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Abstract: Nanocrystalline Ti−Beta zeolite with high hydrophilicity and a Ti−rich exterior was suc-
cessfully prepared via a dissolution–recrystallization method. With the post−treatment of tetraethy-
lammonium hydroxide (TEAOH) solution at elevated temperature, the Si and Ti species within the
Ti−Beta matrix were partially dissolved and recrystallized on the outer surface of crystals, resulting in
the Ti−rich exterior and higher hydrophilicity, which improved the accessibility of the active Ti sites
and the enrichment of H2O2. Simultaneously, some of the closed Ti(OSi)4 species were transformed
to more active open Ti(OSi)3OH or Ti(OSi)2(H2O)2(OH)2 species. The modified Ti−Beta zeolite
exhibited greatly enhanced catalytic performance in the epoxidation of cyclohexene in comparison to
the parent Ti−Beta.

Keywords: Ti−Beta; Ti−rich exterior; hydrophilicity; cyclohexene epoxidation

1. Introduction

Epoxycyclohexane (CHO) serves as an important raw material for the production of a
series of high value−added organic compounds [1,2], such as pharmaceutical intermediates,
pesticides, resins, surfactants, photosensitive coatings and adhesives [3]. To date, the main
industrial synthetic methods of CHO include being separated from light oil, electrochemical
synthesis and cyclohexene (CHE) epoxidation [4–6]. The former two methods have some
drawbacks such as low purity, poor reactivity, high energy consumption and serious
environmental pollution, whereas the cyclohexene epoxidation with hydrogen peroxide
(H2O2) as an oxidant and titanosilicates as a heterogeneous catalyst has relatively low cost
and meets the requirements of green and sustainable development. It has become the most
promising synthetic method for CHO [7].

The first−generation titanosilicate TS−1 reported by Taramasso et al. in 1983 is the
most studied and widely used catalyst in the catalytic oxidation reaction [8]. However,
limited by the relatively narrow 10−member ring (10−MR) pores (0.51–0.56 nm) of MFI
topology, it is difficult for bulky cyclohexene to access the Ti active sites located within the
micropores of TS−1. Therefore, the catalytic performance for the epoxidation of cyclohex-
ene is poor because of the pore blocking and fast deactivation. Afterward, a series of micro-
porous titanosilicates with different framework topologies and larger pore sizes, such as
Ti−MWW [9], Ti−MOR [10] and Ti−*BEA (Ti−Beta) [11], and Ti−containing mesoporous
silicas, such as Ti−SBA−15 [12] and Ti−MCM−41 [13], have been reported. Notably, com-
pared with TS−1 and Ti−MWW, Ti−Beta with an external or three−dimensional 12−MR
pore system exhibited superior activity in processing relative bulky substrates, such as
the epoxidation of cyclohexene [14,15]. However, the synthesis of conventional Ti−Beta
zeolite usually contains Al ions, and the Brønsted acid sites generated by the framework
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Al ions reduce the activity of Ti−Beta in the epoxidation of olefins. Thus, the synthesis of
Al−free systems has been intensively studied. To date, several synthetic methods have
been reported for Al−free Ti−Beta zeolites, including hydrothermal synthesis [16–18],
dry−gel conversion [11] and post−treatment synthesis [19–21]. Moreover, due to the differ-
ences in particle size and hydrophilicity/hydrophobicity of Ti−Beta prepared via different
synthetic strategies, the catalytic activity is also distinct. For instance, the Ti−Beta zeolite
hydrothermally synthesized with the assistance of F- ions possessed microsized crystals
(>1 µm), which induced severe diffusion constraints and thus poor activity in the cyclo-
hexene epoxidation reaction [17,18,22]. The hydrothermally synthesized Ti−Beta zeolites
generally contain a large number of silanol groups due to the intergrowth of polymorphs A
and B, which hinders the adsorption of organic molecules, giving rise to poor activity in
the epoxidation of cyclohexene [22].

It is generally recognized that the main factors affecting the catalytic activity of
Ti−zeolites/H2O2 system are Ti active sites, diffusion limitation and hydrophilicity/hydrop
hobicity of the zeolite frameworks. In order to further improve the catalytic performance of
oxidation reactions involving bulky molecules such as cyclohexene, constructing hierarchi-
cal Ti−Beta crystals with intracrystalline mesopores or improving the accessibility of active
Ti sites by adjusting the location of titanium species is also an effective strategy [23–25].
At present, the methods for fabricating hierarchical Ti−Beta zeolites mainly include the
templating and non−templating methods [26]. Both hard and soft templates can be used in
direct synthesis [27,28], while the non−templating methods include post−synthesis [19,29]
and recrystallization [30]. You et al. reported a hierarchical Ti−Beta zeolite synthesized
with three−dimensional ordered mesoporous carbon as a hard template, and it showed
an improved catalytic performance in the cyclohexene epoxidation reaction compared
with the conventional Ti−Beta containing sole micropores [27]. Hierarchical Ti−Beta
zeolites constructed by Ren et al. using cetyltrimethylammonium bromide as a soft tem-
plate also showed dramatically improved activity in the epoxidation of cyclohexene and
n−dodecene [28]. Yu et al. prepared a hierarchical Ti−Beta zeolite with abundant inter-
connected intracrystalline meso/macropores via a controllable fluoride etching approach.
The resultant hierarchical Ti−Beta exhibited remarkably enhanced activity in the oxidative
desulfurization of bulky molecules of dibenzothiophene and 4,6−dimethylbenzothiophene,
compared to other titanosilicates [31]. Although fabricating hierarchical structures can
release the diffusion constraints, the Ti active centers are still mainly located inside zeolite
crystals and the substrates need to diffuse inside the pore channels. Thus, concentrating
the Ti active centers on the external surface of zeolites would be a more effective method
to release the diffusion constraints and improve the utilization efficiency of Ti sites. Addi-
tionally, the hydrophilicity/hydrophobicity of titanosilicates is also one of the important
factors affecting the catalytic performance. Normally, the hydrophobic Ti−zeolites are
expected to achieve high activity in the olefin epoxidation reactions, as it can improve
the adsorption capacity of organic substrate molecules. However, Bregante et al. proved
that the hydrophilic Ti−Beta showed superior catalytic performance in alkene epoxidation
compared to the defect−free hydrophobic Ti−Beta [32]. This was explained by the fact that
the disruption of hydrogen−bonded H2O clusters anchored to (SiOH)4 near Ti active sites
by the epoxidation transition states could produce entropy gains. Wei et al. proposed that
the hydrophilic Ti−Beta is more beneficial for the enrichment of H2O2, thus facilitating the
formation of the active intermediate Ti−OOH species by the interaction of tetrahedrally co-
ordinated Ti species with H2O2 [33]. Therefore, the construction of a highly active Ti−Beta
catalyst for the cyclohexene epoxidation reaction by tailoring the location of Ti active sites
and hydrophilicity/hydrophobicity is still highly desirable.

