
����������
�������

Citation: Aldureid, A.; Medina, F.;

Patience, G.S.; Montané, D.

Ni-Cu/Al2O3 from Layered Double

Hydroxides Hydrogenates Furfural

to Alcohols. Catalysts 2022, 12, 390.

https://doi.org/10.3390/

catal12040390

Academic Editors: Hoang Chinh

Nguyen, Hwai Chyuan Ong and

Chia-Hung Su

Received: 10 March 2022

Accepted: 29 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Ni-Cu/Al2O3 from Layered Double Hydroxides Hydrogenates
Furfural to Alcohols
Abdulaziz Aldureid 1,* , Francisco Medina 1 , Gregory S. Patience 2 and Daniel Montané 1

1 Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26,
43007 Tarragona, Spain; francesc.medina@urv.cat (F.M.); daniel.montane@urv.cat (D.M.)

2 Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. “CV”, Montréal, QC H3C 3A7, Canada;
gregory-s.patience@polymtl.ca

* Correspondence: abdulaziz.aldureid@urv.cat

Abstract: The hydrogenation of furfural is an important process in the synthesis of bio-based chemi-
cals. Copper-based catalysts favor the hydrogenation of furfural to alcohols. Catalytic activity and
stability were higher at a Ni-to-Cu atomic ratio of 1:1 and 1.5:0.5 compared to 0.5:1.5. Here, we
prepared Ni-Cu/Al2O3 hydrogenation catalysts derived from layered double hydroxides (LDHs).
Catalysts calcined at 673 K and reduced at 773 K with nominal Ni/Cu atomic ratios y/x = 1.5/0.5, 1/1
and 0.5/1.5 were characterized by XRD, FESEM-EDX, H2-TPR, XPS, FAA and BET. Their activity was
tested at 463 K and in a 0.05 g g−1 furfural solution in ethanol, and the space velocity in a packed-bed
reactor (PBR) was 2.85 gFF gcat

−1 h−1. In a slurry reactor (SSR) at 5 MPa H2 and a contact time of
4 h, conversion was complete, while it varied from 91 to 99% in the PBR. Tetrahydrofurfuryl alcohol
(TFA) was the main product in the SSR, with a selectivity of 32%, 63% and 56% for Ni0.5Cu1.5Al1,
Ni1Cu1Al1 and Ni1.5Cu0.5Al1, respectively. The main product in the atmospheric PBR was furfuryl
alcohol (FA), with a selectivity of 57% (Ni0.5Cu1.5Al1), 61% (Ni1Cu1Al1) and 58% (Ni1.5Cu0.5Al1).
Other products included furan, methylfuran, 1-butanol and 1,2-pentanediol. Ethyl tetrahydrofurfuryl
ether and difurfuryl ether were also formed via the nucleophilic addition of furfural with ethanol
and furfuryl alcohol.

Keywords: furfural hydrogenation; furfuryl alcohol; tetrahydrofurfuryl alcohol; 1,2-pentanediol;
layered double hydroxides (LDHs)

