat. 2014, 52, 3197–3205. [Google Scholar] [CrossRef]
- Hayeeye, F.; Yu, Q.J.; Sattar, M.; Chinpa, W.; Sirichote, O. Adsorption of Pb2+ ions from aqueous solutions by gelatin/activated carbon composite bead form. Adsorpt. Sci. Technol. 2018, 36, 355–371. [Google Scholar] [CrossRef]
- Bhatt, R.R.; Shah, B.A. Sorption studies of heavy metal ions by salicylic acid-formaldehyde-catechol terpolymeric resin: Isotherm, kinetic and thermodynamics. Arab. J. Chem. 2015, 8, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, Y.; Huang, J.; Yuan, S. Azido chelating fiber: Synthesis, characterization and adsorption performances towards Hg2+ and Pb2+ from water. Polym. Adv. Technol. 2017, 28, 1418–1427. [Google Scholar] [CrossRef]
- Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1249. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- Davies, W.; Gray, W. A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 1964, 11, 1203–1211. [Google Scholar] [CrossRef]
- Mathew, K.J.; Buerger, S.; Vogt, S.; Mason, P.; Morales-Arteaga, M.E.; Narayanan, U.I. Uranium assay determination using Davies and Gray titration: An overview and implementation of GUM for uncertainty evaluation. J. Radioanal. Nucl. Chem. 2009, 282, 939–944. [Google Scholar] [CrossRef]
- Marczenko, Z.; Balcerzak, M. Chapter 39—Rare-earth elements. In Analytical Spectroscopy Library; Elsevier: Amsterdam, The Netherlands, 2000; Volume 10, pp. 341–349. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975; p. 414. [Google Scholar]
- Tien, C. Adsorption Calculations and Modeling; Butterworth-Heinemann: Newton, MA, USA, 1994; p. 243. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Lima, É.C.; Dehghani, M.H.; Guleria, A.; Sher, F.; Karri, R.R.; Dotto, G.L.; Tran, H.N. CHAPTER 3—Adsorption: Fundamental aspects and applications of adsorption for effluent treatment. In Green Technologies for the Defluoridation of Water; Hadi Dehghani, M., Karri, R., Lima, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 41–88. [Google Scholar]
- Buema, G.; Lupu, N.; Chiriac, H.; Ciobanu, G.; Bucur, R.D.; Bucur, D.; Favier, L.; Harja, M. Performance assessment of five adsorbents based on fly ash for removal of cadmium ions. J. Mol. Liq. 2021, 333, 115932. [Google Scholar] [CrossRef]
- Falyouna, O.; Eljamal, O.; Maamoun, I.; Tahara, A.; Sugihara, Y. Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system. J. Colloid Interface Sci. 2020, 571, 66–79. [Google Scholar] [CrossRef]
Assignment | MCc | MCa-ATA | Loaded | Elution 5 Cycles | Ref. |
---|---|---|---|---|---|
O-H overlapped with N-H str. | 3427 | 3447, 3197 | 33,425 | 3412, 3185 | [56,57,58] |
C-H str. | 2917, 2850 | 2921, 2853 | 2914, 2857 | 2919, 2849 | [59] |
C=O str. | 1638 | 1620 | 1621 | 1610 | [57,60,61] |
N-H bend. | 1513 | 1511 | [62] | ||
CH3 symm. def., C-N str. | 1383 | 1387, 1301 | 1385 | [57,60,63] | |
C-O-C asymm. str., C-O str, and C-N str. | 1117 | 1219, 1129 | 1297 | [56,61,64] | |