In our recently published work, nanosized Ti−Beta with high Ti content was synthesized
using the structural reconstruction method [22]. In the present study, a TEAOH−assisted
post−modification process was performed over this nanosized Ti−Beta zeolite with the
aim to enhance the catalytic performance in the epoxidation reaction of bulky cyclohexene.
The post−modification conditions, including the H2O/Si ratio, TEAOH/Si ratio and
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treatment temperature, were carefully investigated and determined to achieve higher
catalytic activity. Furthermore, a possible modification mechanism was proposed by
tracking the post−modification process. The physicochemical properties of Re−Ti−Beta
were then analyzed and compared to those of parent Ti−Beta zeolite to give the reason
for the enhanced catalytic performance. The catalytic conditions as well as the reusability
were also studied for Re−Ti−Beta zeolite to construct a highly active titanosilicate/H2O2
catalytic system for the epoxidation reaction of cyclohexene.

2. Results and Discussion
2.1. Synthesis of Re−Ti−Beta Catalyst by Post−Modification

The synthesis of Re−Ti−Beta was performed by modifying the nanosized Ti−Beta
in the aqueous TEAOH solution at elevated temperature. As the TEAOH solution not
only provided an alkaline medium but also served as OSDA, the dissolution of the zeolite
framework and the recrystallization process could occur simultaneously in the TEAOH
treatment. Thus, the treatment condition would significantly affect the balance between
the above−mentioned dissolution and recrystallization process and then the textural and
catalytic properties of Re−Ti−Beta. The treatment conditions, including the H2O/Si ratio,
TEAOH/Si ratio and treatment temperature, were firstly investigated in detail, with the
catalytic performance in the cyclohexene epoxidation reaction as the evaluation criterion.
As shown in Figure 1A, with the increase in H2O/Si ratio, the CHE conversion firstly
increased and then decreased. The main product was CHO, together with the by−products
of 1,2−cyclohexanediol (CHD) derived from hydrolysis of CHO and cyclohex−2−en−1−ol
(CHEL) and cyclohex−2−en−1−one (CHEE) formed by the allylic oxidation of CHE. The
increase in H2O/Si ratio from 24 to 60 enhanced the CHO selectivity from 80.1% to 86.8%
(Figure 2A). The H2O/Si ratio affected the alkalinity of the solution in the modification
system, and the CHE conversion reached the maximum value when the H2O/Si ratio was
36. Then, fixing the H2O/Si ratio at 36, the influence of the TEAOH/Si ratio on the catalytic
performance of Re−Ti−Beta was further investigated (Figure 1B). With a low TEAOH/Si
ratio of 0.04, the CHE conversion decreased obviously compared with the parent Ti−Beta
catalyst, probably because the amount of TEAOH was not enough for recrystallization.
The CHE conversion gradually increased from 14.0% to 27.9% with an increase in the
TEAOH/Si ratio from 0.08 to 0.20. Then, the CHE conversion decreased to 24.9% and 22.6%
with a further increase in the TEAOH/Si ratio to 0.24 and 0.28, respectively, probably due
to the increased the alkalinity with excess TEAOH amount that then resulted in severe
structural dissolution. The variation of CHO selectivity with the increase in TEAOH/Si
also showed a volcano−shaped trend (Figure 2B). The treatment temperature was varied in
the range of 373 to 433 K (Figure 1C). The CHE conversion also showed a volcano−shaped
trend with a rising treatment temperature, while the CHO selectivity was almost consistent
(Figure 2C). The optimized temperature was 413 K. Therefore, the optimal conditions for
the modification of Ti−Beta were determined to be the H2O/Si ratio of 36, the TEAOH/Si
ratio of 0.20 and the treatment temperature of 413 K.