1. Introduction

Furfural (FF) is one of the top value-added chemicals derived from biomass [1]. It is
a versatile molecule that is produced in lignocellulosic biorefineries from biomass rich in
xylan and other five-carbon polysaccharides [2,3]. The activity of the aldehyde group and
the furan ring facilitates the conversion of furfural into several valuable products. The first
can be reduced to alcohol, decarbonylated, oxidized to carboxylic acid, reduced to ammines
and acetylated, and it results in aldol and Knoevenagel condensations and Grignard
reactions. The furan ring can be transformed by halogenation, alkylation, oxidation,
nitration, hydrogenation and ring-opening hydrogenolysis, which may involve the C−O−C
bond or C=C double bonds [4]. Hydrogenation produces several valuable chemicals,
but furfuryl alcohol (FA) and tetrahydrofurfuryl alcohol (TFA) are the most common [5].
They find application as solvents and in the production of resins, fragrances, polyesters,
agrochemicals, biofuels and fuel additives [3,5–9]. Ring-opening hydrogenolysis of FF
produces 1,2-pentanediol (12PD) and 1,5-pentanediol (15PD), which are monomers of
polyesters, polyurethanes and polyamides and can be used as solvents and fuel additives [4].
The reduction of FF to FA with in situ rearrangement yields cyclopentanone (CPO), which
is a specialty chemical used in the synthesis of pharmaceuticals, fungicides, flavors and
fragrances, and polyamides [3].
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Furfural adsorption to the catalyst surface determines the hydrogenation and hy-
drogenolysis pathway. Copper surfaces adsorb FF molecules via the oxygen atom of the
aldehyde group (η1-(O)-aldehyde mode) [10,11]. This directs the reaction towards the
formation of FA by the hydrogenation of the aldehyde group [4]. Nickel surfaces tend to
adsorb furfural via the η2-(C,O)-aldehyde mode, where FF attaches to the surface via the
carbon and oxygen atoms of the aldehyde group, leaving the furan ring parallel to the
metal surface [10,12–15]. This type of adsorption is stronger than the η1-(O)-aldehyde due
to the additional interaction between nickel and the π bonds in FF [15–17]. It promotes
saturation of the furan ring and reduction of the aldehyde group, which mainly leads
to TFA, but it may also favor ring-opening reactions. Temperature shifts the adsorption
mode on nickel from η2-(C,O)-aldehyde to η1-(C)-acyl. The latter promotes the decarbony-
lation of furfural to furan (FUR) [4]. In general, the strength of the interaction of furfural
with the surfaces of Ni, Pd, Pt and Cu follows the order of Ni > Pd > Pt � Cu [18,19].
Therefore, copper catalysts tend to be less active than those based on other metals. Metal
promoters such as Fe, Zn, Mg or Co improve the activity of copper-based catalysts and
modifies their selectivity to other products besides FA. Regardless of the metal, the high
dispersion and strong interaction of the metal particles with the support matrix enhance
the activity of the catalyst and influence its selectivity [4]. Layered double hydroxides
(LDHs), obtained by co-precipitation of salts of active metals at controlled pH, are versatile
materials that, upon calcination and reduction, yield catalysts with high metal dispersion
and strong interaction with the support, which makes them active and resistant to sintering.
FF hydrogenation has been reported with the use of several catalysts based on LDHs. A
CuMgAl catalyst converted 84% of furfural with a 71% selectivity to pentanediols (46%
12PD and 25% 15PD) [20]. A spinel-based CoAlO catalyst facilitated the complete conver-
sion of FF and selectivities to 15PD and TFA of 30 and 62%, respectively [21], whereas a
Cu-ZnO/Al2O3 catalyst was highly selective to FOL in the gas-phase hydrogenation of
FF [22]. A CuNi/MgAlO catalyst prepared from a hydrotalcite precursor yielded FOL
with an 89% selectivity and 93% conversion [23]. Copper-based bimetallic catalysts pro-
duced cyclopentanol (CuZnAl [24] and CuMgAl [25]) and cyclopentanone (CuZnAl [26]
and CuNiAl [27]). 5-Hydroxymethylfurfural (HMF), a furan analog of FF derived from
six-carbon monosaccharides, led to complete conversion and a selectivity of 64% to 1,2,6-
hexanetriol on NiCoAl mixed oxide catalysts [28]. Modifying the calcination conditions
of NiAl resulted in a catalyst tailored to selectively convert HMF into 2,5-dimethylfuran
(DMF), 2,5-dimethyltetrahydrofuran (DMTHF) or 2,5-dihydroxymethyltetrahydrofuran
(DHMTHF) [29]. In this work, we synthesized NixCuyAl1 catalysts from layered double
hydroxides with Ni/Cu atomic ratios y/x of 1.5/0.5, 1/1 and 0.5/1.5. The catalysts were
tested for furfural hydrogenation in the vapor phase at atmospheric pressure and in the
liquid phase at 5.0 MPa of hydrogen. The influence of the Ni/Cu ratio and the type of
reactor on product selectivity is assessed, and the pathways leading to the formation of the
major products are discussed.

2. Results and Discussion
2.1. Catalyst Characterization

The adsorption isotherms corresponded to mesoporous materials with type IV(a)
isotherms and H3 hysteresis loops according to the IUPAC classification (Figure 1) [30,31].
The pore size tended to decrease when the Ni/Cu atomic ratio increased (Figure 2). The
average pore diameter increased from 7.0 nm in Ni1.5Cu0.5Al1 to 7.4 nm in Ni0.5Cu1.5Al1
(Table 1). Accordingly, the surface area and pore volume increased as the average pore
size decreased. The BET surface area increased from 127 m2 g−1 in Ni0.5Cu1.5Al1 to
201 m2 g−1 in Ni1.5Cu0.5Al1. SEM imaging of the calcined LDHs confirmed that the surface
morphologies of the three samples were similar (Figure S1), although Ni1.5Cu0.5Al1 had a
slightly denser structure consisting of smaller particles.
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Diameter (nm) 

