Synthesis of a Novel Adsorbent Based on Chitosan Magnetite Nanoparticles for the High Sorption of Cr (VI) Ions: A Study of Photocatalysis and Recovery on Tannery Effluents
Abstract
:1. Introduction
2. Results
2.1. Sorbent Characterization
2.1.1. FTIR Analysis
2.1.2. Thermogravimetric Analysis
2.1.3. Morphology and Textural Properties
2.1.4. Elemental Analysis
2.1.5. Surface Charge Analysis-pHPZC
2.2. Sorption Properties from Synthetic Solutions
2.2.1. pH Effect
2.2.2. Uptake Kinetics
2.2.3. Sorption Isotherms
2.2.4. Binding Mechanism
2.2.5. Metal Desorption and Sorbent Recycling
2.3. Treatment of Tannery Wastewater
2.4. Effect of Light Mechanism on Cr(VI) Sorption
3. Materials and Methods
3.1. Materials
3.2. Sorbent Synthesis
3.2.1. Synthesis of 2-Thioxodihydropyrimidine-4,6(1H,5H)-Dione: TDPD
3.2.2. Synthesis of Magnetite Nanoparticles
3.2.3. Synthesis of Activated Chitosan Nanoparticles
3.2.4. Grafting of TDPD onto MC
3.3. Sorbent Characterization
3.4. Sorption Studies
3.5. Application on Tannery Effluent Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández, P.M.; Viñarta, S.C.; Bernal, A.R.; Cruz, E.L.; Figueroa, L.I. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere 2018, 208, 139–148. [Google Scholar] [CrossRef]
- Cheriyan, D.; Choi, J.-H. A review of research on particulate matter pollution in the construction industry. J. Clean. Prod. 2020, 254, 120077. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Chen, X.; Fu, H.; Chen, Y.; Ning, S.; Fujita, T.; Wei, Y.; Wang, X. Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water. J. Colloid Interface Sci. 2022, 615, 110–123. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv. 2006, 24, 427–451. [Google Scholar] [CrossRef]
- Hamza, M.F. Uranium recovery from concentrated chloride solution produced from direct acid leaching of calcareous shale, Allouga ore materials, southwestern Sinai, Egypt. J. Radioanal. Nucl. Chem. 2018, 315, 613–626. [Google Scholar] [CrossRef]
- Dogan, N.M.; Kantar, C.; Gulcan, S.; Dodge, C.J.; Yilmaz, B.C.; Mazmanci, M.A. Chromium (VI) bioremoval by Pseudomonas bacteria: Role of microbial exudates for natural attenuation and biotreatment of Cr (VI) contamination. Environ. Sci. Technol. 2011, 45, 2278–2285. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Wang, X.; Li, S.; Liu, Y.; Yang, G. Removal of hexavalent chromium by bentonite supported organosolv lignin-stabilized zero-valent iron nanoparticles from wastewater. J. Clean. Prod. 2020, 267, 122009. [Google Scholar] [CrossRef]
- Liu, J.; Hao, D.; Sun, H.; Li, Y.; Han, J.; Fu, B.; Zhou, J. Integration of MIL-101-NH2 into cellulosic foams for efficient Cr (VI) reduction under visible light. Ind. Eng. Chem. Res. 2021, 60, 12220–12227. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Godage, N.H.; Gionfriddo, E. Use of natural sorbents as alternative and green extractive materials: A critical review. Anal. Chim. Acta 2020, 1125, 187–200. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Ahmad, P.; Sharma, S.; Chauhan, D.K.; Dubey, N.K. Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies: Volume 1; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Hamza, M.F.; Adel, A.-H.; Hawata, M.A.; El Araby, R.; Guibal, E.; Fouda, A.; Wei, Y.; Hamad, N.A. Functionalization of magnetic chitosan microparticles–Comparison of trione and trithione grafting for enhanced silver sorption and application to metal recovery from waste X-ray photographic films. J. Environ. Chem. Eng. 2022, 10, 107939. [Google Scholar] [CrossRef]