As has been revealed above, the molar ratio of TEAOH/Si was critical for the structural
modification of Ti−Beta zeolite. Thus, the physicochemical properties of Re−Ti−Beta
zeolites were further investigated with different TEAOH/Si ratios. As shown in Figure 3A,
B, with the TEAOH/Si ratio in the range of 0.04–0.24, the crystallinity of Re−Ti−Beta
gradually increased. The crystallinity was very low when the TEAOH/Si ratio was 0.04,
which was consistent with the low activity in the cyclohexene epoxidation reaction. The
reason for the low crystallinity was due to the extent of structural dissolution surpassing
that of recrystallization. With the increase in TEAOH/Si ratio, sufficient TEA+ ions were
provided to direct the recrystallization. Furthermore, the coordination state of Ti species in
Re−Ti−Beta samples was also investigated by UV−Vis spectra. The absorption bands in
the range of 200–230 nm belong to the tetrahedrally coordinated Ti species in the zeolite
framework. More specifically, the band at ~210 nm is attributed to the closed Ti(OSi)4
species, while the one at ~220 nm is ascribed to open Ti(OSi)3OH species [34]. The band at
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about 280 nm is due to the open hexa−coordinated Ti species of [Ti(OSi)2(H2O)2(OH)2]
in the framework of zeolites [35], while the anatase phase normally shows a band at
~320 nm. As shown in Figure 3C, compared to the pristine Ti−Beta with the main band
at 210 nm, the main band of Re−Ti−Beta−0.16 and Re−Ti−Beta−0.20 appeared at about
220 nm, accompanied by a weak shoulder band at 280 nm, revealing that Ti species
were mainly in the form of open site Ti(OSi)3OH species and a small amount of open
hexa−coordinated species due to the dissolution of framework Si species. Meanwhile,
the Re−Ti−Beta−0.04 showed a more obvious shoulder band at 320 nm, compared with
Re−Ti−Beta−0.20, suggesting the anatase phase was produced with a lower TEAOH/Si
ratio. As has been frequently reported, the open Ti species are more active than the closed
ones [34]. Thus, the existence of more open Ti species contributed to the higher activity
of Re−Ti−Beta−0.20 compared to pristine Ti−Beta. Additionally, the amount of TEAOH
molecules occluded in Re−Ti−Beta increased reasonably with the increase in TEAOH/Si
ratio (Figure 3D).
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Figure 1. Effects of H2O/Si molar ratio (A), TEAOH/Si molar ratio (B) and treatment temperature
(C) on the catalytic performance of Re−Ti−Beta in cyclohexene epoxidation. Reaction conditions:
catalyst, 0.05 g; cyclohexene, 10 mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL; temp., 333 K; time, 2 h.

Catalysts 2022, 12, x FOR PEER REVIEW 4 of 16 
 

 

Figure 1. Effects of H2O/Si molar ratio (A), TEAOH/Si molar ratio (B) and treatment temperature 
(C) on the catalytic performance of Re−Ti−Beta in cyclohexene epoxidation. Reaction conditions: 
catalyst, 0.05 g; cyclohexene, 10 mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL; temp., 333 K; time, 
2 h. 

24 36 48 60
0

20

40

60

80

100  CHO    CHD   CHEE + CHEL

D
ist

ru
bu

tio
n 

of
 p

ro
du

ct
s (

%
)

H2O/Si

A

 

0.0
0

0.0
4

0.0
8

0.1
2

0.1
6

0.2
0

0.2
4

0.2
8

0

20

40

60

80

100  CHO    CHD   CHEE + CHEL

D
ist

ru
bu

tio
n 

of
 p

ro
du

ct
s (

%
)

TEAOH/Si

B

 
373 393 413 433

0

20

40

60

80

100
 CHO    CHD   CHEE + CHEL

D
ist

ru
bu

tio
n 

of
 p

ro
du

ct
s (

%
)

Temperature (K)

C

 

Figure 2. Product distribution for cyclohexene epoxidation with Re−Ti−Beta as the catalyst. The 
Re−Ti−Beta was postsynthesized at different H2O/Si molar ratios (A), TEAOH/Si molar ratios (B) 
and treatment temperatures (C). The products included epoxycyclohexane (CHO), 1,2−cyclohex-
anediol (CHD), cyclohex−2−en−1−ol (CHEL) and cyclohex−2−en−1−one (CHEE). Reaction condi-
tions: catalyst, 0.05 g; cyclohexene, 10 mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL; temp., 333 K; 
time, 2 h. 
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Figure 2. Product distribution for cyclohexene epoxidation with Re−Ti−Beta as the catalyst.
The Re−Ti−Beta was postsynthesized at different H2O/Si molar ratios (A), TEAOH/Si mo-
lar ratios (B) and treatment temperatures (C). The products included epoxycyclohexane (CHO),
1,2−cyclohexanediol (CHD), cyclohex−2−en−1−ol (CHEL) and cyclohex−2−en−1−one (CHEE).
Reaction conditions: catalyst, 0.05 g; cyclohexene, 10 mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL;
temp., 333 K; time, 2 h.

To better understand the modification process of Ti−Beta, two typical catalysts of
Re−Ti−Beta−0.04 and Re−Ti−Beta−0.20 were further studied. The evolution of structure
crystallinity in the TEAOH treatment process, calculated according to the XRD patterns
(Figure S1), is shown in Figure 4A. In the modification process of Ti−Beta zeolite via the
treatment of TEAOH solution, the OH− groups can dissolve the Beta structure, and the
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TEA+ cations are then able to direct the recrystallization. The relative extent of the struc-
tural dissolution and recrystallization affected the structure of Re−Ti−Beta. As shown
in Figure S1 and Figure 4A, with the prolonging of treatment time, the crystallinity of
the Re−Ti−Beta−0.20 sample increased firstly and then leveled off after 16 h, except
for the crystallinity at 8 h. In contrast, the crystallinity of Re−Ti−Beta−0.04 was basi-
cally decreased with the increase in crystallization time. The resultant crystallinity of the
Re−Ti−Beta−0.20 was slightly higher than that of the pristine Ti−Beta, indicating the
extent of recrystallization was larger than that of dissolution. A similar phenomenon has
also been reported by Mao et al. in the modification of TS−1 via organic base [36].
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The Si and Ti amounts in the liquid phase of the treatment mixture were investi-
gated during the modification process. As shown in Figure 4B, the Si amount in the
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liquid−phase treatment mixture of Re−Ti−Beta−0.20 was ~15−fold higher than that of
Re−Ti−Beta−0.04, indicating that more silicon species were dissolved at a higher TEAOH
amount. The Ti amount in the liquid−phase treatment mixture of Re−Ti−Beta−0.20 was
also higher. The contents of Si and Ti both showed an obvious trend of first increasing
and then decreasing for Re−Ti−Beta−0.20, indicating that framework Ti atoms were also
dissolved in the alkaline medium and then the dissolved Ti species attended the recrystal-
lization process. However, the yield of Re−Ti−Beta−0.20 (79.9%) was lower than that of
Re−Ti−Beta−0.04 (98.5%), as shown in Figure 4C. It is possible that some of the dissolved
silicon and titanium species failed to crystallize onto the surface of Re−Ti−Beta−0.20
zeolite and remained in the alkali solution. However, the dissolved Si and Ti species from
Re−Ti−Beta−0.04 catalyst might exist in the solid as an amorphous phase, as indicated by
the relatively low crystallinity (Figure S1).