Ni1.5Cu0.5Al1 201 0.53 7.0 
Ni1Cu1Al1 162 0.52 7.3 

Ni0.5Cu1.5Al1 127 0.48 7.4 

The Ni/Al and Cu/Al atomic ratios of the calcined LDHs measured by FAA were 
close to the nominal values (Table 2), proving the suitability of the synthesis procedure. 
FESEM-EDX imaging showed a gradual change in composition among the three materials 
(Figure S2). The atomic ratios determined by this technique were higher than those meas-
ured by FAA, especially in Ni1.5Cu0.5Al1. High-resolution XPS also revealed values above 
the nominal ones, although the Ni/Cu ratios were close to those determined by FAA. The 
higher Ni/Al and Cu/Al atomic ratios measured by XPS and FESEM-EDX were attributed 
to the formation of Cu and Ni oxides dispersed on top of aluminum oxides [32]. The ox-
ides were identified by XPS (Figure 3) based on the binding energies of Ni 2p3, Cu 2p3 
and Al 2p (Table 3). 

  

Figure 1. N2 physisorption isotherms of LDH precursors calcined at 673 K for 4 h. Black line is the
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Figure 2. Pore volume (left) and surface (right) distributions of LDHs calcined at 673 K for 4 h,
determined with the DFT model.

Table 1. Composition and textural properties of the calcined catalyst precursors.

Calcined
Material

BET Surface Area
(m2 g−1)

Pore Volume
(mL g−1)

Average Pore
Diameter (nm)

Ni1.5Cu0.5Al1 201 0.53 7.0
Ni1Cu1Al1 162 0.52 7.3

Ni0.5Cu1.5Al1 127 0.48 7.4

The Ni/Al and Cu/Al atomic ratios of the calcined LDHs measured by FAA were
close to the nominal values (Table 2), proving the suitability of the synthesis procedure.
FESEM-EDX imaging showed a gradual change in composition among the three materials
(Figure S2). The atomic ratios determined by this technique were higher than those mea-
sured by FAA, especially in Ni1.5Cu0.5Al1. High-resolution XPS also revealed values above
the nominal ones, although the Ni/Cu ratios were close to those determined by FAA. The
higher Ni/Al and Cu/Al atomic ratios measured by XPS and FESEM-EDX were attributed
to the formation of Cu and Ni oxides dispersed on top of aluminum oxides [32]. The oxides
were identified by XPS (Figure 3) based on the binding energies of Ni 2p3, Cu 2p3 and Al
2p (Table 3).
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Table 2. Metal atomic ratios in materials calcined at 673 K for 4 h, measured by FAA, FESEM-EDX
and XPS.

FAA FESEM-EDX XPS

Calcined
Material

Ni/Al
(mol/mol)

Cu/Al
(mol/mol)

Ni/Al
(mol/mol)

Cu/Al
(mol/mol)

Ni/Al
(mol/mol)

Cu/Al
(mol/mol)

Ni1.5Cu0.5Al1 1.43 0.53 1.86 0.64 1.60 0.66
Ni1Cu1Al1 0.98 1.04 0.90 0.91 1.19 1.27

Ni0.5Cu1.5Al1 0.49 1.47 0.47 1.48 0.67 1.57
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lines correspond to the measured spectra and the red lines are the fit.

Table 3. XPS analysis of LDHs calcined at 673 K for 4 h: binding energies of the metal oxides.

Binding Energy (eV)

Calcined
Material

Ni 2p
(NiO)

Ni 2p SU1
(NiO)

Ni 2p SU2
(NiO)

Cu 2p
(Cu2O)

Cu 2p
(CuO)

Cu 2p SU1
(CuO)

Cu 2p SU2
(CuO)

Al 2p
(Al2O3)

Ni1.5Cu0.5Al1 856.0; 854.4 861.1 865.8 932.9 934.6 940.8 943.4 73.4
Ni1Cu1Al1 856.3; 854.6 861.1 865.8 932.7 934.4 940.7 943.3 73.4