- Wang, X.; Pehkonen, S.; Ray, A.K. Photocatalytic reduction of Hg (II) on two commercial TiO2 catalysts. Electrochim. Acta 2004, 49, 1435–1444. [Google Scholar] [CrossRef]
- Chenthamarakshan, C.; Rajeshwar, K. Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO2 suspensions: An interfacial induced adsorption–reduction pathway mediated by formate ions. Electrochem. Commun. 2000, 2, 527–530. [Google Scholar] [CrossRef]
- Yeber, M.C.; Soto, C.; Riveros, R.; Navarrete, J.; Vidal, G. Optimization by factorial design of copper (II) and toxicity removal using a photocatalytic process with TiO2 as semiconductor. Chem. Eng. J. 2009, 152, 14–19. [Google Scholar] [CrossRef]
- Munusamy, S.; Sai Laxmi Aparna, R.; Gunneswara Subramanya Vara Prasad, R. Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green. Sustain. Chem. Processes 2013, 1, 1–8. [Google Scholar]
- Fouda, A.; Salem, S.S.; Wassel, A.R.; Hamza, M.F.; Shaheen, T.I. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 2020, 6, e04896. [Google Scholar] [CrossRef]
- Fouda, A.; Awad, M.A.; AL-Faifi, Z.E.; Gad, M.E.; Al-Khalaf, A.A.; Yahya, R.; Hamza, M.F. Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts 2022, 12, 462. [Google Scholar] [CrossRef]
- Hoffmann, M.; Martin, S.; Choi, W.; Bahnemann, D. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, M.; Yu, W.; Zhang, Q.; Xie, H.; Sun, Z.; Shao, Q.; Guo, X.; Hao, L.; Zheng, Y. Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 2017, 164, H1086. [Google Scholar] [CrossRef]
- Feng, X.; Shang, J.; Chen, J. Photoelectrocatalytic reduction of hexavalent chromium by Ti-doped hydroxyapatite thin film. Mol. Catal. 2017, 427, 11–17. [Google Scholar] [CrossRef]
- Sane, P.; Chaudhari, S.; Nemade, P.; Sontakke, S. Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2. J. Environ. Chem. Eng. 2018, 6, 68–73. [Google Scholar] [CrossRef]
- Alsharif, S.M.; Salem, S.S.; Abdel-Rahman, M.A.; Fouda, A.; Eid, A.M.; Hassan, S.E.-D.; Awad, M.A.; Mohamed, A.A. Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 2020, 6, e03943. [Google Scholar] [CrossRef]
- Dai, X.; Nhung, N.T.H.; Hamza, M.F.; Guo, Y.; Chen, L.; He, C.; Ning, S.; Wei, Y.; Dodbiba, G.; Fujita, T. Selective adsorption and recovery of scandium from red mud leachate by using phosphoric acid pre-treated pitaya peel biochar. Sep. Purif. Technol. 2022, 292, 121043. [Google Scholar] [CrossRef]
- Assadi, A.; Dehghani, M.H.; Rastkari, N.; Nasseri, S.; Mahvi, A.H. Photocatalytic reduction of hexavalent chromium in aqueous solutions with zinc oxide nanoparticles and hydrogen peroxide. Environ. Prot. Eng. 2012, 38, 5–16. [Google Scholar] [CrossRef]