2.2. Characterization of Catalysts
2.2.1. Textural Properties of Re−Ti−Beta Catalyst

Considering the catalytic activity and the crystallinity of the catalysts, Re−Ti−Beta−0.20
was selected for further characterization and compared with the pristine Ti−Beta. The N2
sorption isotherms of Ti−Beta and Re−Ti−Beta−0.20 are shown in Figure 5. The hysteresis
loops appeared at 0.8 < P/P0 < 1.0 in the isotherms of Ti−Beta and Re−Ti−Beta−0.20
due to the presence of intercrystal mesopores. As shown in Table 1, the mesopore vol-
ume of Re−Ti−Beta−0.20 increased to 0.71 cm3 g−1 in comparison to that of Ti−Beta
(0.62 cm3 g−1). The external surface area of Re−Ti−Beta−0.20 was also larger than that
of Ti−Beta (174 m2 g−1 vs. 159 m2 g−1). The minor enhancement of the pore volume and
external surface area helped to release the diffusion constraints of bulky cyclohexene, which
also contributed to the increased activity in the epoxidation of cyclohexene. However, it
may not be the main reason for the enhanced activity. The SEM images of Ti−Beta and
Re−Ti−Beta−0.20 are shown in Figure 6. The pristine Ti−Beta zeolite was composed of
nanocrystals with the size of ∼50 nm. After the modification with TEAOH solution, the
crystal size was decreased, probably because some of the dissolved Si and Ti species failed
to crystallize onto the surface of the Ti−Beta crystals. The TEM images of Ti−Beta and
Re−Ti−Beta−0.20 further revealed the high crystallinity and the intercrystal mesopores
generated by the aggregation of nanosized particles (Figure S2), which was consistent with
the results of the N2 sorption isotherms.
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Table 1. Textural properties of Ti−Beta and Re−Ti−Beta−0.20.

Sample Bulk Si/Ti a Surface Si/Ti b
SSA (m2 g−1) Pore volume (cm3 g−1)

Stotal
c Smicro Sext

d Vtotal
c Vmicro

d Vmeso
e

Ti−Beta 28.1 102 610 451 159 0.80 0.18 0.62
Re−Ti−Beta−0.20 26.6 57 613 439 174 0.89 0.18 0.71

a Determined by ICP. b Determined by XPS. c Calculated by BET method. d Calculated by t−plot method.
e Vmeso = Vtotal − Vmicro.
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2.2.2. Coordination State and Location of Ti Active Sites

As shown above in the UV−Vis spectra (Figure 3C), open Ti(OSi)3OH and Ti(OSi)2(H2
O)2(OH)2 species were created in the modification process via TEAOH solution. The mi-
croenvironment of Ti active sites was further investigated via FT−IR, XPS and UV−Raman
spectra. As shown in Figure 7A, the two catalysts exhibited a characteristic band around
960 cm−1 in FT−IR spectra, which confirmed that the Ti species mainly existed in the Beta
framework [37]. In Ti 2p XPS spectra, the peaks at 465.4 and 459.9 eV, corresponding to
Ti 2p1/2 and 2p3/2, are attributed to the framework Ti(OSi)4 species [38]. As shown in
Figure 7B, the peak at 459.9 eV was unchanged after modification. However, the peak
attributed to Ti 2p1/2 shifted from 465.6 for Ti−Beta to 465.4 eV for Re−Ti−Beta−0.20. It re-
vealed that the electron cloud density in the outer layer of the framework Ti species slightly
increased, which was also related to the formation of Ti(OH)2(OSi)2(H2O)2 and Ti(OSi)3OH
species in Re−Ti−Beta−0.20 zeolite [39]. In the UV−Raman spectra of Ti−zeolites, the
band at 600–800 cm−1 is usually assigned to the hexa−coordinated Ti species [40]. The
absorption band at 1107 cm−1 is attributed to the symmetric vibration of Ti−O−Si in zeolite
frameworks [41]. As shown in Figure 7C, both Ti−Beta and Re−Ti−Beta−0.20 showed an
intense band at 1107 cm−1 indicative of the framework Ti species. However, a minor band
at 720 cm−1 appeared in the spectrum of Re−Ti−Beta−0.20 zeolite, due to a small amount
of open hexa−coordination Ti species, in good agreement with the band at ~280 nm in
the UV−Vis spectrum (Figure 3C). Although the coordination state of Ti active sites was
altered in the TEAOH treatment, the bulk Si/Ti ratio of Re−Ti−Beta−0.20 was comparable
to that of Ti−Beta (Table 1). However, the surface Si/Ti ratio of the Re−Ti−Beta−0.20
was 57, which was lower than that of Ti−Beta, suggesting Ti species were enriched on
the external surface of Re−Ti−Beta−0.20. It could be deduced that the dissolved silicon
and titanium species in the TEAOH treatment diffused to the crystal surface, and then
the recrystallization process occurred under the structural directing effect of TEAOH. In
order to verify the Ti−rich exterior of Re−Ti−Beta−0.20, the bulky triphenylamine (TPhA)
molecules were used as the poisoning reagent and were considered to selectively poison the
active Ti sites on the external surface of Re−Ti−Beta−0.20. The amount of TPhA (2 mmol)
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was about 70 times as much as the Ti amount (0.028 mmol) in the two Ti−Beta catalysts,
and it should be sufficient to poison the Ti sites that the TPhA molecules could access. As
shown in Figure 8, the results showed that the addition of TPhA hardly affected the CHE
conversion for Ti−Beta, but the CHE conversion decreased by 34% for Re−Ti−Beta−0.20,
suggesting that Re−Ti−Beta−0.20 has more Ti species distributed on the exterior than
Ti−Beta. It can be concluded that the enrichment of Ti species on the external surface
also contributed to the higher activity of Re−Ti−Beta−0.20 in the epoxidation of bulky
cyclohexene by enhancing the accessibility of Ti active sites.
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2.2.3. Hydrophilicity/Hydrophobicity Property