Ni0.5Cu1.5Al1 856.6; 854.9 861.3 866.0 933.1 934.6 940.8 943.3 73.7
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Nickel formed NiO. Although the binding energy at which Ni 2p was observed was
higher than that expected for NiO and closer to that expected for Ni(OH)2 [33], the shape
of the shake-up (SU) satellite peak was consistent with NiO [34]. The multiple splitting
expected for NiO was not observed. This could be because the samples were in the form of
powder, which tends to broaden the peaks and reduce energy resolution. Furthermore, the
ratio of oxygen to nickel found was not consistent with nickel being predominantly in the
form of Ni(OH)2. Copper formed CuO and Cu2O. An asymmetry and slight shoulder on
the low binding energy side of the Cu 2p3 and Cu 2p1 peaks indicated the presence of Cu2O.
The shape and size of the SU satellite peak were consistent with CuO [34]. Nevertheless,
only a weak SU was expected for Cu2O. The binding energy of the Cu 2p components of
CuO and Cu2O was slightly higher than expected [33,34]. As for nickel, the presence of a
large amount of Cu(OH)2 was ruled out because the ratio of oxygen to copper content was
not large enough. The same argument applies to CuAl2O4. The binding energy of Cu 2p
in this compound should be around 934.5 eV [35], consistent with the largest component
observed here, but the oxygen-to-copper ratio was too low. Oxygen O 1s components were
assigned to NiO [33,36], CuO and Cu2O (internal reference) and Al2O3 [34] based on the
binding energy and intensity to yield the proper metal/oxygen ratios. The fitted Al 2p
curve had a high level of uncertainty, as it overlapped with Ni 3p and Cu 3p. In the three
materials, a single component of Al 2p was found at binding energies of 73.4 eV and 73.7 eV,
which is consistent with the presence of Al2O3. The presence of CuAl2O4 could not be
confirmed because the binding energy of Al 2p in this compound, ca. 74 eV [35], was not
significantly different from that of Al2O3 when considering the overlap with Cu 3p.

XRD of the calcined LDHs (Figure 4) revealed three broad peaks at ca. 37◦, 44◦ and
63◦, which are consistent with CuO, Cu2O and NiO. Overlapping of the signals of the three
oxides could be caused by the smaller crystallite sizes and large dispersion of the oxides
derived from LDH precursors [37,38]. Notably, the signals attributable to NiO were more
intense in Ni1.5Cu0.5Al1, whereas those of CuO were dominant in Ni0.5Cu1.5Al1.
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The reducibility of the calcined materials was studied by temperature-programmed
reduction under 10% hydrogen in argon (H2-TPR) from 375 to 1075 K (Figure 5). Two
well-differentiated peaks of hydrogen consumption were observed. The peak at the lowest
temperature corresponded to the reduction of highly dispersed particles of copper oxides
to metal Cu [39,40], while the much broader peak at the highest temperature was attributed
to the reduction of nickel oxide, as it strongly interacts with aluminum oxides [41–44]. The
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Ni/Cu ratio influenced the temperature of each peak and its specific hydrogen consumption
(Table 4). The hydrogen intake in the first peak rose with the content of copper in the sample,
from 367 mL g−1 of H2 (STP) in Ni1.5Cu0.5Al1 to 113 mL g−1 of H2 (STP) in Ni0.5Cu1.5Al1.
The consumption of the second peak showed the opposite trend, and it decreased from
85 mL g−1 of H2 (STP) in Ni1.5Cu0.5Al1 to 19 mL g−1 of H2 (STP) in Ni0.5Cu1.5Al1. However,
Ni1Cu1Al1 had the highest total consumption and the lowest temperature of nickel oxide
reduction. This suggests that the nickel oxides had a slightly weaker interaction with the
alumina matrix in this material, thus resulting in better reducibility.
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Table 4. Specific hydrogen consumptions during TPR of calcined LDH samples.

Peak 1 Peak 2 Total

Calcined
Material

T
(K)

H2
(mL g−1 STP)

T
(K)

H2
(mL g−1 STP)

H2
(mL g−1 STP)

Ni1.5Cu0.5Al1 474 37 738 85 121
Ni1Cu1Al1 484 84 714 70 155

Ni0.5Cu1.5Al1 525 113 757 19 132

Nickel and copper metals were present in the three catalysts after reduction at 773 K
(Figure 4b), and CuO and Cu2O declined. The three catalysts produced the signal of metal
Cu at 50.4◦, and its intensity grew with the content of copper. The main Cu signal at 43.3◦

overlapped with that of NiO at the same angle, but the presence of NiO was confirmed by
its secondary band at 37.2◦. Concerning Ni, its main signal was observed at 44.5◦, especially
in Ni1.5Cu0.5Al1-R, although it overlapped with the signals of NiO and Cu at 43.3◦. Overall,
the crystalline phases detected after reduction at 773 K agreed with the TPR. Most copper
was reduced to its metal form, whereas nickel was only partially reduced, and a significant
fraction remained as NiO.

