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Abstract: Previous experimental breakthroughs reveal the potential to create novel heterogeneous cat-
alysts for the electroreduction of CO2 to a high-value product CO using ligand-protected Au-based
nanoclusters. Since the chemical composition and geometric structures have been precisely defined,
it is possible to adopt robust design guidelines for the development of practical catalysts and to fun-
damentally elucidate the underlying reaction mechanism. In this short review, the computational
progress made to understand the experimentally observed reduction process on the following subset of
materials—Au25(SR)18

−, Au24Pd(SR)18, Au23(SR)16
− and Au21Cd2(SR)16

−—is described. A significant
finding from our first-principles mechanistic studies is that CO2 conversion on the fully ligand protected
nanoclusters is thermodynamically unfavorable due to the very weak binding of intermediates on the
surface region. However, the reaction becomes feasible when either Au or S sites are exposed through
the removal of a ligand. The results particularly point to the role of undercoordinated S sites in the
creation of highly functional heterogeneous catalysts that are both active and selective for the CO2

conversion process. The incorporation of dopants could significantly influence the catalytic reactivity of
the nanoclusters. As demonstrated in the case of the monopalladium substitution in Au25(SR)18

−, the
presence of the foreign atom leads to an enhancement of CO production selectivity due to the greater
stabilization of the intermediates. With the Cd substitution doping of Au23(SR)16

−, the improvement in
performance is also attributed to the enhanced binding strength of the intermediates on the geometrically
modified surface of the nanocluster.

Keywords: computational electrocatalysis; CO2 conversion; nanostructured functional materials;
structural disorder

1. Introduction

The relentless warming trend caused by human greenhouse CO2 emission, primarily
from burning fossil fuels, is regarded as an alarming measure of the Earth’s altered climate.
The consequence is visible in the local and regional extreme weather events that are
disruptive to modern life. Despite a global agreement to strengthen climate commitments,
the overall CO2 emission is on track to keep rising, unless a range of effective technologies
is developed and deployed. The electro-reduction of captured greenhouse gas CO2 is a
promising class of electrochemical transformation in the broad scheme of carbon capture
and utilization [1–12]. Powered by renewable electricity, it can potentially mitigate the
increasing level of CO2 in the atmosphere, while providing a promising pathway towards
sustainable and clean CO2 upgrade into a high value product at mild conditions. Among
the economically viable products from this process is CO due to its intrinsic properties and
its role as a starting reagent in other synthetic pathways.

The electrochemical reduction of CO2 (CO2RR) to CO involves two major steps occur-
ring at the interface between the cathode and electrolyte:

CO2 + 2H+ + 2e− = CO + H2O (1)

Catalysts 2022, 12, 505. https://doi.org/10.3390/catal12050505 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12050505
https://doi.org/10.3390/catal12050505
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-2886-2433
https://doi.org/10.3390/catal12050505
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12050505?type=check_update&version=3


Catalysts 2022, 12, 505 2 of 14

Each step involves the transfer of an electron, as the reactant is transformed into a product:

CO2 + H+ + e− = intermediate (2)

intermediate + H+ + e− = CO + H2O (3)

The first proton–electron transfer step involves the activation of C–O bonds to form the
related intermediate. In the second step, the intermediate rearranges to products followed
by desorption from the surface of the catalyst into the electrolyte. The proton–electron pair
originates from the water splitting in the anode:

H2O = 1/2O2 + 2H+ + 2e− (4)

The above process could be sustainable if driven electrochemically using electrical
energy from renewable sources, such as wind and solar [13–15].

CO2RR, however, presents major performance challenges in terms of efficiency as a
particular intractable issue is the CO2 molecule being fully oxidized and thermodynamically
stable. Although the equilibrium redox potential of CO2 to CO is merely −0.11 V vs. the
reversible hydrogen electrode (RHE), a larger overpotential (defined as the difference
between the equilibrium potential and the onset or practical potential) of about −1 V is
required due to the significant cost of disrupting the CO2 bonds [2]. When a far larger
overpotential is applied, the undesirable hydrogen evolution reaction (HER) competes with
CO2RR in the aqueous system generating H2 as a side product. Thus, the acceleration of
the kinetics of CO2RR and the concomitant suppression of the competing HER are of great
significance for large scale applications.

