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Abstract: The oxidation of hydrocarbons of different structures under the same conditions is an
important stage in the study of the chemical properties of both the hydrocarbons themselves and
the oxidation catalysts. In a 50% H2O2/Cu2Cl4·2DMG/CH3CN system, where DMG is dimethyl-
glyoxime (Butane-2,3-dione dioxime), at 50 ◦C under the same or similar conditions, we oxidized
eleven RH hydrocarbons of different structures: mono-, bi- and tri-cyclic, framework and aromatic.
To compare the composition of the oxidation products of these hydrocarbons, we introduced a new
quantitative characteristic, “distributive oxidation depth D(O), %” and showed the effectiveness of its
application. The adiabatic ionization potentials (AIP) and the vertical ionization potentials (VIP) of the
molecules of eleven oxidized and related hydrocarbons were calculated using the DFT method in the
B3LYP/TZVPP level of theory for comparison with experimental values and correlation with D(O). The
same calculations of AIP were made for the molecules of the oxidant, solvent, DMG, related compounds
and products. It is shown that component X, which determines the mechanism of oxidation of hydro-
carbons RH with AIP(Exp) ≥ AIP(X) = 8.55 ± 0.03 eV, is a trans-DMG molecule. Firstly theoretically
estimated experimental values of AIP(trans-DMG) = 8.53 eV and AIP(cis-DMG) = 8.27 eV.

Keywords: hydrocarbons; catalytic oxidation; Cu(II) complex; dimethylglyoxime; hydrogen peroxide;
CH3CN; oxidation depth; adiabatic ionization potential; DFT calculations

1. Introduction

Copper-containing catalysts are used for the oxidation of organic substrates with
various reagents O2, H2O2, RO2H, and others [1–5]. It is shown that different equilibrium
forms of copper(0, I, II, III) participate in the oxidation reaction [6–10]. Therefore, the main
focus of many research projects is given to the synthesis of metal complexes stable in an
oxidation reaction with N- and O-polydentant ligands that would stabilize the metal ion
with the most catalytically active degree of oxidation [11–15].

To date, much less attention has been paid to the development of methods for ana-
lyzing the composition of the oxidation products of the substrate as a characteristic of the
substrate, rather than the catalyst.

The widely used TON (turnover number) method is designed to quantify the stability
and efficiency of the catalyst based on the calculation of the total molar amount of products,
which is attributed to the molar unit of the catalyst [16–20].
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The total number of moles of products is calculated in two ways: as the sum of moles of
products and as the sum of their moles multiplied by the coefficients N = 1, 2, 3 and others
(equivalents), which are introduced according to certain rules that are not explained [21–25].

The composition of the oxidation products of one or more of the same type of substrates
is usually characterized by comparing the ratio of the amounts of different products
oxidized in different positions and to different classes of compounds: alcohols, aldehydes
and ketones, peroxides, lactones, and carboxylic acids [26–30].

Unique for each type of substrate, rather than universal, the ratios of its oxidation
products are used to describe the selectivity of the oxidation reaction [31–35]. Thus, the
problem of a universal description of the oxidation reaction of substrates of different types
has not been solved to date.

Two widely used universal characteristics of the oxidation reaction are the conversion
of substrate C, expressed in %, and the yield of the target product [36–40]. In order to be
able to use the composition of the oxidation products of the substrate as characteristics not
only of the catalyst but also of the substrate, it is necessary to find a method for analyzing
the composition of the oxidation products that would be applicable to substrates of different
structures and to different stages of their oxidation: from the initial, when alcohols and
epoxides are formed, to the final, when carboxylic acids accumulate in the products [41–45].

When one substrate was oxidized in the 50% H2O2/Cu2Cl4·2DMG/CH3CN system, it
became necessary to introduce another parameter—the depth of the substrate oxidation [10].
To determine this parameter, the influence of experimental conditions on the content of the
n-oxygenation groups of the substrate (nO) was analyzed—the total amounts of products
that included n-oxygen atoms, where n = 1–5 [10]. This technique was especially useful
in cases when, at C = 100%, conditions were searched for increasing the total amount of
substrate oxidation products with n = 3–5 [46].

In this article, based on the previously tested methodological technique, we introduce
a new quantitative characteristic—the depth of oxidation, which can become the basis for
the development of a universal characteristic for comparing the compositions of oxidation
products of different types of substrates at different stages of their oxidation.

The oxidation of hydrocarbons of different structures under the same conditions is an
important stage in the study of the chemical properties of both the hydrocarbons themselves
and the oxidation catalysts [47–51].

During the transition from oxidation of one to several substrates, under the same
conditions, we chose a fast (~3 s) method of introducing 10 mL of an oxidizer solution—a
50% aqueous solution of hydrogen peroxide (50% H2O2) into the reaction volume—an
acetonitrile solution containing a substrate and a catalyst at 50 ◦C. Under these conditions,
the conversion C of the substrate was significantly less than 100%, and the composition
of the products was simple enough to be identified using gas chromatography/mass
spectrometry (GC-MS) [46].

The Cu2Cl4·2DMG complex (1) was used as a catalyst, where DMG is dimethylgly-
oxime (Butane-2,3-dione dioxime) (Scheme 1).
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2. Results and Discussion
2.1. Hydrocarbon Oxidation Depth

The method of analysis of the composition of oxidation products used by us is some-
what different from the TON method. Therefore, before describing the results and dis-
cussing them, it is necessary to briefly describe the new method of grouping oxidation
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products, the % used and the properties of the new characteristic we propose—the depth
of oxidation in comparison with the same parameters of the widely used TON method.

To calculate the depth of oxidation of the substrate—the total amount of oxygen atoms
(O) included in the hydrocarbon according to the composition of all nO-groups of oxidation
products (ΣnO = 1O + 2O + 3O = 100%), we used two formulas (1) and (2), respectively,
without and with taking into account the conversion C of the hydrocarbons:

D(O) = 1·1O + 2·2O + 3·3O (1)

D’(O) = C·D(O) (2)

The parameter D(O), rather than D’(O), showed the best results as the main charac-
teristic that allows for monitoring the depth of oxidation of hydrocarbons. Therefore, the
main conclusions in the paper are based on the parameter D(O), to which the special name
“distributive oxidation depth” is attached, in order to distinguish it from the term “complete
distributive oxidation depth”, the quantitative characteristic of which is the parameter
D’(O), provided that the oxidation products of the substrate are the only products of the
reaction.

The value of D(O) calculated by formula (1) is expressed in %, numerically equal to
the total number of oxygen atoms in all products distributed by % nO groups, excluding
conversion C of the substrate. In the presence of products with n ≥ 2, the values of D(O)
become greater than 100%.

Since % of all nO groups were scaled so that their sum was equal to 100%, then
D(O)≥ 100%. Therefore, our proposed new parameter D(O) is a simplified form of analysis
of the composition of oxidation products. The oxidation depth parameter D(O) in the above
form becomes informative only if di-, tri- and more oxygenated products appear in the
mixture along with monooxygenated products.