2.2. Catalytic Activity Tests

The activity of the catalysts was tested in the gas phase on a continuous packed-bed
reactor at atmospheric pressure (PBR) and in the liquid phase on a high-pressure stirred
slurry reactor (SSR). All catalysts facilitated the complete conversion of furfural (FF) during
the tests performed in the SSR at 5.0 MPa of H2. The Ni/Cu metal ratio of the catalyst
significantly influenced the distribution of products (Figure 6 and Table S1).
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Tetrahydrofurfuryl alcohol (TFA) was the main product obtained on Ni1Cu1Al1-R,
with a selectivity of 63%, together with furfuryl alcohol (FA 9.2%), furan (FUR 5.3%), 2-
methylfuran (mFUR 4.3%), 2-methyltetrahydrofuran (mTHF 2.4%) and 1,2-pentanediol
(12PD 3.4%). In addition, two products that could not be formed by direct hydrogena-
tion/hydrogenolysis of furfural were present: ethyl tetrahydrofurfuryl ether (TFEE 5.2%)
and difurfuryl ether (DFE 3.0%). Shifting to a higher copper content (Ni0.5Cu1.5Al1-R)
reduced the formation of TFA to 32% and enhanced the selectivity to FA (22%), FUR (14%),
mFUR (12%), 12PD (4.3%) and mTHF (3.3%). However, on Ni1.5Cu0.5Al1-R, the selectivity
to TFA declined (56%), while that of FA increased (24%), and the formation of FUR, mFUR,
12PD and mTHF was lower than that on Ni1Cu1Al1-R. Trace amounts of 1-butanol (1BU)
and 1,5-pentaneanediol (15PD) and significant amounts of TFEE and DFE were always
formed with the Ni/Cu atomic ratio, shifting selectivity towards more TFEE and less DFE.
Three competing pathways were involved in the conversion of FF in the SSR (Scheme 1).
The first route started with the hydrogenation of the carbonyl group of FF to form FA,
followed by the hydrogenation of the alcohol group in FA to form mFUR (which can be
further hydrogenated to mTHF) or the direct hydrogenation of the double bonds (π bonds)
in FA to form TFA. The second route was the decarbonylation of FF to FUR, which was
followed by the hydrogenation of the π bonds in the furan ring of FUR to produce THF or
by the ring-opening hydrogenolysis of FUR to form 1BU. TFEE and DFE evolved through
the formation of acetals on acidic sites of the catalyst surface by the reversible nucleophilic
addition of FF with ethanol or FA and were subsequently converted to TFA and mTHF
by hydrogenolysis. Although the intermediate species involved in this pathway, such as
ethoxy(furan-2-yl) methanol (EFM), 2-furaldehyde diethyl acetal (FDA) or 2-furaldehyde
ethyl furfuryl acetal (FEFA), were not detected in significant amounts, there is ample evi-
dence of this route. For instance, the formation of FDA from FF and ethanol on a Pd/C
catalyst under mild hydrogenation conditions was identified as the key intermediate step
in the production of furfuryl ethyl ether and tetrahydrofurfuryl ethyl ether [45]. In addition,
2-(diisopropoxymethyl)furan—the analog of FDA resulting from acetylation of FF with
2-propanol—was formed during the hydrogenation of FF on CuFeAl catalysts [46] and
the catalytic transfer hydrogenation of FF with 2-propanol on NiO [47], NiO-Al2O3 and
ZnAl2O4-Al2O3 [48] and Pd-exchanged β-zeolite catalysts [49].
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Furfural hydrogenation was studied in the PBR with a time-on-stream of 4 h. The
activity of the catalysts was stable (Figure S1), and after 4 h, conversion in the PBR was 91%,
98% and 99% for Ni0.5Cu1.5Al1-R, Ni1Cu1Al1-R and Ni1.5Cu0.5Al1-R, respectively. On the
Ni1Cu1Al1-R catalyst, FA was the main product, with a selectivity of 61%, followed by FUR
(11%) and lower amounts of TFA (2.3%), THF (2.1%), mFUR (1.5%), 1BU (1.6%) and mTHF
(0.5%). In addition, selectivity to DFE was 2.2%, but TFEE was not formed. Pentanediols
were not detected among the reaction products, but trace amounts of 1PE together with
cyclopentanone (CP) and cyclopentanol (CPO) were produced by the rearrangement of FA.
When the Ni/Cu ratio was lower (Ni0.5Cu1.5Al1-R), the selectivity of FA decreased to 57%,
and that of mFUR rose to 6.9%. The other products were not affected substantially, except
for TFEE, which was formed on this catalyst. On the other hand, when the Ni/Cu ratio
was increased (Ni1.5Cu0.5Al1-R), selectivity to FA decreased to 57%, but then 1BU (11%)
was the main secondary product. FUR was lower (7.4%), and TFEE was not formed. The
selectivity to DFE was lower than in the SSR, and it tended to decrease with the Ni/Cu
atomic ratio in the catalyst. Overall, nickel favored the paths leading to FUR and 1BU,
whereas Cu favored the hydrogenation of the alcohol group in FA to mFUR and did not
promote the ring-opening hydrogenolysis of FUR or mFUR to linear alcohols. The three
catalysts presented little activity on the hydrogenation of the π bonds of the furan ring, at
least in the short contact time of these experiments, which explains the low yields of TFA,
THF and mTHF.