- Saied, E.; Eid, A.M.; Hassan, S.E.-D.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, A.H.; Saied, M.E.; Fouda, A. The catalytic activity of biosynthesized magnesium oxide nanoparticles (MgO-NPs) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Hamza, M.F. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 105346. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Azab, M.S. An eco-friendly approach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (Kw). J. Environ. Chem. Eng. 2021, 9, 104693. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Abdel-Rahman, M.A.; Farag, M.M.; Shehal-Deen, A.; Mohamed, A.A.; Alsharif, S.M.; Saied, E.; Moghanim, S.A.; Azab, M.S. Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles. Curr. Res. Biotechnol. 2021, 3, 29–41. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, C.; Doudrick, K.; Chan, C.K. Hexavalent chromium removal using metal oxide photocatalysts. Appl. Catal. B Environ. 2015, 176, 740–748. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Du, Y.; Li, H.; Yang, Y.; Jia, X. Chemically controlled growth of porous CeO2 nanotubes for Cr (VI) photoreduction. Appl. Catal. B Environ. 2015, 174, 435–444. [Google Scholar] [CrossRef]
- Hamza, M.F.; Fouda, A.; Elwakeel, K.Z.; Wei, Y.; Guibal, E.; Hamad, N.A. Phosphorylation of guar gum/magnetite/chitosan nanocomposites for uranium (VI) sorption and antibacterial applications. Molecules 2021, 26, 1920. [Google Scholar] [CrossRef]
- Colthup, N. Introduction to Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Hamza, M.F.; Mahfouz, M.G.; Abdel-Rahman, A.A.-H. Adsorption of uranium (VI) ions on hydrazinyl amine and 1,3,4-thiadiazol-2 (3 H)-thion chelating resins. J. Dispers. Sci. Technol. 2012, 33, 1544–1551. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Khalafalla, M.S.; Abed, N.S.; Fouda, A.; Elwakeel, K.Z.; Guibal, E.; Hamad, N.A. U (VI) and Th (IV) recovery using silica beads functionalized with urea-or thiourea-based polymers–Application to ore leachate. Sci. Total Environ. 2022, 821, 153184. [Google Scholar] [CrossRef]
- Hamza, M.F.; Gamal, A.; Hussein, G.; Nagar, M.S.; Abdel-Rahman, A.A.H.; Wei, Y.; Guibal, E. Uranium (VI) and zirconium (IV) sorption on magnetic chitosan derivatives–effect of different functional groups on separation properties. J. Chem. Technol. Biotechnol. 2019, 94, 3866–3882. [Google Scholar] [CrossRef]
- Hamza, M.F.; Roux, J.-C.; Guibal, E. Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chem. Eng. J. 2018, 344, 124–137. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Mira, H.; Adel, A.-H.; Guibal, E. Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni (II) and Pb (II) recovery. Chem. Eng. J. 2019, 362, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Hamza, M.F.; Mira, H.; Wei, Y.; Aboelenin, S.M.; Guibal, E.; Salem, W.M. Sulfonation of chitosan for enhanced sorption of Li (I) from acidic solutions–Application to metal recovery from waste Li-ion mobile battery. Chem. Eng. J. 2022, 441, 135941. [Google Scholar] [CrossRef]
- Hamza, M.F.; Lu, S.; Salih, K.A.; Mira, H.; Dhmees, A.S.; Fujita, T.; Wei, Y.; Vincent, T.; Guibal, E. As (V) sorption from aqueous solutions using quaternized algal/polyethyleneimine composite beads. Sci. Total Environ. 2020, 719, 137396. [Google Scholar] [CrossRef]