To calculate TON, the formula (3) was used, where MR is the initial molar ratio of
the substrate—hydrocarbon (RH) and catalyst (MR = [RH]:[Catalyst], MR = [RH] mmol at
[Catalyst] = 1 mmol), C (%) is the conversion of RH, SOP (%) is the sum of the oxidation
products of RH.

TON = MR·(C/100)·(SOP/100) (3)

SOP = Σ(N(i)[Product(i)]), where N(i) is the number of oxygen atoms (N(i) = 1, 2, 3
and others) that have passed from the oxidizer to the substrate to form the Product(i) and
[Product(i)] is the adjusted % of the Product(i) from the sum ΣnO = 100%.

As an example, N(i) = 1 and 2 for mono alcohol and ketone, correspondently. Ketone
is obtained by formal oxidation of the hydrogen atom of the C–H bond of a secondary
alcohol to a geminal diol and subsequent elimination of a water molecule. For this, two
oxygen atoms passed from the oxidizer to the substrate. Therefore, ketone (Product(i)) will
have a coefficient of two (N(i) = 2) [24,25], and carboxylic acid—three, dicarboxylic acid
and its anhydride—six.

Thus, the characteristic D(O) proposed by us differs from the TON method in that the
total number of oxygen atoms entered into the substrate for D(O) and spent by the oxidizer
for TON is calculated.

With a slow (drop by drop) introduction of oxidizer solution the oxidation products
of cyclohexane (2) were only mono-oxygenated compounds—cyclohexanol (2-ol) and
cyclohexanone (2-one) (Scheme 2, Figure 1).
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%(2-one) = 0.0008t2 + 0.0325t, R2 = 0.9956; C = %(Σ1O) = %(2-ol) + %(2-one) = 0.3932t, R2 = 0.9933.

The primary product was 2-ol, which was further oxidized to 2-one. The total amount
of mono-oxygenated products %(Σ1O) = %(2-ol) + %(2-one) increased linearly with in-
creasing reaction time and reached 93% at 240 min.

Since the third component in the mixture was the initial hydrocarbon 2, its con-
version C = %(Σ1O). According to the equation %(Σ1O) = 0.3932t, R2 = 0.9933, a 100%
conversion of 2 would be achieved at t = 254 min, which would mean the introduction of
V(H2O2) = 8.48 mL of the oxidizer solution. At this value of V(H2O2), only a mixture of
2-ol and 2-one would remain in the reaction mixture, which corresponds to D(O) = 100%.

Further addition of the oxidant solution to the value V(H2O2) = 10 mL, which we used
in other experiments, would lead to the oxidation of 2-ol and 2-one, a decrease in their
content, and the appearance of di-oxygenation products of the 2.

If we extrapolate the dependence of D(O) on V(H2O2), then at V(H2O2) = 10 mL
D(O) = 93%·10 mL/8 mL = 116%. Thus, at V(H2O2) = 10 mL, this value of D(O) = 116%
characterizes such a method of hydrocarbon oxidation, in which the initial hydrocarbon
is successively oxidized into mono-oxygenated products and then into di-oxygenated
products.

This means that there is a mechanism in which a hydrocarbon, in this case, cyclo-
hexane, which has a significantly greater hydrophobicity than its oxygenation products,
nevertheless oxidizes more easily than they do when using an aqueous 50% solution of
H2O2 as an oxidizer.

If another mechanism of hydrocarbon oxidation is included, in which the products of
its oxygenation will be oxidized more easily than the hydrocarbon itself, this will lead to a
decrease in its conversion C and to an increase in the value of D(O), which characterizes
the distributional depth of hydrocarbon oxidation.

All the following compositions of the oxidation products of the other ten hydrocarbons
C8-C11 relate to the rapid (~3 s) introduction of V(H2O2) = 10 mL of the oxidizer solution
(Schemes 3 and 4).

In accordance with the new systematization method, the total amounts of products
that included one, two, and three oxygen atoms were calculated to determine the oxidation
depth D (%) of hydrocarbons. Mono-, di-, and tri-oxygenated products of hydrocarbon
oxidation are designated by the symbols: 1O, 2O, and 3O, respectively.

In the oxidation of decalin 3 (3:2 cis-:trans-bicyclo[4.4.0]decane, conversion C = 13%)
formed products 1O: alcohols 3a (46%) and ketones 3b (39%); 2O: diols 3c (6%), keto-
alcohols 3d (5%) and diketones 3e (4%). The sums of products 1O, 2O and 3O are 85, 15
and 0%, respectively. Oxidation depth D(O) = 115%.
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In the oxidation of exo-tetrahydrodicyclopentadiene 4 (tetracyclo[5.2.1.02,6]decane, con-
version C = 7%) formed products 1O: alcohols 4a (51%) and ketones 4b (37%);
2O: keto-alcohols 4c (12%). The sums of products 1O, 2O and 3O are 88, 12 and 0%,
respectively. Oxidation depth D(O) = 112%.

In the oxidation of adamantane 5 (tricyclo[3.3.1.13,7]decane, conversion C = 44%)
formed products 1O: tertiary (37%) and secondary (26%) alcohols 5a, ketone 5b (21%);
2O: diols 5c (13%); keto-alcohols 5d (0.5%) and diketones 5e (0.5%), as well as lactone
5f (1%); 3O: a mixture of triols 5g (1%). The sum of the products 1O, 2O and 3O, respectively,
is 84, 15 and 1%. The oxidation depth D(O) = 117%.

In the oxidation of camphor 6 (1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-one, conversion
C = 21%) formed products 1O: alcohols 6a (16%) and ketones 6b (37%); 2O: anhydride
6c (8%), diols 6d (11%), keto-alcohols 6e (21%) and acids 6f (7%). The sums of products 1O,
2O and 3O are 53, 47 and 0%, respectively. Oxidation depth D(O) = 145%.

The oxidation of o-xylene 7 (conversion C = 20%) produced the products 1O: alcohols
7a (19%), 7b (22%) and 7c (8%), aldehyde 7d (36%); 2O: diols 7e (10%) and diketone 7f (2%);
3O: anhydride 7g (3%). The sum of the products 1O, 2O and 3O, respectively, is 85, 12 and
3%. The oxidation depth D(O) = 121%.

The oxidation of p-xylene 8 (conversion C = 25%) produced the products 1O: alcohols
8a (36%) and 8b (5%), aldehyde 8c (36%); 2O: acid 8d (5%), aldehyde alcohol 8e (4%) and
diketone 8f (12%). The sums of products 1O, 2O and 3O are 77, 21 and 0%, respectively.
Oxidation depth D(O) = 119%.

The oxidation of tetralin 9 (conversion C = 9%) produced products 1O: alcohols
9a (5%), 9b (4%), ketones 9c (at position α) (64%) and (at position β) (7%); 2O: diols 9d (3%)
keto-alcohols 9e (5%) and naphthoquinone 9f (12%). The sum of the products 1O, 2O and
3O are 80, 8 and 12%, respectively. Oxidation depth D(O) = 132%.