The appropriate hydrophilicity and hydrophobicity of Ti−zeolites have been proved
necessary to achieve high activity and selectivity for the alkene epoxidation reaction
with H2O2 [42]. The differences in hydrophilicity/hydrophobicity of the two catalysts
were revealed by the H2O adsorption isotherms. As shown in Figure 9A, at low values
of P/P0 (<0.2), the isotherms were almost identical for Ti−Beta and Re−Ti−Beta−0.20.
However, the uptake of H2O on Re−Ti−Beta−0.20 was significantly higher than that
of Ti−Beta at higher P/P0, which was mainly due to the larger amount of silanols in
the former material. The static H2O adsorption experiment also showed similar results
(Figure S3). The formation of these silanols was supposed to be caused by the structural
dissolution in the TEAOH treatment. Therefore, the hydrophilicity of Re−Ti−Beta−0.20
was significantly increased after TEAOH treatment. The FT−IR spectra in the hydroxyl
stretching region were also collected to evaluate the amount of silanols semi−quantitatively
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(Figure 9B). The band around 3730 cm−1 is attributed to the internal Si−OH, while the band
at 3520 cm−1 is ascribed to hydrogen−bonded silanol nests (Si−OH)4 [43]. Compared with
Ti−Beta, the 3730 and 3520 cm−1 bands became more intense for Re−Ti−Beta−0.20 due
to the formation of a large number of Ti−OH, Si−OH and (Si−OH)4 groups during the
modification process. This result was also consistent with the results of H2O adsorption.
Then, the effect of hydrophilicity on H2O2 adsorption was studied (Figure 9C). The amount
of adsorbed H2O2 over Re−Ti−Beta−0.20 was higher than that of Ti−Beta, indicating that
H2O2 molecules could be effectively enriched in the Re−Ti−Beta−0.20, benefiting from
its higher hydrophilicity. Thus, this also contributed to the improved catalytic activity of
Re−Ti−Beta−0.20 by enriching H2O2, compared to the pristine Ti−Beta.
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Figure 9. H2O adsorption isotherms (A) and FT−IR spectra (B) in the hydroxyl stretching region
of Ti−Beta (a) and Re−Ti−Beta−0.20 (b) at 298 K. The adsorption (C) of H2O2 on Ti−Beta and
Re−Ti−Beta−0.20. Adsorption conditions: 50 mg of dried catalyst; 3 mmol H2O2 in MeCN, 5 mL;
temp., 273 K (ice–water bath); time, 1 h.

Based on the careful characterization of the modification process and the obtained
Re−Ti−Beta, it could be concluded that a good balance between the dissolution and
recrystallization was achieved by tailoring the treatment condition, resulting in Re−Ti−Beta
with high crystallinity (Scheme 1). A similar modification has also been performed on the
TS−1 zeolite, with the tetrapropylammonium hydroxide (TPAOH) solution [44]. Although
the SDA−assisted dissolution–recrystallization processes of Ti−Beta and TS−1 are both
able to enhance the catalytic activity, some differences between the two cases cannot be
ignored. The appropriate amount of TEAOH in the modification of Ti−Beta was larger
than that of TPAOH in the case of TS−1 [44,45]. Intracrystal mesopores were observed for
the modified TS−1 zeolite, while the mesopores formed in the modification process were
mainly intercrystal ones in Ti−Beta [45,46]. Moreover, the enrichment of Ti species in the
modification of TS−1 was not observed [44]. This is probably because the larger 12 MR
pores in Beta zeolite favored the diffusion of the dissolved Ti and Si species out of the pores
and the recrystallization on the outer surface.
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2.3. Catalytic Performance in the Cyclohexene Epoxidation Reaction

As has been revealed in Figure 1B, the catalytic performance of Re−Ti−Beta−0.20
was superior to that of the pristine Ti−Beta in the cyclohexene epoxidation reaction. In a
typical run, the CHE and H2O2 conversion increased from 14.1% and 34.7% for Ti−Beta to
27.9% and 52.7% for Re−Ti−Beta−0.20. The H2O2 utilization efficiency was also increased
slightly from 40.6% to 52.9%. The kinetic profiles of cyclohexene epoxidation catalyzed
by Ti−Beta and Re−Ti−Beta in the temperature range of 313−343 K were recorded. As
shown in Figure 10A,B, the logarithm of the ratio of CHE concentration at “t” time to
“0” time (−ln [CHE]t

[CHE]0
) is plotted against the reaction time. A good linear relationship was

observed, indicating that cyclohexene epoxidation is a first−order reaction [47]. The
values of reaction rate constant (k) at different reaction temperatures based on the slope
of the curves in Figure 10A,B are listed in Table S1. The apparent activation energies (Ea)
of Ti−Beta and Re−Ti−Beta−0.20 in the temperature range of 313−343 K were further
calculated by using the Arrhenius equation k = e

−Ea
RT (Figure 10C). The result showed

that the Ea value of Ti−Beta (35.35 kJ mol−1) was higher than that of Re−Ti−Beta−0.20
(31.72 kJ mol−1), indicating that the modification process assisted by the TEAOH treatment
reduced the apparent activation energy, resulting in enhanced activity in the cyclohexene
epoxidation reaction. The above−detailed characterizations revealed that the Ti−rich
exterior, the improved hydrophilicity and the formation of open Ti species all contributed
to the enhanced activity of Re−Ti−Beta.