Facilitating efficiency and selectivity can be promoted via the rational design of effective
electrocatalysts. Transition metal nanoparticles (NPs) of transition metals are explored for
CO2RR as these materials have a quite solid track record of being used as catalysts for
other related reactions, such as CO oxidation [16,17], the oxygen reduction reaction [18–21]
and purely HER [22,23]. Among transition metals, the noble metal Au and Ag stand out in
exclusively reducing CO2 to CO. Their excellent mechanical property permits the fabrication of
materials with a different size, shape and component to improve CO2RR performance. A cyclic
voltammetry experiment on a 200 nm Ag NP revealed a current density peak at a moderate
overpotential of about −0.75 V associated with CO production [24]. The feature grows as
the NP shrinks from 200 to 1 nm, indicating that the rate of CO2 conversion is sensitive
to the particle size. Varying the shape also plays a role as evidenced by an experimentally
reported Ag nanoporous catalyst that is very selective for CO products [25]. The current
density shows a 300-fold increase over its polycrystalline counterpart at an overpotential
of ≤−0.5 V. Based on the powder X-ray diffraction pattern, the observed enhancement is
linked to an increase in the number of under-coordinated facets. This is attributed to the
favorable binding of the intermediates, resulting in smaller overpotentials needed to overcome
the thermodynamic barrier. Experiments on triangular Ag nanoplates with predominant
Ag(100) yield a 96.8% selectivity under −0.86 V [26]. Size effect is also utilized to tune the
catalytic activity and selectivity of Au NPs [27]. Differently sized NPs ranging from 4 to
10 nm show a prominent size-dependent activity/selectivity in the CO2RR with the 8 nm
NP reaching a Faradaic efficiency (FE) of 90% at −0.67 V. Based on density functional theory
(DFT) calculations, CO evolution is more favored on the edge sites, while the competitive
HER is more active on the corner sites. A significant conclusion is the activity/selectivity
of Au NPs can be tuned by varying the size to optimize the ratio of corner and edge sites.
A similar conclusion was reached for the size-dependent catalytic activity studies of Au
NPs in the size range of ~1–8 nm [28]. A dramatic increase in current density, albeit with
a decrease in selectivity for CO, was observed, with decreasing Au particle size. The DFT
calculations revealed that changes in the population of low-coordinated edge sites with a
stronger chemisorption property are responsible for the upsurge in HER activity.

An emerging strategy is to explore the use of a new class of nanomaterials, the
ligand-protected Au-based nanoclusters (NCs). Unlike conventional NPs, these materials
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exhibit well-defined atomic structures with 10–100 metal atoms in the underlying inorganic
core that form selective bonds with ligand stabilizers [29–32]. As in a few atom clusters,
these exhibit molecular-like electronic structures owing to strong quantum confinements
effects [33,34]. They are reported to promote the thermal oxidation of styrene-, CO- and
sulfur-containing compounds [35–38]. Thiolate-protected NCs consisting of 25 gold atoms
in the core region (Au25(SR)18

−
, where SR is the thiolate ligand) are the first NCs to be tested

for CO2RR [39]. Under aqueous conditions, CO FE reaches nearly 100% at −1.0 V, which is
a marked improvement over conventional Au NPs and bulk Au electrodes. It was found
that the charged state and the electrochemical catalytic activity are strongly correlated, with
the negatively charged species showing the best CO2RR activity, followed by its neutral and
the positively charged counterparts [40,41]. The monopalladium-doped NC Au24Pd(SR)18
was reported to achieve nearly 100% CO FE at potential ranging from −0.6 V to −1.2 V,
a marked improvement over the pristine species whose FE declines beginning at −0.9 V.
Au19Cd2(SR)16

−, a doped counterpart of Au23(SR)16
−, made by introducing Cd atoms in

the exterior portion, was reported to further promote CO2RR with CO selectivity of 90–95%
at −0.5 to −0.9 V. This material exhibits the highest CO2RR activity (2200 mA mg−1 at
−1.0 V) among the reported NCs.