In the oxidation of pinane 10 (12:1 cis-:trans-2,6,6-trimethyl-bicyclo[3.1.1]heptane,
conversion C = 6%) formed products 1O: alcohols 10a (4%) and ketones 10b (32%); 2O:
a poorly separated mixture of diols 10c, keto-alcohols 10d and diketones 10e (total 64%).
The sums of products 1O, 2O and 3O are 36, 64 and 0%, respectively. Oxidation depth
D(O) = 164%.

The oxidation of naphthalene 11 (conversion C = 45%) produced the products
1O: alcohols 11a (29%); 2O: p-naphthoquinone 11b (32%); 3O: alcohol-naphthoquinones
11c,d (18%) and phthalic anhydride 11e (21%). The sum of the products 1O, 2O and 3O are
29, 32 and 39%, respectively. Oxidation depth D(O) = 210%.

The oxidation of 2-methylnaphthalene 12 (conversion C = 51%) produced the prod-
ucts 1O: alcohol 12a (1%) and aldehyde 12b (5%); 2O: diketones 12c (21%) and 12d (8%);
3O: four isomeric diketo-alcohols 12e (5%), acid 12f (2%), phthalic anhydride 12g (19%),
4-methylphthalic anhydride 12h (29%) and m-formyl benzoic acid 12i (10%). The sum
of the products 1O, 2O and 3O, respectively, is 6, 29 and 65%. The oxidation depth
D(O) = 259%.

Under the selected catalytic conditions, according to the values of D(O), all oxidized
hydrocarbons can be divided into two groups (Figure 2A).

For hydrocarbons 2–5 and 7–8, approximately the same value of D(O) = 117 ± 5%
indicates the implementation in these cases of the oxidation method previously described
for compound 2 sequentially, in which the relative rate of oxidation of the hydrocarbon is
higher than the rate of oxidation of its oxidation products. A 10-fold increase in the amount
of oxidized hydrocarbons 3 and 4 did not lead to a change in the value of D(O).

The second group of hydrocarbons 6, 9–12 has higher D(O) values than the value of
117 ± 5%. This indicates the implementation of another method of hydrocarbon oxidation,
in which the relative oxidation rates of hydrocarbon oxidation products are higher than the
oxidation rate of the initial hydrocarbon.

The values of D(O) obtained for hydrocarbons 3–12 can be compared with the val-
ues of TON (Table 1, Figure 2C). The general trend continues. For hydrocarbons 3–8
TON = 9 ± 2, for 9 and 10 TON = 3–4, for 11 and 12 TON = 29–30.
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This interpretation of the obtained result is supported by the entry into the second
group of compound 6—camphor, which contains one oxygen atom and belongs to the
class of ketones, not hydrocarbons. Therefore, we marked this exception from the general
selection of oxidized substrates—hydrocarbons in Figure 2 with the red color and the shape
of the marker.

The marker in the form of a blue circle, in contrast to the markers in the form of blue
squares, in Figure 2 shows the fact that compounds 2 and 3–12 were oxidized in different
ways, respectively by slow (drop by drop over 240 min) and fast (~3 s) addition of the
entire volume of the oxidizer solution to the reaction mixture.

From the fact that the D(O) value of compound 2 was included in the first group of
hydrocarbons, it can be assumed that in the case of oxidation of compound 2, the method
of introducing an oxidizer solution into the reaction mixture does not have a decisive effect,
unlike oxidation of compound 5 [46].

The depth D’(O) of the oxidation of hydrocarbons 2–12, taking into account their con-
versions C, provided additional information about the studied catalytic system (Figure 2B).
While maintaining general trends (marked with colored straight lines), the spread of D’(O)
values has become very large. According to the values of D’(O), all hydrocarbons can be
divided into two groups with D’(O) < 6000 %2 (compounds 3–10) and with D’(O) > 8000 %2

(compounds 2, 11 and 12).
However, in our opinion, with a large spread of D’(O) values, such a division cannot

be used as a characteristic of the reactivity of oxidized hydrocarbons. In our opinion, the
fact of a very large spread of D’(O) values is more interesting, which indicates the presence
of unaccounted factors which have a strong effect on the conversion C of the hydrocarbons.

One of these unaccounted factors may be the release of molecular oxygen, the amount
of which was not controlled. Molecular oxygen began to be released approximately 5 min
after the addition of the oxidizer solution to the reaction volume.

The TON value for hydrocarbon 2 was not calculated, since the composition of its
oxidation products at V(H2O2) = 10 mL was not determined.

For this work, we have specifically chosen these catalytic conditions in which the
catalyst is the least stable and the composition of the products is simple enough for analysis
by GC-MS.
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Therefore, it is not surprising that in all cases TON had small values, which corre-
sponds to the conditions with the small stability of the catalytic complex.

TON(SM), for which the sum of moles (SM) of products is used to calculate TON
(Figure 2D), has even smaller values.

When using a 100% adjusted percentage of oxidation products, as was done in
this paper, TON(SM) was calculated using formula (3), in which for all hydrocarbons
SOP = 100%, since N(i) = 1 for all oxidation products.

Due to the very large spread of TON(SM) values, it is impossible to say with certainty
that the general trend persists. For hydrocarbons 3–12 TON(SM) = 4.5 ± 3.5 instead of two
groups of values: for hydrocarbons 3–8 (TON(SM) = 5 ± 2) and hydrocarbons 9–12.

The values of D(O) obtained by us can be compared with the values of D(O) calculated
from the distributions of oxidation products obtained by other authors [25,52–54].

When 2 is oxidized with H2O2 to CH3CN at room temperature for 6 h in the presence
of catalysts CuI/TMPA (A) and CuI/(R,R)-BPBP (B), the main product was cyclohexane
hydroperoxide (2-OOH), which contains two oxygen atoms [52].

The distribution of oxidation products 2 is as follows: for A 2-OOH (44%), 2-ol (5%),
2-one (4%), total yield 53%; for B 2-OOH (37%), 2-ol (13%), 2-one (6%), total yield 56% [52].
Since the total yield is much less than 100%, we recalculated the % of the components
of the mixture to ΣnO = 100% and obtain the following characteristics of the distributions of
oxidation products: for A 2-OOH (83%), 2-ol (9%), 2-one (8%), D(O) = 183%; for B 2-OOH
(66%), 2-ol (23%), 2-one (11%), D(O) = 176%.

By the value of D(O) = 180 ± 4%, both A and B catalysts had approximately the same
efficiency in the oxidation reaction of hydrocarbon 2.

Compound 5 was oxidized using dioxirane CH3(CF3)CO2 at−20 ◦C in a CH2Cl2/1,1,1-
trifluoropropanone (2:1) medium for a time from 1 min to 2 h [53,54]. With an increase
in the amount of oxidizer added to the reaction mixture, the molar ratio (MR) of oxi-
dizer/substrate and the reaction time increased.

The following distributions of the oxidation products of compound 5 were obtained:
(MR = 0.5) tert-5a (94%), 5b (1%), ditert-5c (5%), total yield 100%; (MR = 2) tert-5a (38%),
ditert-5c (60%), total yield 98%; (MR = 2.3) tert-5a (4%), ditert-5c (93%), total yield 97%;
(MR = 3.2) ditert-5c (43%), tritert-5g (55%), total yield 98%; (MR = 4.1) ditert-5c (18%),
tritert-5g (80%), total yield 98% [53,54].