- Hamza, M.F.; Salih, K.A.M.; Abdel-Rahman, A.A.H.; Zayed, Y.E.; Wei, Y.; Liang, J.; Guibal, E. Sulfonic-functionalized algal/PEI beads for scandium, cerium and holmium sorption from aqueous solutions (synthetic and industrial samples). Chem. Eng. J. 2021, 403, 126399. [Google Scholar] [CrossRef]
- Hamza, M.F.; Fouda, A.; Wei, Y.; El Aassy, I.E.; Alotaibi, S.H.; Guibal, E.; Mashaal, N.M. Functionalized biobased composite for metal decontamination–Insight on uranium and application to water samples collected from wells in mining areas (Sinai, Egypt). Chem. Eng. J. 2022, 431, 133967. [Google Scholar] [CrossRef]
- Piasek, Z.; Urbanski, T. The infra-red absorption spectrum and structure of urea. Bull. Acad. Pol. Sci. 1962, X, 113–120. [Google Scholar]
- Hamza, M.F.; Salih, K.A.; Zhou, K.; Wei, Y.; Khoziem, H.A.A.; Alotaibi, S.H.; Guibal, E. Effect of bi-functionalization of algal/polyethyleneimine composite beads on the enhancement of tungstate sorption: Application to metal recovery from ore leachate. Sep. Purif. Technol. 2022, 290, 120893. [Google Scholar] [CrossRef]
- Hamza, M.F.; Abdel-Rahman, A.A.-H. Extraction studies of some hazardous metal ions using magnetic peptide resins. J. Dispers. Sci. Technol. 2015, 36, 411–422. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grondahl, L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–23. [Google Scholar]
- Yao, Z.; Zhang, C.; Ping, Q.; Yu, L.L. A series of novel chitosan derivatives: Synthesis, characterization and micellar solubilization of paclitaxel. Carbohydr. Polym. 2007, 68, 781–792. [Google Scholar] [CrossRef]
- Wang, S.; Yu, D. Adsorption of Cd(II), Pb(II), and Ag(I) in aqueous solution on hollow chitosan microspheres. J. Appl. Polym. Sci. 2010, 118, 733–739. [Google Scholar] [CrossRef]
- Tsai, H.S.; Wang, Y.Z.; Lin, J.J.; Lien, W.F. Preparation and properties of sulfopropyl chitosan derivatives with various sulfonation degree. J. Appl. Polym. Sci. 2010, 116, 1686–1693. [Google Scholar] [CrossRef]
- Corazzari, I.; Nistico, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stabil. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Chandra, S.; Saleem, H.; Sundaraganesan, N.; Sebastian, S. Experimental and theoretical vibrational spectroscopic and HOMO, LUMO studies of 1,3-dimethylbarbituric acid. Ind. J. Chem. 2009, 48A, 1219–1227. [Google Scholar]
- Caetano, C.S.; Caiado, M.; Farinha, J.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Esterification of free fatty acids over chitosan with sulfonic acid groups. Chem. Eng. J. 2013, 230, 567–572. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, M.; Guo, Z.B.; Cui, Z. Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J. Membr. Sci. 2009, 337, 318–323. [Google Scholar] [CrossRef]
- Vieira, R.S.; Meneghetti, E.; Baroni, P.; Guibal, E.; Gonzalez de la Cruz, V.M.; Caballero, A.; Rodriguez-Castellon, E.; Beppu, M.M. Chromium removal on chitosan-based sorbents—An EXAFS/XANES investigation of mechanism. Mater. Chem. Phys. 2014, 146, 412–417. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Li, Y.; Chen, Z. Adsorption behaviour of functional grafting particles based on polyethyleneimine for chromate anions. Chem. Eng. J. 2009, 150, 337–343. [Google Scholar] [CrossRef]