Obtaining a full understanding of the reaction mechanisms responsible for CO2RR on
these NCs is of great interest from a fundamental standpoint, providing complementary
data points for the rational design of materials. Since it is not yet plausible to observe
the reaction pathways experimentally, it is necessary to explore theoretical avenues. The
precise atomic structures available from crystallographic data have made it possible to gain
important mechanistic insights into the CO2 conversion on these NCs using theoretical
simulation. It also permits further investigation into the synergistic effects on the reaction
mechanism brought about by alloying. In the next section, we review our previous comple-
mentary theoretical simulation, showing how the outcome helps to shape a mechanistic
understanding of CO2RR on these materials.

2. Theoretical Studies of Au-Based Nanoclusters
2.1. Aspects of Modeling

A particular aspect of the modelling of CO2RR is the quantification of binding strength
between a given catalyst and the intermediates. The binding states of the adsorbates are
influenced not only by the constituent elements of the catalyst, but also the nature of the
active sites and any chemical additives. Hence, calculation is an effective strategy that
could potentially unveil structure-activity relationships. In what follows, we provide a
description of the modeling approaches used for CO2RR to CO on pertinent Au-based NCs
under a electrochemical environment.

The thermodynamics for electrochemical reactions were obtained using the computa-
tional hydrogen electrode (CHE) approach [42]. At the heart of this technique is the as-
sumption that the free energy of the proton–electron pair (GH++e−) is equal to that of the
hydrogen gas ( 1

2 GH2(g)
) at potential U = 0 V at 101,325 Pa of H2, 298 K and all pH values.

When U 6= 0 V, a potential linear shift of –eU is applied on the free energy. For a proton–
electron transfer to adsorbate *A, *A + H+

(aq) + e−→*AH, the free energy change becomes
∆G(U) = G∗AH −G∗A − 1

2 GH2(g)
+ eU, where G∗AH , G∗A , GH2(g)

and e are the free energy
of the product, free energy of the reactant, free energy of gas phase H2 and the elementary
positive charge, respectively. For a given reaction step, the limiting potential UL is obtained,
which is defined as the value that makes it exothermic, ∆G ≤ 0 eV. For a reaction pathway,
the corresponding limiting potential is given by the step with the highest reaction free energy.
A key assumption is that the proton–electron transfer barrier in each step is assumed to be
surmountable at room temperature as the appropriate potential is applied.

The pathway towards CO production may take the following 2e− CO2RR mecha-
nism [43,44]:

CO2 + H+
(aq) + e− + *→*COOH (5)



Catalysts 2022, 12, 505 4 of 14

*COOH + H+
(aq) + e−→*CO + H2O (6)

*CO→CO + * (7)

In these formulae, the adsorption of CO2 is accompanied by coupling with an elec-
tron/proton pair to initiate the catalysis reaction. The *CO intermediate stems from *COOH
after electron/proton transfer and the removal of water. In the last step, the adsorbed CO
formed in the second reduction step undergoes molecular desorption. For the competing
HER reaction, the 2e− pathway producing H2 may be represented by [28,45]:

H+
(aq) + e− + *→*H (8)

*H + H+
(aq) + e−→* + H2 (9)

In this mechanism, a hydronium ion initially adsorbs on the surface and forms a
hydrogen radical, followed by combination of two hydrogen radicals to form a hydrogen
molecule. The limiting potentials for H2 evolution UL(H2) and CO2 reduction UL(CO2)

were determined numerically according to −
{

max(∆G(8),∆G(9))
e

}
and −

{
max(∆G(5),∆G(6))

e

}
,

respectively. In order not to be severely contaminated by HER, the limiting potential of
this process should be as negative as possible compared to CO2RR. The descriptor that
represents the difference in the limiting potentials, UL(CO2)−UL(H2), can then be used
to ascertain the trend in selectivity. That is, a positive value corresponds to preference for
CO2RR and the more positive the magnitude becomes, the higher its selectivity over HER.