Since the total yield of the oxidation products of compound 5 is equal to or very close
to 100%, we use the original % and obtain the following values of D(O), respectively: 105,
158, 190, 208, and 258%.

The values of D(O) calculated by us depend linearly on MR (Figure 3). This type of
dependence reflects the unique specifics of the oxidation of hydrocarbon 5 with dioxirane
CH3(CF3)CO2, which occurs selectively in the tertiary position and without the formation
of by-products [53,54].

The distributions of the oxidation products of hydrocarbon 5 obtained in the
H2O2/FeIII(dpaqNO2)/CH3CN system at room temperature are shown in Table 2 [25].

The original % was converted to % adjusted for the amount of oxidation products
(ΣnO) equal to 100%, since their real total yield (Σ) was significantly less than 100%.

D(O) equal to 131.5, 238.8, 256.2% were calculated for the corrected % content of nO
groups, where n = 1–3, of oxidation products 5 for three different catalytic conditions
(Table 2). The calculated values of D(O) showed that the deepest oxidation of hydrocarbon
5 (D(O) = 256.2%) occurs under the catalytic conditions of D4 (II).
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Table 1. The TON of the hydrocarbons 3–12 (RH), calculated by formula (3).

RH MR C, % Product(i) (Corrected %) N(i) SOP, % TON

3 52.4 13 3a (46) 1; 3b (39) 2; 3c (6) 2; 3d (5) 3; 3e (4) 4 167 11

4 53 7 4a (51) 1; 4b (37) 2; 4c (12) 3 161 9

5 16.0 44 tert-5a (37) 1; sec-5a (26) 1; 5b (21) 2; 5c (13) 2;
5d (0.5) 3; 5e (0.5) 4; 5f (1) 3; 5g (1) 3 139 10

6 14.1 21 6a (16) 1; 6b (37) 2; 6c (8) 3; 6d (11) 2; 6e (21) 3;
6f (7) 3 220 7

7 20.5 20 7a (19) 1; 7b (22) 1; 7c (8) 1; 7d (36) 2; 7e (10) 2;
7f (2) 4; 7g (3) 6 167 7

8 20.5 25 8a (36) 1; 8b (5) 1; 8c (36) 2; 8d (5) 3; 8e (4) 3; 8f
(12) 4 188 10

9 16.4 9 9a (5) 1; 9b (4) 1; α-9c (64) 2; β-9c (7) 2; 9d (3) 2;
9e (5) 3; 9f (12) 6 244 4

10 15.7 6 10a (4) 1; 10b (32) 2; 10c 2, 10d 3, 10e 4, (64) 3 * 260 3

11 17.0 45 11a (29) 1; 11b (32) 4; 11c,d (18) 5; 11e (21) 6 373 29

12 15.3 51 12a (1) 1; 12b (5) 2; 12c (21) 4; 12d (8) 4; 12e (5)
5; 12f (2) 5; 12g (19) 6; 12h (29) 6; 12i (10) 5 500 39

* A poorly separated mixture of Products(i), total % and averaged N(i).
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Figure 3. The dependence of D(O) on the initial molar ratio (MR) of dioxirane CH3(CF3)CO2

to hydrocarbon 5. The values of D(O) are calculated based on the percentage compositions of
oxidation products 5 according to the data of the works [53,54]. Equation: D(O) = 41.724MR + 82.828,
R2 = 0.9783.

In contrast to the TON method, the distributive oxidation depth D(O) allows com-
paring the efficiency of non-catalytic and catalytic methods of oxidation of the same hy-
drocarbon under different conditions. As an example, oxidation of hydrocarbon 5 using
dioxirane CH3(CF3)CO2 at MR = 4.1 was carried out with D(O) = 258%, and oxidation with
H2O2 under D4 (II) conditions was carried out with D(O) = 256%. These two values of D(O)
practically coincide, which means that the efficiency of the two systems in the oxidation
reaction was the same in terms of the total distribution of products in nO-groups, where
n = 1–3.
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Table 2. Distributions of oxidation products of 5 before and after correction.

Cat *, (Ratio) **

Based on Substrate % ***

Σ, %5a 5b 5c 5g

tert sec ditert tritert

H4, (I) 47.3 4.4 3.0 25.2 - 79.9

H4, (II) 3.01 0.17 3.57 18.9 27.2 52.85

D4, (II) 1.48 0.10 3.16 12.1 32.4 49.24

Corrected on ΣnO = 100%
D(O), %

1O 2O 3O

H4, (I) 59.2 5.5 3.8 31.5 - 131.5

H4, (II) 5.7 0.3 6.7 35.8 51.5 238.8

D4, (II) 3.0 0.2 6.4 24.6 65.8 256.2

* Catalyst: H4—FeIII(dpaqNO2), D4—FeIII(dpaqNO2)-[D4]; ** The ratio of catalyst/H2O2/substrate was:
I—1/120/100, II—5/300/100 (µmols); *** The original values for the further correction (recalculation) were
taken from [25]. Reaction time 2.5 and 5 h for I and II respectively.

The parameter D(O) does not take into account conversion C of hydrocarbon. On the
one hand, it is applicable to systems with different values of C: from small (C = 1–5%), if
there is a representative of group 2O in the products along with the products of group 1O,
for example, hydrocarbon hydroperoxide [55,56], to high values (C = 97–100%), but under
the same condition—the presence of representatives of groups nO in the products, where
n ≥ 2 [53,54]. On the other hand, the parameter D(O) is not an exhaustive characteristic.
For example, two oxidation systems with D(O) = 258 and 256% have different conversions
C = 98 and 49%, respectively. Therefore, along with D(O), it is necessary to apply the
full characteristic D’(O), which takes into account the conversion of C. For the two cases
considered above, D’(O) is equal to 25,284 and 12,544 %2, respectively. A higher value
of D’(O) indicates a greater overall efficiency in the oxidation reaction of the first system,
which uses dioxirane CH3(CF3)CO2 as an oxidant.

Many papers describe a situation where only monoxygenated products of group 1O
are present in the distribution of hydrocarbon oxidation products [57–61].

In this case, D(O) = C (0 < D(O) < 100%) and there is neither sense nor need to use the
distribution of oxidation products to calculate D(O).

In this case, the distribution of hydrocarbon oxidation products is used to calculate
other parameters that characterize the selectivity of the oxidation reaction [57–61].

In this case, for uniformity with the description of mixtures of products containing
nO products with n ≥ 2, D’(O) = C2 should be used as a complete characterization of the
efficiency of the oxidation reaction.

2.2. Adiabatic Ionization Potentials of the Hydrocarbons

In the catalytic system that we used, redox reactions were initiated with the participa-
tion of hydrogen peroxide molecules, copper(II) and copper(I) ions in equilibrium [6,62–64].
It is possible that the molecules of oxidized hydrocarbons RH were also directly or indi-
rectly involved in single-electron transfer processes. Therefore, in order to check whether
such a possibility was realized in our catalytic system, we collected, analyzed the reliability,
and compared the values of D(O) data with the adiabatic ionization potentials (AIP, eV) of
the RH hydrocarbons used by us, which were determined in the gas phase (Tables 3 and 4
and Figures 4–8).
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Table 3. Adiabatic ionization potential (AIP) and vertical ionization potential (VIP) of RH 2-15 *1.