Hydrogen availability was different between the two reactor systems, and this could
influence selectivity. The effective hydrogen-to-furfural molar ratio in the liquid phase of
the SSR was low because of the low solubility of hydrogen in ethanol, even with a high
operation pressure and optimized stirring to avoid mass transfer limitations. An estimation
of the equilibrium composition of the liquid and gas phases at the beginning of the reaction
in the SSR was obtained with ASPEN Plus using the Peng–Robinson equation of state.
The model was first validated by comparing equilibrium calculations of ethanol–hydrogen
mixtures at saturation at high pressure and temperature with published data [50]. The
equilibrium molar concentrations of hydrogen, furfural and ethanol in the liquid at 5.0 MPa
and 463 K were 0.190, 0.419 and 11.3 mol L−1, respectively. This means that in the SSR,
the initial molar ratio between hydrogen and furfural in the bulk of the liquid was ca.
0.45 molH2/molFF at most. In the initial stages of the reaction, FF was converted to FA,
which, given the extended contact time (4 h in these experiments), was subsequently
transformed to TFA, FUR and several hydrogenolysis products, including 1,2-pentanediol.
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The low availability of hydrogen and the huge excess of ethanol enabled the nucleophilic
addition between FF and ethanol/FA, which led to TFEE and DFE.

Given the feed flowrates of FF solution and hydrogen used in the PBR, the catalyst
particles at the beginning of the reactor were exposed to concentrations of hydrogen, fur-
fural and ethanol of 9.35 × 10−3, 7.36 × 10−4 and 2.92 × 10−2 mol L−1, respectively (an
absolute pressure of 0.15 MPa was assumed to compensate for the pressure drop across the
packed bed and accessories downstream of the reactor). These conditions corresponded
to a molar ratio of 12.7 molH2/molFF. Even with the large excess of hydrogen, the short
contact time in the PBR allowed FA to be the main product and reduced its subsequent
hydrogenation to TFA and other hydrogenolysis products. However, the large excess
of hydrogen probably promoted the conversion of FF and FA to FUR and 1BU on the
Ni1.5Cu0.5Al1 catalyst. The higher availability of hydrogen also reduced the occurrence of
the addition reactions, thus lowering the selectivity towards TFEE and DFE. The inhibition
of this pathway was promoted by a higher Ni/Cu ratio. With further optimization of the
reaction conditions, the NixCuyAl1 catalysts could be used not only to produce furfuryl
alcohol with high selectivity by the gas-phase hydrogenation of furfural but also to ex-
plore the co-production of tetrahydrofurfuryl alcohol and high-value products such as
1,2-pentanediol by liquid-phase hydrogenolysis in slurry or trickle-bed type reactors.

3. Materials and Methods
3.1. Synthesis of the Catalysts

NixCuyAl1 LDHs were prepared by co-precipitation at constant pH. An aqueous
solution with Cu(NO3)2·6H2O, Ni(NO3)2·6H2O and Al(NO3)3·9H2O, adjusted to a total
concentration of 0.6 mol L−1, was added dropwise to a 0.3 mol L−1 Na2CO3 solution in a
flat-bottom flask under vigorous stirring at room temperature. A pH sensor was placed
in the solution to maintain a constant pH of 10 by the dropwise addition of 1.0 mol L−1

NaOH. Upon completion, the mixture was heated to 333 K, and it was aged under vigorous
stirring for 48 h. The solid was then filtered and washed with distilled water until the wash
solution reached a pH of 7. The LDHs were dried at 378 K and calcined in air at 673 K
for 4 h to form the mixed oxides. The calcined materials were labeled according to their
nominal metal molar composition (NixCuyAl1). The active forms of the catalysts were
obtained by reduction of the calcined precursors at 773 K for 1 h with 40 mL min−1 of pure
hydrogen at STP in the high-pressure slurry batch reactor (SSR) and 60 mL min−1 at STP in
the continuous packed-bed reactor (PBR). The suffix R in the label represents a reduced
catalyst after calcination (NixCuyAl1-R).