The relaxation of the geometry was performed using the DFT approach. The em-
ployed DFT method was implemented using the Vienna Ab Initio Simulation Package
(VASP) [46]. The exchange-correlation functional used in this study was based in the
framework of Perdew, Burke and Ernzerhof [47], while the core-electrons were represented
by the projector-augmented wave (PAW) method [48]. The Kohn-Sham one electron va-
lence eigenstates were expanded in terms of plane-wave basis sets with a cutoff energy
of 500–600 eV. The ionic and electronic convergence limit were set to 0.03 eV/Å and
1 × 10−5 eV, respectively, while the Methfessel-Paxton scheme [49] was utilized with a
smearing width of 0.1 eV. A three-dimensional periodic cubic box with 30 Å side was
inserted in the simulation models to minimize unphysical interactions. The sampling of
the Brillouin zone was conducted with a Γ-point k-point mesh.

The Poisson-Boltzmann implicit solvent model implemented in VASP by Matthew
and Hennig was employed [50]. The background dielectric constant of water was set to
εb ~80 with a cutoff charge density of 0.0025 Å−3. The cavitation energies were evaluated
employing a surface tension parameter of 0.525 meV/Å2. Free energy corrections for
adsorbed species were applied assuming harmonic degrees of freedom and those for
gaseous species were quantified in the ideal gas limit. The free energy for the aqeous
species was evaluated by applying free energy corrections to their room temperature state.

2.2. Theoretical Insights
2.2.1. Carbon Dioxide Reduction on Au25(SR)18

−

In this section, our group’s effort to understand the mechanistic pathways of CO2RR
to CO on Au25(SR)18

− is presented. The experimental work of Kauffman et al. brought
Au25(SR)18

− to the spotlight where it was demonstrated that the NC is active in CO2RR. It can
successfully reduce CO2 to CO beginning with an overpotential of−0.19 V (Figure 1A) [39,40],
indicating that Au25(SR)18

− is superior to Au nanoparticles and bulk Au by 0.2–0.3 V. The FE
for selective CO production reaches approximately 100% at −1.0 V (Figure 1B), which shows
that almost every electron injected is harnessed in the conversion process. Additionally, the CO
formation rate is 7−700 times higher than the conventional Au NPs and bulk Au electrodes
at this industrially relevant potential. The corresponding neutral and positively charged
counterparts, Au25(SR)18 and Au25(SR)18

+, yield comparable products and onset potentials.
However, the current density, turnover frequency and FE are higher in Au25(SR)18

−.
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nanoclusters. Adapted from Reference [39]. Copyright 2012 by the American Chemical Society.

Though the experimental structures of the NCs are available experimentally, simula-
tion models that perfectly match the data can become computationally prohibitive. For
example, Au25(SR)18

− would require a 349-atom representation when each of the 18-atom
ligand (–SR = –SCH2CH2C6H5) is included. Moreover, for plane-wave basis sets with a
typical energy cutoff of 500–600 eV, a sizeable periodic box to blot out any unphysical effect
due to image interaction needs to be employed.

To remedy this, we utilized a methyl thiolate (–SCH3) to represent the real ligand,
thereby reducing the model to a relatively manageable 115 atom representation [39]. The
use of a truncated version of the ligands can be traced back to a previous DFT work in which
a smaller –SH ligand representation is used [51]. Our model is an upgrade in that it mimics
better the overall electronegativity of –SCH2CH2C6H5. With a viable and realistic atomic
representation at hand, we explored the active sites in the intact nanocluster. With CO2
as the adsorbate, our calculations identified several configurations with binding energies
of up to −0.2 eV. The most energetically favorable structure consisted of the oxygen end
of CO2 interacting with three adjacent sulfur atoms (Figure 2). However, the theoretical
picture of a weak CO2 binding was problematic since the adsorbed molecule could desorb
at ambient temperature. At this juncture, we were guided by the prevailing conjecture that
the active sites were located on the intact NC [35–38].
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With our initial foray providing a practical Au25(SCH3)18
− model, baseline data

and further intuition, we then embarked on more comprehensive studies to refine our
understanding. Merely looking at the initial CO2 adsorption offers a very limited picture
of the process. Other aspects, such as the subsequent chemical transformation, including
the reaction thermodynamics, need to be addressed. In the follow up studies, we looked
at the reaction profile using the widely used CHE method [52]. We also took into account
previous efforts showing both the inactivity of the intact nanocluster in the context of
thermal CO oxidation [35], and the critical role of undercoordinated sites as the driving
force for aldehyde hydrogenation and other oxidation reactions [53,54].