RH
AIP, eV VIP, eV

Exp. DFT AC·DFT Exp. DFT VC·DFT

2 9.88 ± 0.02 [65] 9.57 9.92 10.3 ± 0.1 [65] 10.55 10.74

Cis-3 9.32 ± 0.05 [66]
9.427 ± 0.003 [66] 8.84 9.16 - 9.64 9.81

Trans-3 9.32 ± 0.05 [66]
9.383 ± 0.003 [66] 8.86 9.18 - 9.42 9.59

Exo-4 9.35 ± 0.05 [67]
9.3 [68] 8.85 9.17 - 9.71 9.88

Endo-4 9.3 [68] 8.86 9.18 - 9.54 9.71

5
9.25 [68]

9.32 ± 0.02 *2 [69]
9.31 ± 0.01 [70]

8.98 9.31 9.75 ± 0.02 [69] 9.35 9.52

6 8.62 ± 0.05 *2 [71] 8.33 8.63
8.70 ± 0.05 [72]
8.76 ± 0.03 [73]
8.94 ± 0.05 [71]

8.56 8.71

7 8.56 ± 0.01 [71] 8.27 8.57 8.45 ± 0.02 [74] 8.43 8.58

8 8.52 ± 0.01 [71] 8.13 8.42 8.37 ± 0.02 [74] 8.31 8.46

9 8.46 ± 0.01 [75]
8.48 ± 0.05 [76] 8.14 8.43 8.40 ± 0.02 [74] 8.32 8.47

Cis-10 - 8.19 8.49 - 9.13 9.29

Trans-10 - 8.21 8.51 - 9.12 9.28

11 8.14 ± 0.01 [77] 7.76 8.04 8.15 ± 0.02 [78] 7.86 8.00

12 7.91 ± 0.02 [79]
7.9752 ± 0.0006 [80] 7.60 7.88 8.01 ± 0.03 [81] 7.91 8.05

13

8.50 ± 0.05 *2 [71]
8.50 ± 0.02 *3 [82]

8.49 ± 0.06 [83]
8.495 ± 0.01 [84]

8.20 8.50 8.80 ± 0.02 [82]
8.86 ± 0.05 [71] 8.43 8.58

14 8.07 [85]
8.21 [86] 7.78 8.06

8.30 ± 0.02 [87]
8.38 [86]
8.38 [88]

8.08 8.22

15 8.45 ± 0.03 [89] 7.81 8.09 8.60 ± 0.03 [87] 8.41 8.56

*1 The adiabatic coefficient AC = 1.0363 and the vertical coefficient VC = 1.0178 were used. The underlined
AIP and VIP values were used to get the AC and VC values, respectively. *2 Estimated by us from the original
spectrum [Ref]; the method for determining of AIP and VIP with resolved and unresolved vibrational structure
was described in [85]. *3 https://webbook.nist.gov/cgi/cbook.cgi?ID=C1195795&Units=SI&Mask=20, comment
of Lias, S.G.; Levin, R.D.; Kafafi, S.A. (accessed on 15 March 2022).

https://webbook.nist.gov/cgi/cbook.cgi?ID=C1195795&Units=SI&Mask=20
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Table 4. DFT calculated energies (Eh) of molecules (Mol) and radical cations (RC) of RH.

RH Mol RC (v) RC (a)

2 −235.796416446930 −235.408821451747 −235.444603623664
Cis-3 −391.789367615470 −391.435245998176 −391.464651533436

Trans-3 −391.794723133146 −391.448608828165 −391.469260219338
Exo-4 −390.566031933795 −390.209283033454 −390.240966496249

Endo-4 −390.560161543720 −390.209697591623 −390.234485149963
5 −390.571017840896 −390.227479460936 −390.241205996154
6 −465.795123302806 −465.480695959193 −465.489025147050
7 −310.790774450045 −310.480825898414 −310.486706493782
8 −310.791222286329 −310.486082427306 −310.492657788520
9 −388.186775526325 −387.881181849912 −387.887710689243

Cis-10 −391.740816783849 −391.405373341772 −391.439831739236
Trans-10 −391.744786580034 −391.409802263156 −391.443377526896

11 −385.786100633399 −385.497367408886 −385.500788851354
12 −425.089647255078 −424.806993355110 −424.810540387290
13 −465.797429387663 −465.487666485169 −465.496018891036
14 −390.527843271624 −390.230811813852 −390.241999967480
15 −390.523793840712 −390.214663060525 −390.236902273183
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For comparison with AIP, Tables 3 and 4 show data on the vertical ionization potentials
(VIP, eV) of RH hydrocarbons, which usually have slightly larger values. There are no
AIP data for RH 6, 10. Therefore, data on related compounds were added to Tables 3
and 4 and Figures 4 and 6: fenchone 13 (1,3,3-trimethyl-bicyclo[2.2.1]heptan-2-one) for
comparison with camphor 6; α-pinene 14 (2,6,6-trimethyl-bicyclo[3.1.1]hept-2-ene) and
β-pinene 15 (6,6-dimethyl-2-methylene-bicyclo[3.1.1]heptane) for comparison with pinane
10 (see Schemes 3 and 5).
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Table 3 contains the experimental values of AIP and VIP of the hydrocarbons 2–15
from works in which both values were determined simultaneously, data from previous
works were presented and several compounds of interest to us were investigated.

To calculate the AIP and VIP values (eV) of the DFT method (Table 3), formula
(4) was used, where E are DFT calculated energies in Eh (Table 4), conversion factor
CF = 27.2113834 eV/1Eh (Orca—an ab initio, DFT and semiempirical SCF-MO package—
version 3.0.1, Manual).

(A or V)IP = (E(RC(a or v)) − E(Mol))·CF (4)
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To evaluate the experimental values of AIP and VIP based on the results of DFT calcula-
tions, the adiabatic coefficient (AC = 1.0363) and the vertical coefficient (VC = 1.0178) were
determined from correlations (Figure 4) constructed using the most consistent experimental
and calculated data (Table 3).

The changes in the lengths of chemical bonds of hydrocarbons 2–15 caused by single
ionization are shown in Figures 5–7, and the XYZ coordinates of all atoms of optimized
structures are reported in the Supplementary Materials File, Table S1.

The calculated DFT and experimental AIP values are grouped along two straight
lines (blue and red), and one point (green) for RH 15 is a clear outlier from the general
correlations (Figure 4(left)).

Two experimentally determined values of AIP RH 14 with similar values fell on
different lines. To estimate AIP(Exp) values from AIP(DFT) values, we used a blue line
that contained a larger number of points and a larger correlation coefficient R2 (Table 3 and
Figure 4).

Due to the much larger spread, all points are combined into one correlation (black) in
the case of VIP values (Figure 4(right)).