Catalysts 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

 
Scheme 1. Schematic description of the modification of Ti−Beta by TEAOH solution. 

2.3. Catalytic Performance in the Cyclohexene Epoxidation Reaction 
As has been revealed in Figure 1B, the catalytic performance of Re−Ti−Beta−0.20 was 

superior to that of the pristine Ti−Beta in the cyclohexene epoxidation reaction. In a typical 
run, the CHE and H2O2 conversion increased from 14.1% and 34.7% for Ti−Beta to 27.9% 
and 52.7% for Re−Ti−Beta−0.20. The H2O2 utilization efficiency was also increased slightly 
from 40.6% to 52.9%. The kinetic profiles of cyclohexene epoxidation catalyzed by Ti−Beta 
and Re−Ti−Beta in the temperature range of 313−343 K were recorded. As shown in Fig-
ures 10A and 10B, the logarithm of the ratio of CHE concentration at “t” time to “0” time ሺെ𝑙𝑛 ሾுாሿሾுாሿబሻ is plotted against the reaction time. A good linear relationship was observed, 
indicating that cyclohexene epoxidation is a first−order reaction [47]. The values of reac-
tion rate constant (k) at different reaction temperatures based on the slope of the curves in 
Figures 10A and 10B are listed in Table S1. The apparent activation energies (Ea) of Ti−Beta 
and Re−Ti−Beta−0.20 in the temperature range of 313−343 K were further calculated by 
using the Arrhenius equation 𝑘 ൌ 𝑒షಶೌೃ  (Figure 10C). The result showed that the Ea value 
of Ti−Beta (35.35 kJ mol−1) was higher than that of Re−Ti−Beta−0.20 (31.72 kJ mol−1), indi-
cating that the modification process assisted by the TEAOH treatment reduced the appar-
ent activation energy, resulting in enhanced activity in the cyclohexene epoxidation reac-
tion. The above−detailed characterizations revealed that the Ti−rich exterior, the improved 
hydrophilicity and the formation of open Ti species all contributed to the enhanced activ-
ity of Re−Ti−Beta. 

   
Figure 10. Kinetic analysis of cyclohexene epoxidation over Ti−Beta (A) and Re−Ti−Beta (B). Plots of 
apparent activation energy (C) in the cyclohexene epoxidation catalyzed by Ti−Beta (a) and 
Re−Ti−Beta−0.20 (b) catalysts. Reaction conditions: catalyst, 0.05 g; cyclohexene, 10 mmol; H2O2 (30 
wt.%), 10 mmol; MeCN, 10 mL. 

To develop a highly active Ti−zeolite/H2O2 catalytic system for the epoxidation of 
cyclohexene, the reaction conditions were further investigated for the Re−Ti−Beta−0.20 
catalyst. As depicted in Figures 11A and S4, the CHE and H2O2 conversion and the 

Figure 10. Kinetic analysis of cyclohexene epoxidation over Ti−Beta (A) and Re−Ti−Beta (B). Plots
of apparent activation energy (C) in the cyclohexene epoxidation catalyzed by Ti−Beta (a) and
Re−Ti−Beta−0.20 (b) catalysts. Reaction conditions: catalyst, 0.05 g; cyclohexene, 10 mmol; H2O2

(30 wt.%), 10 mmol; MeCN, 10 mL.

To develop a highly active Ti−zeolite/H2O2 catalytic system for the epoxidation of
cyclohexene, the reaction conditions were further investigated for the Re−Ti−Beta−0.20
catalyst. As depicted in Figure 11A and Figure S4, the CHE and H2O2 conversion and the
effective utilization of H2O2 were all increased with the increase in the catalyst amount
from 0.05 to 0.20 g. However, the hydrolysis of CHO was also promoted along with the
increase in catalyst amount due to the introduction of more Ti−related Lewis acid sites
(Figure 11A), which favored the side reactions and reduced the CHO selectivity. The effect
of reaction time on the cyclohexene epoxidation was subsequently investigated at 333 K
over Re−Ti−Beta−0.20 catalyst. As shown in Figure 11B, with the prolonging of reaction
time from 0.5 to 4 h, the CHE conversion increased from 14.8% to 33.1%. In addition, the
H2O2 conversion increased from 31.1% to 65.7% (Figure S5A), whereas the CHO selectivity
slightly decreased from 87.5% to 76.4% (Figure 11B) with prolonging of the reaction time,
indicating that the ring−opening reaction of CHO and deep oxidation of CHE might occur,
generating by−products. The H2O2 utilization efficiency exhibited a volcano−type change
(Figure S5B). Moreover, the decline in H2O2 utilization efficiency at longer reaction times
was probably caused by pore blockage, which promoted the ineffective decomposition of
H2O2. The reaction temperature also had a significant effect on the catalytic performance. It
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was obvious that higher reaction temperature favored higher CHE conversion (Figure 11C)
and H2O2 conversion and utilization efficiency (Figure S6) but lower CHO selectivity
(Figure 11C) for Re−Ti−Beta−0.20; thus, it could be deduced that high temperature easily
promoted the hydrolysis of CHO.
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Figure 11. Dependence of CHE conversion (a) and CHO selectivity (b) on the catalyst amount (A), 
reaction time (B) and reaction temperatures (C) over Re−Ti−Beta−0.20. Reaction conditions: CHE, 10 
mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL. 
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reaction time (B) and reaction temperatures (C) over Re−Ti−Beta−0.20. Reaction conditions: CHE,
10 mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL.