CO str. | 1000 | 1027 | 1014 | [56] | |
Skeletal C-O str. | 1019 | [56,57] | |||
C-O- epoxy | 886 | 887 | [60] | ||
C-O-S str. | 720 | [64] | |||
-(CH2)n rocking and O-H out of plane bend., and/or C-S | 572 | 633 (broad) | 587 (broad) | 616 | [63,65,66,67] |
Sorbent | MCc L | MCc UV | MCa-ATA: L | MCa-ATA UV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Parameter | Run No | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Exp. | qeq.exp. | 0.1269 | 0.1214 | 0.361 | 0.3721 | 0.3408 | 0.3398 | 0.5291 | 0.5311 | |
PFORE | qeq.1 | 0.1302 | 0.129 | 0.367 | 0.381 | 0.3129 | 0.4897 | 0.4809 | 0.3375 | |
k1 × 102 | 2.219 | 2.302 | 4.097 | 3.797 | 2.779 | 1.205 | 1.702 | 2.026 | ||
R2 | 0.9574 | 0.9968 | 0.9564 | 0.9947 | 0.9564 | 0.9574 | 0.8968 | 0.99475 | ||
AIC | −83.652 | −80.405 | −64.784 | −62.387 | −30.950 | −37.349 | −48.693 | −28.257 | ||
PSORE | qeq.2 | 0.1546 | 0.178 | 0.399 | 0.399 | 0.447 | 0.407 | 0.4832 | 0.4928 | |
k2 × 103 | 6.443 | 7.629 | 7.945 | 8.079 | 5.887 | 5.443 | 5.485 | 5.494 | ||
R2 | 0.5023 | 0.9182 | 0.2209 | 0.1924 | 0. 7795 | 0.6964 | 0.6971 | 0.6173 | ||
AIC | −39.448 | −24.3602 | −45.2836 | −42.4199 | −29.365 | −31.938 | −27.783 | −30.678 | ||
RIDE | De × 1013 | 1.3175 | 1.857 | 2.491 | 4.464 | 3.2285 | 3.2948 | 4.6449 | 5.1606 | |
R2 | 0.94642 | 0.93974 | 0.73732 | 0.7598 | 0.9785 | 0.9194 | 0.91527 | 0.9281 | ||
AIC | −79.673 | −72.689 | −50.259 | −55.569 | −44.959 | −40.8023 | −50.545 | −51.195 |
Model | Sorbent | MCc L | MCc UV | MCa-ATA L | MCa-ATA UV | ||||
---|---|---|---|---|---|---|---|---|---|
Parameter | |||||||||
qm,exp. | 0.2401 | 0.2625 | 0.3378 | 0.3554 | 0.771 | 0.7919 | 0.9754 | 0.9864 | |
Langmuir | qm,L | 0.319 | 0.2986 | 0.3649 | 0.3758 | 0.7513 | 0.8069 | 1.009 | 1.019 |
bL | 0.9942 | 0.9264 | 0.8629 | 0.9095 | 2.705 | 2.764 | 3.219 | 3.302 | |
R2 | 0.7665 | 0.8015 | 0.7947 | 0.8057 | 0.9732 | 0.9182 | 0.9263 | 0.9901 | |
AIC | −35.706 | −32.232 | −30.166 | −29.037 | −47.537 | −49.302 | −53.389 | −53.776 | |
Freundlich | kF | 0.1634 | 0.1664 | 0.2456 | 0.2534 | 0.66854 | 0.5532 | 0.7743 | 0.8463 |
nF | 2.567 | 2.157 | 2.0397 | 2.1046 | 2.82796 | 2.767 | 3.68857 | 3.5486 | |
R2 | 0.7930 | 0.7300 | 0.73624 | 0.7785 | 0.86862 | 0.87226 | 0.79592 | 0.78675 | |
AIC | −19.216 | −20.447 | −17.019 | −16.639 | −28.480 | −30.686 | −34.405 | −33.826 | |
Sips | qm,S | 0.2466 | 0.2857 | 0.3462 | 0.3753 | 0.7565 | 0.7994 | 1.0083 | 1.0143 |
bS | 0.43275 | 0.45867 | 0.68472 | 0.66221 | 0.98672 | 0.95732 | 1.8958 | 1.8674 | |
nS | 1.2543 | 1.367 | 1.28732 | 1.2275 | 1.6549 | 1.6372 | 1.8675 | 1.9785 | |
R2 | 0.95746 | 0.92613 | 0.94752 | 0.95038 | 0.99854 | 0.99832 | 0.99898 | 0.99783 | |
AIC | −61.282 | −60.998 | −56.495 | −55.978 | −68.969 | −70.056 | −58.948 | −56.406 |
Sorbent | pH | teq (min) | qm (mmol g−1) | Reference |
---|---|---|---|---|
Sulphurized carbon activated | 5.4 | - | ≈0.3 | [75] |
Chlamydomonas-reinhardtii/alginate | 6.0 | 90 | 1.84 | [76] |