The free energy profile for the reaction pathway based on CO2RR steps outlined in
Section 2.1 and the optimized intermediate structures on the intact NC are displayed in
Figure 3. For an external potential of U = 0 V, the protonation of CO2 to form COOH is
endothermic, requiring 2.04 eV, while the dissociation of the protonated COOH is exothermic.
After surface CO is formed, it can detach with a small barrier to form the gas phase molecule.
The COOH formation is the potential limiting step with an overpotential of−2.04 V. However,
this is about one order of magnitude larger than the experimental value at which the initiation
of CO production is observed (~−0.1 V) [39]. A significant finding is that CO2RR is unlikely
to occur in intact form at room temperature and low overpotentials.
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The suggestion that undercoordinated atoms in the negatively charged nanocluster
promoted thermal aldehyde hydrogenation and other oxidation reactions opened new vistas
for further exploration [35,53,54]. For example, in situ IR and complementary DFT calculations
showed the intact NC as inert for thermal CO oxidation [35]. Oxidation took place when a
defect was introduced on the surface region through the partial removal of ligands. This was
a vivid indicator of property-structure relationships in that the improved performance was
attributed to the presence of a defect termination with low coordination numbers.

The CO2RR process was reexamined by generating via a single dethiolation yielding
undercoordinated Au as the active site. The energies required for the formation of the
adsorbed intermediates (*COOH and *CO) were predicted to be dramatically lower than
the intact case (Figure 4). The lower limit of the overpotential associated with the first
reduction step was predicted to be −0.34 V, which was in better agreement with the
measured value. The possibility of a non-metal S site as the reaction center provides
an alternative scenario [55]. Instead of the whole ligand, only the hydrocarbon portion
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was removed, producing a defect consisting of an exposed S atom. Undercoordinated
S atoms were also proposed as active sites for cubane-shaped Ni–Fe–S [56], and MoS2
catalysts [57]. An endothermic and exothermic ∆G for the electrochemical formation of Au
and S sites, respectively, were predicted indicating that the stripping away of CH3 is more
thermodynamically favorable. A significant finding is that the S site for CO2 reduction was
also active for H2 evolution. To gain further insight into the selectivity trend, Austin et al.
used the descriptor UL(CO2)−UL(H2), where the first and second term refer to limiting
potentials for CO2RR and HER. Unlike the Au site, CO2RR was predicted to be selective on
the S site as evidenced by the positive UL(CO2)−UL(H2) value [55]. Thus, an improved
coupling between theory and experiments was attained when the S site was considered as
the reaction center.
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2.2.2. Promotion of Carbon Dioxide Reduction through Doping

We explored the incorporation of dopant as an approach to facilitate CO2RR. From
the scanning tunneling electron microscopy (STEM) images, both size and significant mor-
phology can be ruled out upon monopalladium substitution in Au25(SR)18