- Henryk, K.; Jaroslaw, C.; Witold, Z. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters. Environ. Sci. Pollut. Res. 2016, 23, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, Y.; Huang, S.; Liu, X.; Jin, Z.; Zhang, M.; Qu, J.; Jin, Y. Biosorption of Cr(VI) onto Auricularia auricula dreg biochar modified by cationic surfactant: Characteristics and mechanism. J. Mol. Liq. 2018, 269, 824–832. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Myslin, M.; Lapchuk, I.; Shyichuk, A.; Murthy, A.P.; Gargula, R.; Kurzydlo, P.; Bogacz, B.F.; Pedziwiatr, A.T. Magnesium-zinc ferrites as magnetic adsorbents for Cr(VI) and Ni(II) ions removal: Cation distribution and antistructure modeling. Chemosphere 2021, 270, 129414. [Google Scholar] [CrossRef]
- Neagu, V.; Mikhalovsky, S. Removal of hexavalent chromium by new quaternized crosslinked poly(4-vinylpyridines). J. Hazard. Mater. 2010, 183, 533–540. [Google Scholar] [CrossRef]
- Rawat, M.; Rawat, A.P.; Giri, K.; Rai, J.P.N. Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA-alginate matrix: Equilibrium isotherms and kinetic studies. Environ. Sci. Pollut. Res. 2013, 20, 5198–5211. [Google Scholar] [CrossRef]
- Neagu, V. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups. J. Hazard. Mater. 2009, 171, 410–416. [Google Scholar] [CrossRef]
- Nasrollahpour, A.; Moradi, S.E. Hexavalent chromium removal from water by ionic liquid modified metal-organic frameworks adsorbent. Microporous Mesoporous Mater. 2017, 243, 47–55. [Google Scholar] [CrossRef]
- Castro, L.; Blazquez, M.L.; Gonzalez, F.; Munoz, J.A.; Ballester, A. Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 2018, 179, 44–51. [Google Scholar] [CrossRef]
- Yusof, A.M.; Malek, N.A.N.N. Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y. J. Hazard. Mater. 2009, 162, 1019–1024. [Google Scholar] [CrossRef]
- Ajmal, M.; Demirci, S.; Uzun, Y.; Siddiq, M.; Aktas, N.; Sahiner, N. Introduction of double amidoxime group by double post surface modification on poly(vinylbenzyl chloride) beads for higher amounts of organic dyes, As(V) and Cr(VI) removal. J. Colloid Interface Sci. 2016, 470, 39–46. [Google Scholar] [CrossRef]
- Arar, O. Preparation of anion-exchange cellulose for the removal of chromate. J. Chil. Chem. Soc. 2019, 64, 4471–4474. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, A.; Bibi, I.; Niazi, N.K.; Ok, Y.S.; Murtaza, G.; Shahid, M.; Kunhikrishnan, A.; Li, D.; Mahmood, T. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int. J. Phytorem. 2017, 19, 605–613. [Google Scholar] [CrossRef]
- Hamza, M.F.; Hamad, D.M.; Hamad, N.A.; Adel, A.-H.; Fouda, A.; Wei, Y.; Guibal, E.; El-Etrawy, A.-A.S. Functionalization of magnetic chitosan microparticles for high-performance removal of chromate from aqueous solutions and tannery effluent. Chem. Eng. J. 2022, 428, 131775. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Cao, S.; Liu, S.; Chen, Z.; Chen, J.; Chen, Y.; Fu, J. Fabrication of core@shell structural Fe-Fe2O3@PHCP nanochains with high saturation magnetization and abundant amino groups for hexavalent chromium adsorption and reduction. J. Hazard. Mater. 2020, 384, 121483. [Google Scholar] [CrossRef]