Estimated by us from the experimental spectrum and from DFT calculation values of
AIP, correspondingly 8.62 ± 0.05 and 8.63 eV, are fitted for RH 6 (Table 3). For the first time,
the AIP values of 8.49 and 8.51 eV estimated by us from DFT calculations for RH Cis-10
and Trans-10, respectively, are close to each other and on average equal to 8.50 ± 0.01 eV
(Table 3).

The DFT calculated geometries of hydrocarbons 2–15 are shown in Figures 5–7.
According to DFT calculations, single ionization leads to significant elongation of one

C-C bond of RH 3 and 4 (central tetra substituted), two C-C bonds of RH 2 and three C-C
bonds of RH 5 (co-directional oppositely located) (Figure 5).

According to DFT calculations, one and two C-C bonds at carbonyl C=O bonds of
RH 6 and 3, respectively, are most strongly elongated during the transition from the
molecular to the radical cation form of bicyclic ketones (Figure 6).

According to DFT calculations, one C-C bond of the cyclobutane ring, namely (CH3)2C-
CH(CH(CH3)) bond, lengthens most strongly with a single ionization of RH 10, 14, and 15
(Figure 6).

According to DFT calculations, significantly smaller structural changes occur with a
single ionization of aromatic hydrocarbons RH 7–9, 11, and 12 (Figure 7).

2.3. Comparison of Two Hydrocarbon Characteristics: Oxidation Depth D(O) and Adiabatic
Ionization Potential

For comparison with D(O), the following AIP (eV) were used: RH 2 (9.88), 3 (9.32),
4 (9.35), 5 (9.31), 6 (8.62), 7 (8.56), 8 (8.52), 9 (8.48), 10 (8.50), 11 (8.14), 12 (7.91).

The points (AIP;D(O)) for all RH, except RH 6 and 10 (red), are located along two
straight lines: D(O) = −221.55AIP + 2012, R2 = 0.9961, for AIP ≤ 8.55 eV (green) and
D(O) = 117 ± 5 for AIP ≥ 8.55 eV (blue) (Figure 8).

The value of AIP = 8.55 eV of the intersection point of two straight lines almost
coincides with AIP = 8.56 ± 0.01 eV of RH 7 (Table 3).

According to the first straight line (green), the values of D(O) decrease with increasing
AIP. RH 2–5 would not oxidize at all if this trend persisted at an AIP of more than 8.55 eV.
Thus, in the catalytic system studied by us, two different mechanisms of RH oxidation are
realized, depending on the values of their AIP.

For RH 6, the experimental value of D(O) = 145 (red) significantly exceeds the value of
D(O) = 117 ± 5 (blue) expected based on AIP = 8.62 eV (Figure 8). Since RH 6 is a ketone,
this observation means that it is more easily oxidized compared to other substrates—
hydrocarbons.

For RH 10, the experimental value of D(O) = 164 (red) also significantly exceeds the
value of D(O) = 117 ± 5 (blue) expected based on AIP = 8.50 eV (Figure 8).
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There are no experimental AIP or VIP data for RH 10. Only the AIP and VIP values
calculated by the DFT method are available (Table 3).

To determine the AIP of all RH by the DFT method, the energies E of the most stable
RC(a) forms were used, which were selected from among several calculated possible RC(a)
forms. Such most stable forms of RC(a) for all RH, with the exceptions of RH 10, 14, 15,
are given in Tables 3 and 4 and Figures 4–7.

When one electron is removed from the RH 10 molecule, a strong elongation of one
C-C bond of the cyclobutane ring occurs with the formation of RC(a) Cis- and Trans-10
(closed), which, with even greater elongation, leads to the formation of RC(a) Cis- and
Trans-10 (opened) (Figure 9).
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In the case of RH 10, the most stable form of RC(a) has an opened, not closed, form
of a cyclobutane ring and an energetically more advantageous conformation of a cyclohex-
ane ring (Figure 9). The energies calculated by the DFT method E(Cis-10 (opened)) =
−391.456331969359 Eh and E(Trans-10 (opened)) = −391.459874400365 Eh correspond to
the estimates AIP(Exp) = AC·AIP(Cis-10 (opened)) = 8.02 eV and AIP(Exp) = AC·AIP(Trans-
10 (opened)) = 8.04 eV, respectively.

According to the equation of the green line in Figure 8, the average value of 8.03 eV
of the AIP(Exp) estimates correspond to D(O) = 233% for RH 10. This value of D(O)
significantly exceeds the experimental value of D(O) = 164% for RH 10.

The average estimated value of AIP = 8.27 eV for RH 10, calculated based on the
closed (8.50 eV) and opened (8.03 eV) RC(a) forms, corresponds to D(O) = 180%, which is
closest to the experimental value of D(O) = 164%.

2.4. Molecule X with Adiabatic Ionization Potentials Equal 8.55 ± 0.03 eV

To identify the component of the reaction mixture with AIP = 8.55 ± 0.03 eV, we
analyzed the AIP and VIP of all components and their possible products, with the exception
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of copper compounds, since the initial complex was rapidly destroyed, and the composition
of intermediate and final complexes was not determined.

Molecule X with AIP = 8.55 ± 0.03 eV was not identified. The only component of
the reaction mixture for which there are no experimental data on AIP and VIP were DMG
molecules, which were presumably released into the solution during the rapid destruction
of the initial catalytic complex during the reaction.

To estimate the AIP(Exp) values for Cis- and Trans-DMG molecules by DFT, calcula-
tions were performed for the components of the reaction mixture—oxidant, solvent and
DMG molecules, related molecules and possible oxidation reaction products molecules
(Figures 10 and 11 and Table 5).
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Figure 10. DFT calculated structures of the components of the reaction mixture, related molecules
and possible oxidation products.
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Figure 11. Correlations between DFT calculated and experimental values of AIP: AIP(Exp) =
1.0241AIP(DFT), R2 = 0.9864.
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The structures of the compounds used in the DFT calculations: components of the re-
action mixture: water (16), hydrogen peroxide (17), acetonitrile (18), dimethylglyoxime (19);
related molecules: formaldehyde oxime (20), acetaldehyde oxime (21), acetone oxime (22),
cyclohexanone oxime (23); oxidation products: acetonitrile N-oxide (24), dimethylfuroxan
(3,4-dimethylfurazan N-oxide) (25); related compounds: pyridine N-oxide (26), nitrosoben-
zene (27), are shown in Figure 10.

The XYZ coordinates of all atoms of DFT optimized structures of the 16-27 compounds
are reported in the Supplementary materials file, Table S1.

Molecule X = Trans-19 with estimated value of AIP(Exp) = 8.53 eV is the only compo-
nent of the reaction mixture that meets the required AIP = 8.55 ± 0.03 eV (Table 5).

The Cis-19 molecule, which was part of the catalytic complex (Scheme 1), changes
its conformation to a more stable one during the transition to the solution and turns into
Trans-19 (see E in Table 5). The authors of other papers have also previously reported
greater energy stability of the Trans-19 compared to the Cis-19 molecule [90–92].