−, namely, the
monodispersed ~0.8 nm size was essentially preserved (Figure 5A,B). In situ spectroscopy
analysis combined with CHE calculations revealed that the substitution promoted elec-
troreduction activity and selectivity [58]. Figure 6A–C show the measured electrochemical
CO2RR activity of Au24Pd(SR)18 versus Au25(SR)18, indicating CO and H2 as the primary
products of both materials. The potential-dependent CO FE showed a significant amount
of the molecule was generated, reaching approximately 100% at a potential range of −0.6
to −0.9 V. Beyond −0.9 V, the catalytic performance of Au25(SR)18 decreased, whereas the
doped counterpart was not significantly compromised. The CO partial current density also
revealed that Au24Pd(SR)18 exhibited higher CO partial current density and mass activity
at the same conditions. Unlike conventional Au NPs and bulk Au electrodes, Au24Pd(SR)18
is capable of attaining 100% CO FE over a much wider potential range and a near-complete
HER suppression up to −1.2 V. Moreover, it possesses a high stability even under the
negative potential for CO2RR (Figure 6D). Thus, doping the parent NC with a Pd atom can
elevate both activity and selectivity.
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A significant conclusion drawn in Section 2.2.1 is that the intact cluster can be ruled
out as an active catalyst, highlighting the role of undercoordinated sites in facilitating
CO2RR. The removal of one of the thiol ligands unveils a reactive metal site that lowers the
formation of the crucial COOH intermediate for CO2 reduction. Another feasible scenario
is also predicted, namely, the electrochemical displacement of the hydrocarbon portion of
the thiol ligand to form an exposed S as the reaction center. We used Au25(SCH3)18 and
Au24Pd(SCH3)18 simulation models to represent the intact parent and the doped NCs and
removed the SCH3 and CH3 portions to expose Au and S sites. The calculations predicted
that the Pd atom prefers to reside in the core site of the activated NCs, and the spatial
preference did not change in the presence of the CO, COOH and H intermediates.

Figure 7A,B summarize the predicted free energy diagram of CO2RR and HER on
the exposed metal site of Au25(SCH3)17 and Au24Pd(SCH3)17. In both cases, the potential
limiting step for CO2RR was predicted to be the first electron/proton transfer step. The
binding of the COOH intermediate in the doped NC was slightly stronger than the parent



Catalysts 2022, 12, 505 9 of 14

NC, resulting in the lowering of the potential requirement (UL(CO2) = −0.58 V compared
to UL(CO2) = −0.67 for the parent NC). For HER, the protonation of adsorbed H to form
gaseous H2 is predicted to be the step that dictates the potential requirements since it occurs
at positive free energy. The limiting potential in the pure case (UL(H2) = −0.08 V) is lower
than the doped one (UL(H2) = −0.17 V). The predicted UL(CO2)−UL(H2) for the parent
and the doped version are −0.59 V and −0.41 V, suggesting that selective CO2 reduction is
not favorable on the exposed metal site.
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CO2RR and (D) HER on the sulfur site of the demethylated nanoclusters are included for comparison.

Since the above calculations ruled out the possibility of selective CO2 reduction
on the metal site, the alternate scenario involving exposed sulfur as the active site was
considered. The calculated CO2RR and HER free energy diagrams in Figure 7C,D show the
first electrochemical step as the limiting step of CO2RR in both NCs. While the formation
of *COOH species still required an increase in free energy, the key difference was the
enhanced stability of this intermediate on sulfur. The adsorption of both COOH and H
intermediates were found to be more favorable than on the Au site. On both NCs, the
electrochemical H2 desorption remained to be the potential limiting step since it was the
most endothermic step. The calculated UL(CO2)−UL(H2) yielded values of −0.45 and
0.24 V for Au25S(SCH3)17 and Au24PdS(SCH3)17. Although our results showed that the
Au25S(SCH3)17 cluster can be active for CO2RR, it is only the Au24PdS(SCH3)17 that is
selective to CO2RR due to the positive value of UL(CO2)−UL(H2). Thus, we find that the
Pd dopant can play a critical role in stabilizing the key intermediates that better facilitates
CO2RR. Moreover, the presence of the dopant leads to a more selective CO production
when the reaction center consists of exposed S sites.

Another approach explored was to exclusively dope the NC surface without compro-
mising the inner kernel metal structure of the parent material. Our work on the surface level
modification of Au23(SR)16 through doubly Cd substitution revealed that this was a viable
scheme [59]. The CO2RR activities of the Au23(SR)16

− and Au19Cd2(SR)16
− NCs were

compared by conducting constant-potential electrolysis measurements at various applied
potentials. It was found that the surface-doped version exhibited higher current densities
for CO production (Figure 8B) and turnover frequencies with reduced onset potential
(Figure 8C) than the undoped case. The doped version yielded CO as the major product
between −0.5 and −0.9 V with HER becoming more competitive for potentials larger than
−0.9 V (Figure 8A,D). In contrast, H2 production was more dominant in the undoped
version at all potentials. Notably, Au19Cd2(SR)16