- Aid, A.; Amokrane, S.; Nibou, D.; Mekatel, E.; Trari, M.; Hulea, V. Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions. Water Sci. Technol. 2018, 77, 60–69. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Elgarahy, A.M.; Guibal, E. A biogenic tunable sorbent produced from upcycling of aquatic biota-based materials functionalized with methylene blue dye for the removal of chromium(VI) ions. J. Environ. Chem. Eng. 2021, 9, 104767. [Google Scholar] [CrossRef]
- Seliem, M.K.; Mobarak, M. Cr(VI) uptake by a new adsorbent of CTAB-modified carbonized coal: Experimental and advanced statistical physics studies. J. Mol. Liq. 2019, 294, 111676. [Google Scholar] [CrossRef]
- Cui, B.; Chen, Z.; Wang, F.; Zhang, Z.; Dai, Y.; Guo, D.; Liang, W.; Liu, Y. Facile Synthesis of Magnetic Biochar Derived from Burley Tobacco Stems towards Enhanced Cr (VI) Removal: Performance and Mechanism. Nanomaterials 2022, 12, 678. [Google Scholar] [CrossRef] [PubMed]
- Benettayeb, A.; Morsli, A.; Elwakeel, K.Z.; Hamza, M.F.; Guibal, E. Recovery of heavy metal ions using magnetic glycine-modified chitosan—application to aqueous solutions and tailing leachate. Appl. Sci. 2021, 11, 8377. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Benettayeb, A.; Wang, X.; Guibal, E. Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J. Mater. Sci. 2020, 55, 4193–4212. [Google Scholar] [CrossRef]
- Mohamed, A.E.; Elgammal, W.E.; Eid, A.M.; Dawaba, A.M.; Ibrahim, A.G.; Fouda, A.; Hassan, S.M. Synthesis and characterization of new functionalized chitosan and its antimicrobial and in-vitro release behavior from topical gel. Int. J. Biol. Macromol. 2022, 207, 242–253. [Google Scholar] [CrossRef]
- Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247–1249. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975; p. 414. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Zhang, R.; Leiviska, T. Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal. Chem. Eng. J. 2020, 385, 123967. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Uber die adsorption in lasungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Tien, C. Adsorption Calculations and Modeling; Butterworth-Heinemann: Newton, MA, USA, 1994; p. 243. [Google Scholar]
Assignment | Thiourea | TDPD | MC-TDPD | MC-TDPD+Cr | Sorbent after 5th Cycles | Ref. |
---|---|---|---|---|---|---|
N-H and OH str. | 3375, 3291, 3170 | 3584, 3392 | 3443 | 3423 | 3398 | [44,45] |
C-H (aromatic str.) | 3095 | [46,47] | ||||
C-H (aliphatic str.) | 2915, 2850 | 2867 | 2912, 2816 | 2920, 2847 | 2918, 2872 | [48] |
S-H str. of thiol group | 2673 | 2583 | 2583 | overlapped | [48] | |
Multiple bonded C-O | 2046 | 2056 | [48] | |||
C=C aromatic str. | 1705 | [48] | ||||
C=O, C=N str. and N-H bend. | 1611 | 1659, 1554 | 1626, 1499 | 1633 | 1628 | [46] |
C-N str., C-H bond, and C-C str. | 1467, 1410 | 1422 | 1410 | 1451 | [46] | |
Arom. (secondary amine) | 1338 | 1363 | 1380 | 1370 | [48] | |