2.4. The Reusability of Re−Ti−Beta

To evaluate the reusability of Re−Ti−Beta−0.20, the used catalysts were recovered
by acetone washing and then reused for the epoxidation of cyclohexene again. As shown
in Figure 12A, the CHE conversion decreased from 27.9% to 19.6% compared with fresh
catalyst, and in the third run, the CHE conversion rate was 12.3%, while the CHO selectivity
was maintained at 82%. After four runs, the catalyst was regenerated by calcination in air at
823 K for 6 h, and the reactivity was restored in the fifth run, with the activity comparable
to that of the fresh catalyst. Compared with the fresh catalyst, the crystallinity of the
spent Re−Ti−Beta−0.20 catalyst was decreased after four runs but could be completely
recovered after calcination (Figure 12B). As shown in Figure 12C, the TG curve of the
spent catalyst after four runs had two weight loss stages in the temperature range of
298−1000 K, and the weight loss in the high−temperature region (473−1073 K) was
attributed to the decomposition of organics, accounting for 13.4 wt.%. After four runs,
the Ti amount in fresh Re−Ti−Beta−0.20 (Si/Ti = 26.6) hardly changed, as indicated
by the similar bulk Si/Ti molar ratio in the spent Re−Ti−Beta−0.20 (Si/Ti = 30.6). No
significant difference in coordination states of Ti species between the fresh and regenerated
catalysts was observed (Figure 12D), confirming that the Ti active center was robust in the
epoxidation of cyclohexene reaction. It could be concluded from the above analysis that
Re−Ti−Beta−0.20 is a reusable catalyst for cyclohexene epoxidation, and its deactivation
was mainly caused by carbon deposition.
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Figure 12. The recycling and regeneration (A) of Re−Ti−Beta−0.20 in cyclohexene epoxidation. XRD 
patterns (B), TG curves (C) and UV−Vis spectra (D) of fresh (a), spent (b) and regenerated (c) 
Re−Ti−Beta−0.20. The catalyst was washed with acetone three times after each reaction run and fi-
nally regenerated by calcination in air at 823 K for 6 h. 
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nopharm Chemical Reagent Co., Ltd, Shanghai, China.), tetraethylammonium hydroxide 
(TEAOH, 35%, SACHEM chemistry Co., Ltd, USA.), titanium butoxide (TBOT, 98%, Si-
nopharm Chemical Reagent Co., Ltd, Shanghai, China.), ammonium fluoride (NH4F, 96%, 
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Figure 12. The recycling and regeneration (A) of Re−Ti−Beta−0.20 in cyclohexene epoxidation.
XRD patterns (B), TG curves (C) and UV−Vis spectra (D) of fresh (a), spent (b) and regenerated (c)
Re−Ti−Beta−0.20. The catalyst was washed with acetone three times after each reaction run and
finally regenerated by calcination in air at 823 K for 6 h.

3. Materials and Methods
3.1. Chemicals

The chemicals, including commercial Beta zeolite (Si/Al molar ratio = 11, Shanghai
Xinnian Petrochemical Additives Co., Ltd, Shanghai, China.), nitric acid (HNO3, 65%,
Sinopharm Chemical Reagent Co., Ltd, Shanghai, China.), tetraethylammonium hydrox-
ide (TEAOH, 35%, SACHEM chemistry Co., Ltd, USA.), titanium butoxide (TBOT, 98%,
Sinopharm Chemical Reagent Co., Ltd, Shanghai, China.), ammonium fluoride (NH4F, 96%,
Sinopharm Chemical Reagent Co., Ltd, Shanghai, China.) and cyclohexene (CHE, >99.0%,
Macklin, Shanghai, China.), were all used as purchased.

3.2. Catalyst Preparation
3.2.1. Preparation of the Parent Ti−Beta Zeolite via Structural Reconstruction Method

The parent Ti−Beta zeolite was prepared following the procedures in the literature [22].
Typically, the commercial Beta zeolite (Si/Al = 11) was dealuminated with 13 M HNO3
solution at 413 K for 24 h. The resultant product was then filtered, washed, dried and finally
calcined at 823 K for 6 h. The dealumination and calcination process was repeated twice,
and the resultant sample was named DeAl−Beta (Si/Al > 2000). Ti−Beta was prepared via
a structural reconstruction method with TEAOH as the organic structure−directing agent
(OSDA), DeAl−Beta as the silica source and NH4F as the crystallization−supporting agent.
The synthetic gel with a molar composition of 1.0 SiO2:0.33 TBOT:0.6 TEAOH:4 H2O:0.4
NH4F was hydrothermally crystallized at 423 K for 24 h with a rotation rate of 10 rpm.
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After crystallization, the product was filtered, washed with deionized water, dried at 353 K
overnight and calcined at 823 K for 6 h. The obtained sample was denoted as Ti−Beta.

3.2.2. Preparation of Re−Ti−Beta by Post−Modification of Ti−Beta

The post−modification of Ti−Beta zeolite was performed in the TEAOH aqueous
solution with the composition of 1.0 SiO2:(0.04−0.28) TEAOH:(24−60) H2O, where the
silica was from Ti−Beta. The mixture was then heated at the desired temperature for
24 h under static conditions. The product was separated from the mixture by filtration,
washed with deionized water and dried at 353 K overnight, and the obtained sample was
further calcined at 823 K for 6 h to obtain Re−Ti−Beta−x (x represents the molar ratio of
TEAOH/Si).