− demonstrates a larger CO partial current
density than the previously reported Au NC and Au NP [59]. The ~40 mA/cm2 value
at −0.9 V is superior to the 2–18 mA/cm2 values reported for Au44(TBBT)28, Au47Cd2
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(TBBT)31 (TBBT = tert-butylbenzenethiolate) and ultrathin Au–Pd nanocrystals at the
same potential [60,61]. Additionally, the partial current density of ~45 mA/cm2 at −1.0 V
is about 33–90% higher than Au NP, Mo-doped Au NP and Au NP containing a CeOx
interface [62–64].
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Figure 9A,B show the structure of the model Au23S(SCH3)15
− and Au19Cd2S(SCH3)15

−

NCs containing exposed S as the active site, generated through the removal of a –CH3 from
Au23(SCH3)16

− and Au19Cd2(SCH3)16
−. The predicted CO2RR and HER energy profiles

are depicted in Figure 9C,D. It is noted that the HER energy profiles for both NCs are
comparable. While the CO2RR step was predicted to be the potential limiting for both NCs,
the process is less thermodynamically challenging in the doped case due to the stronger
binding of CO. The calculated UL(CO2)−UL(H2) for the doped version was predicted to
be more positive by ~0.9 V, in agreement with the experimental selectivity trend.
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3. Summary and Outlook

In this short review, we described the complementary theoretical efforts to understand
the experimentally observed CO2RR activity and selectivity in Au25(SR)18

−, Au24Pd(SR)18,
Au23(SR)16

− and Au21Cd2(SR)16
−. We focused on a particular structural variation—–ligand

removal—and how it alters the CO2RR activity and selectivity on the nanoclusters. The
first-principles studies indicated that exposed S sites, possibly created during preparation
or under reaction conditions, may be the active reaction center in all the NCs investigated.
In contrast to the Au site, it stabilizes the pertinent CO2RR intermediates while destabilizing
H, yielding a non-negative UL(CO2)−UL(H2). These results provide insights into the
structure–property relationship in that the thermodynamics of the electrochemistry can be
correlated to the undercoordinated S surface sites as the reaction center.

Further work must still be performed to elevate our fundamental understanding of the
CO2RR mechanism on these NCs. We note that much of our focus is on the determination
of reaction energetics and thermodynamics. The availability of algorithms to simulate
the hydrogenation by H+ + e− species presents an opportunity to evaluate the reaction
barriers under reaction conditions [65,66]. The obtained kinetic picture will lead to an
increased coupling with experimental data, such as the measured current densities, which
otherwise cannot be achieved by merely looking at the thermodynamics. Such effort may
be challenging because of the huge computational expenses required to predict the reaction
barriers within the DFT framework. The widely used Climbing Image Nudged Elastic
Band (CI-NEB) method, for example, entails the discretization of the reaction pathway
into a finite number of images to locate the transition state [67]. For the NCs considered
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in this paper, the calculation using plane wave basis sets can become more expensive
as each image would contain the NC model enclosed in a periodic box large, enough to
cancel out spurious interaction. Additionally, explicit water molecules may have to be
included in the images to account for the H+ + e− transfer to the target intermediates,
potentially requiring many hundreds of energies and gradients evaluations. However,
continuing advances in high performance computing technology may expand the scope of
first-principles simulations towards such type of explorations.

From a practical standpoint, more research remains to be pursued for Au-based NCs
to realize its full potential. At present, the electrocatalysts considered in this review have
not been integrated to practical devices to further evaluate their potential for the low-
cost and scalable deployment for CO2 conversion to CO. Such setup would permit the
evaluation of the integrity of the materials at realistic conditions. Aside from the Au
NCs, membrane materials and electrocatalyst’s support are integral to the device. To
comprehend the potential role of these components in determining the outcome of the CO2
conversion, it is necessary to invest effort into this aspect. The introduction of non-aqueous
electrolytes plus the optimization of other conditions, such as flow rate and pressure, may
significantly enhance the performance metrics as well. Thus, while there is always a need
for fundamental research, a future focus that would pave the way for a practical CO2
conversion to CO application is highly desirable.
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