Tert. amine | 1271 | 1303 | 1314 | [48] | ||
OH bend (in-plane) and C-O str., | 1243 | 1214 | 1235 | [49,50] | ||
N-C str. and NH2 (rock.) | 1078 | 1155 | 1097, 1060 | 1088 | 1130 | [44,49,51] |
C-O str bridge oxygen and C-O-C. str. (asymm) | 1056 | [46] | ||||
NH2 rock. | 1015 | 1025 | [44] | |||
Aromatic C-H bend (in-plane) | 923 | 854 | 899 | [46,47] | ||
NH2 + CO wag. (out-of-phase) | 727 | 800 | [44,48] | |||
N-C-N in-plane (bend), and Fe-O | 627 | 599 | 632 | 580 | 627 | [52,53] |
O-H out-of-plane (bend.) | 541 | 541 | 575 | [48] | ||
C-S str. | 485 | 453 | [54,55] | |||
Polysulfide str. | 447 | 448 | 420 | 443 | [48] |
Visible Light | UV Emission | ||||||
---|---|---|---|---|---|---|---|
Model | Parameter | 1 | 2 | 3 | 1 | 2 | 3 |
Exp. | qeq (mmol Cr g−1) | 0.97 | 0.99 | 0.96 | 1.27 | 1.32 | 1.38 |
PFORE | qeq,1 (mmol Cr g−1) | 1.01 | 0.13 | 0.97 | 1.29 | 1.3 | 1.35 |
k1 × 102 (min−1) | 4.98 | 5.02 | 5.12 | 6.33 | 6.49 | 6.51 | |
R2 | 0.997 | 0.978 | 0.981 | 0.983 | 0.992 | 0.988 | |
AIC | −74.5 | −91.6 | −86.5 | −123.5 | −97.3 | −105.7 | |
PSORE | qeq,2 (mmol Cr g−1) | 1.39 | 1.27 | 1.32 | 1.01 | 0.98 | 0.99 |
k2 × 102 (L mmol−1 min−1) | 2.87 | 3.14 | 3.08 | 1.88 | 1.76 | 1.58 | |
R2 | 0.863 | 0.779 | 0.698 | 0.913 | 0.896 | 0.905 | |
AIC | −15.4 | −11.8 | −18.6 | −21.7 | 28.9 | 19.7 | |
RIDE | De × 108 (m2 min−1) | 9.97 | 8.85 | 8.49 | 3.76 | 4.01 | 4.13 |
R2 | 0.925 | 0.928 | 0.946 | 0.933 | 0.951 | 0.958 | |
AIC | −42.1 | −38.3 | −36.5 | −45.4 | −49.8 | −55.3 |
Visible Light | UV Emission | |||||||
---|---|---|---|---|---|---|---|---|
Model | Parameter | 1 | 2 | 3 | 1 | 2 | 3 | |
Experimental | qm,exp. | mmol Cr g−1 | 1.97 | 2.01 | 2.06 | 2.61 | 2.58 | 2.51 |
Langmuir | qm,L | mmol Cr g−1 | 2.01 | 1.97 | 2.18 | 2.70 | 2.61 | 2.53 |
bL | L mmol−1 | 0.967 | 0.874 | 1.86 | 3.654 | 3.85 | 2.983 | |
R2 | - | 0.9846 | 0.9931 | 0.9843 | 0.9846 | 0.9913 | 0.9892 | |
AIC | - | −65.88 | −84.38 | −79.41 | −95.3 | −103.2 | −89.67 | |
Freundlich | kF | mmol1−1/ng−1 L1/n | 0.896 | 0.906 | 1.196 | 3.29 | 4.315 | 2.188 |
nF | - | 1.86 | 2.185 | 1.893 | 3.28 | 4.322 | 3.275 | |
R2 | - | 0.8954 | 0.7998 | 0.9151 | 0.7837 | 0.8217 | 0.8573 | |
AIC | - | −25.53 | −31.91 | −22.84 | −19.64 | −31.18 | −28.77 | |
Sips | qm,S | mmol Cr g−1 | 1.23 | 1.98 | 2.16 | 2.69 | 2.63 | 2.55 |
bS | L mmol−1 | 0.765 | 0.8876 | 0.8965 | 1.274 | 1.11 | 1.24 | |
nS | - | 1.32 | 1.48 | 1.44 | 2.464 | 2.28 | 2.314 | |
R2 | - | 0.9786 | 0.9946 | 0.9895 | 0.9925 | 0.9936 | 0.9867 | |
AIC | - | −123.63 | −163.94 | −147.38 | −115.38 | −132.18 | −128.48 |
Visible Light | UV Emission | |||||||
---|---|---|---|---|---|---|---|---|
Model | Parameter | 1 | 2 | 3 | 1 | 2 | 3 | |
Experimental | qm,exp. | mmol Cr g−1 | 5.76 | 5.69 | 5.72 | 6.59 | 6.63 | 6.61 |
Langmuir | qm,L | mmol Cr g−1 | 5.81 | 5.61 | 5.69 | 6.62 | 6.70 | 6.66 |
bL | L mmol−1 | 2.18 | 2.97 | 3.22 | 5.49 | 6.95 | 4.99 | |
R2 | - | 0.9937 | 0.9894 | 0.9784 | 0.9936 | 0.9917 | 0.9936 | |
AIC | - | −127.27 | −132.28 | −119.38 | −143.29 | −128.28 | −174.83 | |
Freundlich | kF | mmol1−1/n g−1 L1/n | 2.18 | 1.86 | 1.968 | 2.886 | 3.054 | 3.18 |
nF | - | 2.18 | 3.53 | 3.86 | 4.939 | 5.043 | 5.281 | |