3.2. Catalyst Characterization

The chemical composition of the calcined precursors was determined by flame atomic
absorption (FAA). Samples of ca. 5.2 mg were added to 10 mL of 69 wt.% nitric acid and
digested in an ultrasonic shaker bath for 5 min. The digested solution was diluted with
deionized water and analyzed in a PinAAcle 900 flame atomic adsorption spectrometer
(Perkin Elmer, Waltham, MA, USA). The surface composition of the calcined precursors
was determined by field-emission scanning electron microscopy with energy-dispersive
X-ray spectroscopy (FESEM-EDX) in a Scios 2 Dual Beam (ThermoFisher, Waltham, MA,
USA) at 5 kV with a resolution of 512 by 340 pixels and a pixel size of 0.01 µm. Surface
composition was also analyzed by X-ray photoelectron spectroscopy (XPS) in VG ESCALAB
250Xi (ThermoFisher) under Mono Al Ka (hv = 1486.6 eV) X-ray source, and the binding
energies were corrected using C (1s) at 284.6 eV.

The structures of the mixed oxides and the reduced catalysts were assessed by XRD on
a Siemens/Bruker (Madison, WI, USA) D5000 diffractometer (Bragg–Brentano parafocusing
geometry and vertical θ-θ goniometer) fitted with a curved graphite diffracted-beam
monochromator, incident and diffracted-beam Soller slits, a 0.06◦ receiving slit and a
scintillation counter as a detector. The angular 2θ diffraction range was between 5 and
80◦. The data were collected with an angular step of 0.05◦ at 3 s per step and sample
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rotation. CuKα radiation was obtained from a copper X-ray tube operated at 40 kV and
30 mA. Diffraction data related to the oxides and metals were extracted from the Dffrac.Eva
database (Bruker).

The textural properties of the mixed oxides were determined from nitrogen adsorption–
desorption isotherms at 77 K with a Quadrasorb SI Model 4.0 (Quantachrome Instruments,
Boynton Beach, FL, USA). Samples of the calcined precursors were outgassed at 423 K for
12 h under vacuum (6 mTorr) to eliminate chemisorbed volatiles before the adsorption
isotherm was measured. Surface areas were calculated using the BET method, while the
pore size distribution was calculated from the desorption wing of the isotherm according
to the DFT method.

Temperature-programmed reduction (TPR) of the calcined oxides was conducted
on an AC2920 apparatus (Quantachrome Instruments) equipped with a TCD detector.
Samples of ca. 100 mg of calcined oxides were treated at 473 K for 2 h under a constant
flow of 20 mL min−1 of He (Airgas, Madrid, Spain UHP) to remove pre-adsorbed species.
The samples were then cooled to 323 K and then heated to 1073 K at 5 K min−1 under
20 mL min−1 of 10% H2 in Ar.

3.3. Catalyst Testing

All catalysts were tested in gas-phase and liquid-phase conditions. A packed-bed
reactor operating at atmospheric pressure was used in the gas-phase experiments [51].
The reactor was loaded with 500 mg of calcined oxides sieved to 100–200 µm, which were
reduced in situ under 60 mL min−1 of H2 (STP) at 773 K for 1 h. After the catalyst was
reduced, the bed temperature was lowered to 463 K, and the activity of the catalyst was
measured at that temperature for at least 4 h. Constant flow rates of 80 mL min−1 of
H2 (STP) and 0.6 mL min−1 of a solution of 0.05 g g−1 of furfural in ethanol were used,
equivalent to a WHSV of 2.85 gFF gcat

−1 h−1. During the experiment, samples of the
reaction products were collected every hour in vials placed in a cold trap at 268 K installed
at the exit of the reactor. The samples were stored in a freezer and analyzed later by gas
chromatography (GC), as described below.