It is known that under oxidizing conditions DMG (19) turns into compound 25, which
is a dimer of compound 24 [93–98]. Therefore, we checked GC-MS chromatograms of
oxidation products RH 3–12 for the presence of molecules of compounds 19 and 25.

Table 5. Experimental and DFT calculated adiabatic ionization potential (AIP, eV) and DFT calculated
energies (E, Eh) of molecules (Mol) and radical cations (RC) of compounds 16–29 *1.

No. Exp. DFT AC·DFT Mol RC(a)

16 12.6223 ± 0.0003 [99] 12.51 12.81 −76.429588867406 −75.969951537539

17 10.62 [100] 10.38 10.63 −151.553995970550 −151.172707685586

18 12.201 ± 0.002 [101] 11.89 12.18 −132.730425658549 −132.293392421907

Cis-19 - 8.07 8.27 −417.022028262935 −416.725628407721

Trans-19 - 8.33 8.53 −417.034738983103 −416.728471544019

20 10.11 *2 [102] 10.00 10.24 −169.802678736992 −169.435077031170

21 10.0 *3 [103] 9.45 9.68 −209.110507501338 −208.763348867177

22 9.1 *3 [103] 8.81 9.02 −248.417877328829 −248.094069626012

23 8.97 ± 0.03 [104] 8.52 8.73 −365.112887996007 −364.799893373906

24 9.92 [97] (VIP) 9.64 9.87 −207.879576709614 −207.525434053952

25 9.01 [98] (VIP) 8.75 8.96 −415.802311396769 −415.480874509974

26 8.38 ± 0.02 [105] (VIP) 8.13 8.33 −323.394811420757 −323.096133440060

27 8.0 [106] 7.93 8.12 −361.475462562199 −361.183887006740

*1 The adiabatic coefficient AC = 1.0241 was used. VIP—vertical ionization potential. *2 https://webbook.
nist.gov/cgi/cbook.cgi?ID=C75172&Units=SI&Mask=20#ref-2 (accessed on 5 March 2022), comment of Lias,
S.G.; Bartmess, J.E.; Liebman, J.F.; Holmes, J.L.; Levin, R.D.; Mallard W.G. (accessed on 15 March 2022).
*3 https://webbook.nist.gov/cgi/cbook.cgi?ID=C107299&Units=SI&Mask=20#ref-1, comment of Lias, S.G.; Levin,
R.D.; Kafafi, S.A. (accessed on 15 March 2022).

It was found that the peak of DMG (19) was present, and the peak of its oxida-
tion product 25 was absent, in chromatograms of oxidized RH 9–12. In contrast, in the
chromatograms of oxidized RH 3–8, the peak of DMG (19) was absent, and the peak of
compound 25 was present.

Thus, in the catalytic system studied by us, the oxidation processes of substrates
were controlled by the component of the reaction mixture that had the lowest AIP. In the
case of RH 9–12 with AIP ≤ AIP(Trans-DMG) = 8.55 ± 0.03 eV (the area of the green
straight line in Figure 8), RH oxidation prevented DMG oxidation. In the case of RH with
AIP ≥ AIP(Trans-DMG) = 8.55 ± 0.03 eV (the area of the blue straight line in Figure 8),
DMG is oxidized and along with it, RH 3–8 were oxidized as well.

https://webbook.nist.gov/cgi/cbook.cgi?ID=C75172&Units=SI&Mask=20#ref-2
https://webbook.nist.gov/cgi/cbook.cgi?ID=C75172&Units=SI&Mask=20#ref-2
https://webbook.nist.gov/cgi/cbook.cgi?ID=C107299&Units=SI&Mask=20#ref-1
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2.5. Additional Methodological Comments

We wrote this chapter to help readers better understand and follow the path and logic
of our research. The chapter also highlights the significance of the main result, achieved
using methodologically new characteristics, D(O) and D’(O). Both of which we introduced.

In our catalytic system, after the oxidation of eleven hydrocarbons of varying struc-
tures under conditions that were the same or similar, it was found that conversions from
substrates differed greatly—almost two orders of magnitude when cyclohexane (RH 2)
was included in the row of hydrocarbons, and by more than an order of magnitude in the
row of RH 3–12, otherwise.

The cause for this was not clear in advance, the peculiarities of the structure of the
substrates or the features of the catalytic system we used, which we were more inclined
to do, since a gas, presumably molecular oxygen, an uncontrolled amount, began to be
actively released into the system about five minutes after the start of the reaction. For these
reasons, it is our opinion that all widely used characteristics that explicitly or implicitly take
into account conversions, such as TON and the yield of the target product, were not suitable
for the systematization of data on the composition of oxidation products. Information
about the selectivity of the oxidation process also could not be used because of the different
structure of the substrates.

It is for such a situation as ours in which we introduced two methodically new
characteristics D(O) and D’(O), with D(O) being the main one. D(O) does not take into
account the conversion of the substrate and, therefore, do not depend on the factor we have
not taken into account that influenced the conversion.

Any substrate can be partially or completely oxidized, and in other cases it is sufficient
to indicate the TON or yield of the target product to show how strongly the substrate is
oxidized. The main difference between D(O) and TON or the yield of the target product
is that it is a distributive characteristic of the 100% normalized composition of oxidation
products. Therefore, we introduced the term “distributive oxidation depth”, D(O), the
combination of the words “distributive” and “depth” is important. D(O) was introduced
as a quantitative characteristic.

Based on the TON or the yield of the target product, it is also possible to develop
one or more quantitative characteristics of the oxidation depth. In order to do this, you
need to specify a measurement scale, for example, choose a substrate for “0”, and for
“100” complete oxidation of the substrate to CO2 and H2O in the case of hydrocarbons, or
choose other practically convenient scales. Currently, as far as we know, such a quantitative
approach is yet to be implemented in the field of hydrocarbon oxidation.

The main result obtained by using D(O) as a quantitative characteristic of the composition
of oxidation products is the construction of a correlation of D(O) and AIP(RH) (Figure 8). This
correlation allowed us to determine that the value of AIP(trans-DMG) = 8.55 ± 0.03 eV is the
boundary for the course of two different mechanisms of hydrocarbon oxidation, depending
on the values of their AIP(RH) relative to the value of AIP(trans-DMG), where trans-DMG
is an energetically more stable form of cis-DMG ligand molecules that have passed into
solution.

Unlike the assigned order of RH compound numbers, which can be arbitrary (Figure 2A),
when using the physical quantity AIP(RH) (Figure 8), the position of each point is strictly
defined and each point, including the intersection point of two straight lines, has a strictly
defined meaning—a specific chemical compound.

At the same time, the characteristic D(O) is not devoid of methodological shortcomings,
the main of which is its inability to account for different degrees of oxidation of such
compounds such as alcohols and ketones. In some cases, including ours, the errors made
due to such non-accounting were less than the received gains; this was due to the simplicity
of formula (1) as well as the exclusion of information about the conversion of the substrate
from the mathematical calculation scheme.

For the above reason, we believe that the new characteristic D(O) is a simplified and
auxiliary characteristic compared to the main and more accurate characteristic TON, which
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takes into account the varying degrees of oxidation of compounds such as alcohol and
ketone, and the conversion of the substrate.