3.3. Characterization Methods

The X−ray diffraction (XRD) patterns were collected on a Rigaku Ultima IV X−ray
diffractometer using Cu Kα radiation (λ = 0.1541 nm) at 35 kV and 25 mA to confirm the
structure and evaluate the crystallinity. To determine the morphology, scanning electron
microscopy (SEM) images were taken on a Hitachi S−4800 microscope. The transmission
electron microscopy (TEM) images were taken on a JEOL−JEM−2100 microscope. The
textural properties were analyzed by nitrogen sorption at 77 K on a BELSORP−MAX
instrument after degassing at 573 K under vacuum for 6 h. The Brunauer–Emmett–
Teller (BET) analysis was carried out using the data in the relative pressure region of
P/P0 = 0.05–0.25, which provided the specific surface area. The contents of Si and Ti
were quantified by inductively coupled plasma (ICP) on a Thermo IRIS Intrepid II XSP
atomic emission spectrometer after dissolving the samples in an aqueous HF solution.
X−ray photoelectron spectroscopy (XPS) was performed with Al Kα (hν = 1486.6 eV) radi-
ation on AXIS SUPRA Imaging Photoelectron Spectrometer (Kratos Analytical Ltd, Japan.).
Charging effects were corrected by using the C 1s peak due to adventitious carbon with a
fixed binding energy of 284.6 eV. The solid−state 29Si MAS NMR spectra were recorded
on a VARIAN VNMRS−400 WB NMR spectrometer using a 7.5 mm T3HX probe and
single−pulse method. The Fourier transform infrared spectra (FT−IR) were recorded on a
Nicolet Nexus 670 FT−IR spectrometer in the absorbance mode at a spectral resolution of
4 cm−1. The sample was pressed into a self−supported wafer. Then, the wafer was set in a
quartz cell which was connected to a vacuum system and sealed with CaF2 windows. The
UV–visible (UV−vis) diffuse reflectance spectra were obtained on a Shimadzu UV−2700
spectrophotometer using BaSO4 as the reference in the region of 190–500 nm. The UV
resonance Raman spectra (UVRRS) were collected on a triple spectrograph Raman system
UV−Raman−100 with the excitation line at 244 nm and spectral resolution of 3 cm−1. The
contents of water and organic species occluded in the samples were determined by the
thermogravimetric (TG) analysis on a METTLER TOLEDO TGA/SDTA 851e instrument
from 298 to 1073 K with a heating rate of 10 K min−1 in air.

3.4. Liquid−Phase Epoxidation of Cyclohexene

The liquid−phase cyclohexene epoxidation reaction was carried out in a glass tube
equipped with a condenser. In a typical run, 50 mg catalyst, 10 mmol cyclohexene, 10 mL
acetonitrile (MeCN) and 10 mmol H2O2 (30 wt.%) were mixed in the reaction tube and
stirred vigorously at 333 K for 2 h. After the reaction, the reaction mixture was cooled with
ice water, and then the catalyst was separated from the reaction system by centrifugation.
The liquid−phase products were analyzed using a gas chromatograph (Shimadzu 2014,
FID detector) equipped with an Rtx−Wax capillary column, and the generated products
were identified by GC−MS (Agilent 6890 series GC system, 5937 network mass selective
detector). The remaining amount of H2O2 was determined by the titration method with
0.035 M Ce(SO4)2 aqueous solution.
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4. Conclusions

Based on the above results and discussions, four points are summarized as follows:
(1) Highly hydrophilic Re−Ti−Beta zeolite with a Ti−rich exterior was synthesized

by post−treating the parent Ti−Beta, which experienced a dissolution and recrystalliza-
tion process in the TEAOH solution at elevated temperature. The optimized treatment
conditions were carefully determined to produce Re−Ti−Beta zeolite with higher catalytic
performance in the epoxidation reaction of cyclohexene.

(2) In a typical run of the cyclohexene epoxidation reaction, the CHE and H2O2 conver-
sion increased from 14.1% and 34.7% for Ti−Beta to 27.9% and 52.7% for Re−Ti−Beta−0.20.

(3) With a comprehensive analysis of the characterization results, three main factors are
considered to contribute to the enhanced catalytic performance of Re−Ti−Beta, including
the enhanced accessibility of Ti active sites due to the Ti−rich exterior, the enrichment of
H2O2 ascribed to higher hydrophilicity and the generation of more active open Ti species.

(4) The facial synthesis of parent Ti−Beta zeolite and the fast post−treatment process
by TEAOH solution make the industrialization of highly active Re−Ti−Beta zeolite possible.
Moreover, Re−Ti−Beta zeolite has shown great potential in the epoxidation reaction of
bulky alkenes due to the open porosity compared to other microporous titanosilicates.
Last but not the least, the excellent reusability of Re−Ti−Beta zeolite via the regeneration
of calcination also makes it a potential industrial catalyst for the epoxidation reactions,
especially those involving bulky substrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal12040434/s1, Figure S1. XRD patterns of Re−Ti−Beta−0.04 (A) and Re−Ti−Beta−0.20
(B) postsynthesized for a different crystallization time of 0 h (a), 1 h (b), 4 h (c), 8 h (d), 12 h (e),
16 h (f), 20 h (g), 24 (h); Figure S2. The TEM images of pristine Ti−Beta (a) and Re−Ti−Beta−0.20
(b); Figure S3. TG curves of Ti−Beta (a) and Re−Ti−Beta−0.20 (b) after adsorption of water vapor
provided by saturated NH4Cl solution at 293 K for 24 h; Figure S4. Dependence of H2O2 conver-
sion (A) and H2O2 efficiency (B) on the amount of Re−Ti−Beta−0.20. Reaction conditions: CHE,
10 mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL; temp., 333 K; time, 2 h; Figure S5. Dependence
of H2O2 conversion (A) and H2O2 efficiency (B) on the reaction time over Re−Ti−Beta−0.20. Reac-
tion conditions: catalyst, 50 mg; CHE, 10 mmol; H2O2 (30 wt.%), 10 mmol; MeCN, 10 mL; temp.,
333 K; Figure S6. Dependence of H2O2 conversion (A) and H2O2 efficiency (B) at different reaction
temperatures over Re−Ti−Beta−0.20. Reaction conditions: catalyst, 50 mg; CHE, 10 mmol; H2O2
(30 wt.%), 10 mmol; MeCN, 10 mL; time, 2 h; Table S1. The average values of reaction rate constants
(k) at different reaction temperatures of Ti−Beta and Re−Ti−Beta−0.20 in cyclohexene epoxidation.
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