Magnetic biochar (oak bark) | 5.0 | 60 | 0.146 | [77] |
Sugarcane-bagasse | 5.0 | 60 | 0.0054 | [78] |
Beet-pulp | 5.0 | 60 | 00090 | [78] |
Silica coated magnetic-nanosorbent functionalized with mercaptoamine | 6–7 | 120 | 1.41 | [79] |
Thiamine/silica | 5.0 | 120 | 0.19 | [80] |
Hydroxamic-acid/amidoxime bi-functional acrylic acid sorbent | - | - | 0.94 | [81] |
Schiff-base sorbent | 10 | 120 | 0.50 | [82] |
Purolite-C100 sorbent | 5-6 | 1440 | 0.046 | [83] |
Modified Amberlite/XAD-16 sorbent | - | 60 | 0.519 | [84] |
Di (2-ethylhexyl) phosphate sorbent | 4 | 80 | 0.172 | [85] |
Gelatin activated carbon | 5 | 60 | 1.79 | [86] |
Thiourea hyper-crosslinked with polystyrene resin | 6.0 | 3.33 | [74] | |
Salicylic acid-formaldehyde-catechol sorbent | 6.0 | 240 | 0.931 | [87] |
Tripolyphosphate-chitosan | 5.0 | 1080 | 1.21 | [73] |
Azido-fiber | 6.0 | 1440 | 1.50 | [88] |
HA-MG-CH | 5.0 | 60 | 2.51 | [39] |
CHI-L | 5.0 | 35 | 0.2513 | This work |
CHI-UV | 5.0 | 30 | 0.3466 | This work |
CHI-ATA-L | 5.0 | 20 | 0.7814 | This work |
CHI-ATA-UV | 5.0 | 15 | 1.014 | This work |
MCc | MCa-ATA | |||
---|---|---|---|---|
SORPTION | DESORPTION | SORPTION | DESORPTION | |
Cycles | q mg g−1 | Des % | q mg g−1 | Des % |
1 | 35.0260 | 100.00 | 110.646 | 100.00 |
2 | 34.156 | 99.99 | 109.589 | 100.00 |
3 | 33.125 | 99.98 | 109.391 | 99.98 |
4 | 32.099 | 99.961 | 108.383 | 99.94 |
5 | 31.466 | 99.82 | 107.089 | 99.89 |
Loss% | 10.164% | 0.18% | 3.215 | 0.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, M.F.; Goda, A.E.-S.; Ning, S.; Mira, H.I.; Abdel-Rahman, A.A.-H.; Wei, Y.; Fujita, T.; Amer, H.H.; Alotaibi, S.H.; Fouda, A. Photocatalytic Efficacy of Heterocyclic Base Grafted Chitosan Magnetite Nanoparticles on Sorption of Pb(II); Application on Mining Effluent. Catalysts 2022, 12, 330. https://doi.org/10.3390/catal12030330
Hamza MF, Goda AE-S, Ning S, Mira HI, Abdel-Rahman AA-H, Wei Y, Fujita T, Amer HH, Alotaibi SH, Fouda A. Photocatalytic Efficacy of Heterocyclic Base Grafted Chitosan Magnetite Nanoparticles on Sorption of Pb(II); Application on Mining Effluent. Catalysts. 2022; 12(3):330. https://doi.org/10.3390/catal12030330
Chicago/Turabian StyleHamza, Mohammed F., Adel E.-S. Goda, Shunyan Ning, Hamed I. Mira, Adel A.-H. Abdel-Rahman, Yuezhou Wei, Toyohisa Fujita, Hamada H. Amer, Saad H. Alotaibi, and Amr Fouda. 2022. "Photocatalytic Efficacy of Heterocyclic Base Grafted Chitosan Magnetite Nanoparticles on Sorption of Pb(II); Application on Mining Effluent" Catalysts 12, no. 3: 330. https://doi.org/10.3390/catal12030330
APA StyleHamza, M. F., Goda, A. E. -S., Ning, S., Mira, H. I., Abdel-Rahman, A. A. -H., Wei, Y., Fujita, T., Amer, H. H., Alotaibi, S. H., & Fouda, A. (2022). Photocatalytic Efficacy of Heterocyclic Base Grafted Chitosan Magnetite Nanoparticles on Sorption of Pb(II); Application on Mining Effluent. Catalysts, 12(3), 330. https://doi.org/10.3390/catal12030330