In our opinion, for many catalytic systems with missing unaccounted factors and
proper convergence of the substrate conversion values, the use of TON should be better
justified than the use of D(O). In such cases, to compare the oxidation results in catalytic
and non-catalytic processes, instead of D(O), SOP can be used, the values of which are
pre-calculated for the subsequent calculation of TON.

Since we already know what to strive for (Figure 8), we checked whether it is pos-
sible to get the same basic result using SOP and TON characteristics instead of D(O), for
correlation with AIP(RH)? It turned out that it was possible (Figure 12)!
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Figure 12. The dependence of the SOP (A) and TON (B) on the AIP for hydrocarbons 3–12.

The points (AIP;SOP) for all RH, except RH 6 (red), are located along two straight lines:
SOP = −466.94AIP + 4188.4, R2 = 0.9598, for AIP ≤ 8.62 eV (green) and SOP = 164 ± 25 for
AIP ≥ 8.62 eV (blue) (Figure 12A).

The points (AIP;TON) for all RH are located along two straight lines: TON =−51.433AIP
+ 445.66, R2 = 0.9194, for AIP ≤ 8.54 eV (green) and TON = 5.0703AIP − 37.126, R2 = 0.4877,
for AIP ≥ 8.54 eV (blue) (Figure 12B).

AIP(X) = 8.62 ± 0.10 eV (Figure 12A) and AIP(X) = 8.54 eV ± 0.10 (or AIP(X) = 8.52 eV
± 0.10 if TON = 7.6 ± 4.6 for AIP ≥ 8.54 eV (blue)) (Figure 12B).

According to the previously provided data (Table 5), all estimates made on the basis
of SOP and TON, although with less than for D(O), but with sufficient accuracy indicate
trans-DMG molecules as the only chemical and physical object that can correspond to the
intersection point of two straight lines (Figure 12). Thus, the main result, with the help of
our methodically new simplified characteristic D(O) and extended to the use of stricter
characteristics SOP and TON, opens up new ways of planning and processing the results
of catalytic experiments to study the mechanisms of oxidation reactions of substrates.
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As a methodologically new tool, we propose to select special rows of substrates for
oxidation in such a way that the range of their AIP or VIP values would include a point
corresponding to the ligand that is part of the catalytic complex. With this approach,
according to the values of AIP or VIP it is possible to select not only rows of substrates, but
also a row of ligands.

It can be expected that the variation of the type of metal ion, the controlled change in
the degree of its oxidation in the composition of the complex, as well as the determination
of the AIP and VIP values of the catalytic metal complex, can be a useful methodological
addition to the special selection of the rows of oxidized substrates and ligands.

It should be noted that, in our opinion, the use of AIP makes more sense for the course
of redox reactions in condensed media, but in the gas phase, it is often easier to determine
the VIP values. To construct correlations, it can be recommended that one type of values be
used: AIP or VIP, at best, or a combination of the AIP and VIP values tested for consistency,
at worst, since the differences between AIP and VIP can be equal to both 0.5 and 0.01 eV
for different substrates, ligands, and components of the reaction mixture.

In conclusion, we would like to draw attention to the fact that we carried out quantum
chemical calculations to clarify the reliability of experimental data and obtain theoretical
estimates of the values of AIP and VIP that are not known from the experiment. From a
methodological point of view, conducting quantum chemical calculations is an auxiliary
tool that can be dispensed with if there is a reliable and complete set of experimental data
on AIP and VIP substrates, ligands, and components of the reaction mixture.

Our work is devoted to catalysis, not to the development of a new universal theo-
retical method for predicting AIP and VIP of a wide range of compounds. Therefore, for
greater logical consistency of the material presented and to increase the reliability and
accuracy of theoretical predictions, we determined and used three AIP(DFT) and AIP(Exp)
proportionality coefficients: 1.0363 (R2 = 0.9988), 1.0510 (R2 = 0.9982) (Figure 4(left)) and
1.0241 (R2 = 0.9864) (Figure 11), and not one equal to 1.0347 (R2 = 0.9822).

Radical cations in different electronic states can be calculated for the same molecule.
To determine the AIP(DFT), it is necessary to use the energy E calculated for the most
energetically stable structure of the radical cation. The correctness of choosing the structure
of the most stable radical cation was controlled by the characteristic change in the lengths of
chemical bonds in known cases and by sorting through all possible structures for previously
unexplored cases.

The characteristic changes in the lengths of chemical bonds (see Figures 5–7 and 9)
that occur during a single ionization of molecules are determined by the composition of the
upper occupied molecular orbitals of molecules and the single occupied molecular orbitals
of radical cations.

3. Materials and Methods

Complex 1 was synthesized in ethanol according to the technique [107]. A 50%
aqueous solution of H2O2 (Sigma-Aldrich) was used. Acetonitrile was qualified for HPLC
(Sigma-Aldrich). Hydrocarbons 2–12 purchased from different companies had a purity of
at least 99% and were used without additional purification.

Hydrocarbons were oxidized in a glass thermostated reactor equipped with a jacket
and reflux condenser with stirring on a magnetic stirrer. Catalyst 1 was brought in immedi-
ately before adding the oxidizer solution. The reaction temperature was 50 ◦C. Upon the
fast method (~3 s) of oxidizer solution introduction, the reaction time was 30 min.

The reagent ratio 50% H2O2 (mL)/CH3CN (mL)/Catalyst (mg)/Hydrocarbon (g) was
used: 8/8/20/0.1 for 2; 10/10/60/1 for 3 and 4; 10/10/20/0.1 for 5–12.

Conversions of the hydrocarbons 2–12 were calculated from the areas of chromato-
graphic peaks obtained on a gas chromatograph (Chystallux 4000 M, Russia) equipped with
a flame ionization detector. The structure and composition of the hydrocarbons 2–12 oxida-
tion products were determined in the diethyl ether extract using GC-MS on a Finnigan MAT
95 XL instrument, with the energy of ionizing electrons 70 eV. Chromatographic techniques,
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operating modes, and characteristics of the devices are described in detail earlier [46]. To
identify the oxidation products of hydrocarbons 2–12, reference mass spectra of the NIST 11,
17 databases were used [108].

Orca—an ab initio, DFT, and semiempirical SCF-MO package—version 3.0.1 was used
for all DFT calculations in the B3LYP/TZVPP level of theory [109,110].

The ChemCraft 1.7 program was used to create input files, visualize and design the
calculation results [111].

4. Conclusions

A new quantitative characteristic “distributive oxidation depth D(O), %” was success-
fully introduced to compare quantitatively the composition of the oxidation products of
eleven RH hydrocarbons of different structures: mono-, bi-, and tri-cyclic, framework, and
aromatic.

The proposed D(O) method is suitable for systematization and comparison of the
distributions of oxidation products of different substrates both in the same and in different
catalytic and non-catalytic conditions.

In the studied system, the oxidation processes of substrates are controlled by the
component of the reaction mixture that has the lowest adiabatic ionization potential.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal12040409/s1, Table S1: The XYZ coordinates of all atoms of
all structures optimized by the DFT method.
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