Liquid-phase hydrogenation was investigated on a high-pressure slurry batch reactor
(100 mL Mini Reactor, Autoclave Engineers). Experiments were conducted with 30 mL of a
0.05 g g−1 solution of furfural in ethanol at a constant hydrogen pressure of 5.0 MPa with
200 mg of catalyst sieved to 100–200 µm, which yielded a furfural-to-catalyst mass ratio
of 7.44 g/g. A stirrer velocity of 1000 rpm minimized mass transfer resistances. Prior to
a reaction test, the required amount of catalyst was reduced at 773 K for 1 h in a tubular
reactor under a flow of H2 (40 mL min−1 STP) and then cooled to room temperature under
H2 (10 mL min−1 STP). Once cold, the tube was isolated by means of two ball valves to
prevent the contact of the catalyst with air and detached from the setup. The catalyst was
then discharged directly into the furfural solution in the batch reactor, preventing contact
with air as much as possible; the reactor was sealed and cold-pressurized to 5.0 MPa with
H2 and then heated. After the scheduled reaction time, the vessel was cooled to room
temperature, depressurized and opened. The content of the reactor was filtered to recover
the catalyst, which was then washed with ethanol, air-dried and stored for further testing.
A sample of the liquid was collected in a sealed vial and stored in a freezer until analyzed
by GC. The performance of the catalysts was determined based on the fractional conversion
of furfural (XFF) and the molar selectivity (Sj) of the products (Equations (1) and (2)). NFF,0
and NFF are the initial and the final number of moles of furfural in the batch reactor, Nj is
the number of moles of product j formed, and vj is the stoichiometric number of moles of
furfural required to form a molecule of j. In the tubular reactor, NFF,0, NFF and Nj denote
molar flows.

XFF =
NFF,0 − NFF

NFF,0
(1)

Sj =
vjNj

NFF,0 − NFF
(2)



Catalysts 2022, 12, 390 11 of 13

The products were identified by GC-MS (Shimadzu, Kyoto, Japan GCMS-QP2010)
with a TRB-5 column (Teknokroma, Barcelona, Spain TR-120232; length: 30.0 m, film
thickness: 0.25 µm; inner diameter: 0.25 mm). Analysis was conducted using a 3-stage
temperature program (5 min at 323 K, heating to 503 K at 5 K min−1 followed by 10 min
at the latter temperature) with He as a carrier gas (47 mL min−1). Sample injection was
1.0 µm, and the split ratio was 300. The retention time and mass spectra of the detected
products were compared with those of pure standards, when available, to confirm the
assignments. Routine quantification of the reaction products was conducted by GC-FID
(Shimadzu GC-2010) using the same column and analysis conditions after calibration
with standard solutions. Calibration standards were prepared with commercial samples
dissolved in ethanol. Furfural (FF, 99%), furfuryl alcohol (FA, 98%), tetrahydrofuran (THF,
99.9%), 1,5-pentanediol (15PD, 97%), 1,2-pentanediol (12PD, 96%), 1-pentanol (1PE, 99%),
furan (FUR, 99%), 1-butanol (1BU, 99.8%), cyclopentanone (CP, >99%) and cyclopentanol
(CPO, 99%) were purchased from Sigma Aldrich. Tetrahydrofurfuryl alcohol (TFA, 98%),
2-methylfuran (mFUR, 99%) and 2-methyltetrahydrofuran (mTHF, 99.9%) were acquired
from Acros Organics. All chemicals were used as received without any further treatment.
Response factors in the FID detector of the compounds that were not commercially available
were estimated based on their structures [52,53]. In all cases, the samples were filtered with
a nylon filter (Nylon 25 mm, 0.22 µm, Sharlab) before injection.

4. Conclusions

NiCuAl catalysts derived from layered double hydroxides showed high activity in
the hydrogenation and hydrogenolysis of furfural, both in the gas phase at atmospheric
pressure and in the liquid phase in a slurry batch reactor. Furfural was converted through
three competing paths: decarbonylation to furan, hydrogenation to furfuryl alcohol and
nucleophilic addition with alcohols (ethanol, the solvent, and furfuryl alcohol) to form
acetals, which were subsequently converted to DFE and TFEE. These primary products
were further converted by saturation of the furan ring and/or ring-opening to alcohols. In
all cases, sequential hydrogenation to furfuryl alcohol and tetrahydrofurfuryl alcohol was
the main route, but the selectivity was influenced by the Ni/Cu ratio of the catalysts and
by different hydrogen availabilities in the two reactors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12040390/s1, Table S1: Selectivity and conversion during
furfural hydrogenation in the pressurized SSR and atmospheric PBR reactors. Figure S1: SEM
imaging of the calcined materials (20,000×magnification): Ni1.5Cu0.5Al1 (top), Ni1Cu1Al1 (center)
and Ni0.5Cu1.5Al1 (bottom); Figure S2: Surface composition of LDH precursors calcined at 673 K for
4 h measured by EFSEM-EDX. Figure S3: Furfural conversion in the atmospheric PBR at 463 K and a
WHSV of 2.85 gFF gcat

−1 h−1.
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