R2 | - | 0.7968 | 0.8164 | 0.8226 | 0.8362 | 0.8265 | 0.8736 | |
AIC | - | −36.182 | −41.37 | −37.84 | −38.26 | −18.47 | −25.56 | |
Sips | qm,S | mmol Cr g−1 | 5.697 | 5.721 | 5.785 | 6.62 | 6.61 | 5.59 |
bS | L mmol−1 | 1.12 | 1.434 | 1.327 | 2.18 | 2.41 | 3.05 | |
nS | - | 2.17 | 2.65 | 2.19 | 3.023 | 3.26 | 3.426 | |
R2 | - | 0.9956 | 0.9895 | 0.9942 | 0.9938 | 0.9967 | 0.9895 | |
AIC | - | −97.68 | −117.68 | −118.48 | −135.4 | −143.19 | −144.3 |
Sorbent | pH | teq (min) | qm,exp | qm,L | bL | Ref. |
---|---|---|---|---|---|---|
QPEI-SiO2 | 7 | 70 | 2.75 | 2.92 | n.r. | [59] |
Peat sorbent | 4.5 | 1200 | n.r. | 0.154 | 0.208 | [60] |
Auricularia a. with CTAB dreg biochar | 2 | 120 | n.r. | 0.479 | 7.80 | [61] |
Magnesium/zinc/ferrite | 7 | 1440 | 0.586 | 0.65 | 25.0 | [62] |
pVP/DVB gel (Quaternized) resin | 3–4 | 120 | n.r. | 2.75 | 1.15 | [63] |
Bacteria-PVA-alginate | 6 | 1440 | n.r. | 0.46 | 29.0 | [64] |
Funct. Vinylpyridine-DVB sorbent | 3–5 | 120 | n.r. | 1.44 | 0.743 | [65] |
Ionic liquid impregnated (MOF) | 2 | 300 | n.r. | 5.49 | 6.72 | [66] |
Biogenic Fe-compounds | 4 | 120 | n.r. | 0.14 | 2.72 | [67] |
NaY-Zeolite of rice husk ash | 3 | 300 | 0.032 | 0.031 | 0.37 | [68] |
Amidoxime-funct. (pVBC) | n.r. | 60 | 2.67 | 2.83 | 0.015 | [69] |
Quaternized functional cellulose | 10 | 15 | 0.073 | 0. 75 | 6.76 | [70] |
Acid-activ. banana peel | 4 | 120 | 0.288 | 0.293 | 2.08 | [71] |
ATA@MC sorbent | 2 | 60 | 5.43 | 5.44 | 2.61 | [72] |
Fe-Fe2O3-PHCP nanochains | 2 | 30 | 4.40 | 5.45 | 11.2 | [73] |
Ulva-compressa (L.) seaweed | 2 | 120 | 0.418 | 0.417 | 46.3 | [74] |
Methylene Blue-Urea-Alginate | 5.4 | 180 | 1.50 | 2.01 | 4.46 | [75] |
CTAB-carbonized coal | 2 | 120 | 1. 15 | 1.51 | 2.03 | [76] |
MCH:L | 4 | 55 | 2.013 | 2.053 | 1.234 | This work |
MCH:UV | 4 | 55 | 2.566 | 2.613 | 3.496 | This work |
MC-TDPD:L | 3 | 30 | 5.723 | 5.7033 | 2.79 | This work |
MC-TDPD:UV | 3 | 25 | 6.61 | 6.66 | 5.81 | This work |
Cycles | MCH:L | MCH:UV | ||||||
---|---|---|---|---|---|---|---|---|
Removal (%) | S.D. (R.%) | Desorption (%) | S.D. (De%) | Removal (%) | S.D. (R.%) | Desorption (%) | S.D. (De%) | |
1 | 24.184 | 0.212 | 100 | 0.198 | 26.59 | 0.483 | 99.76 | 0.844 |
2 | 23.535 | 0.98 | 99.31 | 0.729 | 26.02 | 0.674 | 99.94 | 0.784 |
3 | 22.694 | 0.937 | 100 | 0.607 | 25.89 | 0.774 | 99.65 | 0.654 |
4 | 22.513 | 0.894 | 100 | 0.485 | 25.473 | 0.904 | 99.93 | 0.894 |
5 | 21.697 | 1.1275 | 99.923 | 0.968 | 24.998 | 0.985 | 99.91 | 0.784 |
MC-TDPD:L | MC-TDPD:UV | |||||||
Removal (%) | S.D. (R. %) | Desorption (%) | S.D. (De%) | Removal (%) | S.D. (R. %) | Desorption (%) | S.D. (De%) | |
1 | 78.187 | 0.8538 | 99.142 | 0.952 | 84.37 | 0.7463 | 99.97 | 0.746 |
2 | 77.491 | 0.548 | 99.649 | 0.496 | 83.87 | 0.644 | 99.856 | 0.4736 |
3 | 76.857 | 0.044 | 99.192 | 1.169 | 83.42 | 0.3823 | 99.804 | 0.576 |
4 | 76.647 | 0.524 | 99.652 | 0.362 | 82.98 | 0.4438 | 99.799 | 0.654 |
5 | 75.589 | 0.868 | 99.442 | 0.563 | 82.74 | 0.845 | 99.746 | 0.673 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahra, M.H.; Hamza, M.F.; El-Habibi, G.; Abdel-Rahman, A.A.-H.; Mira, H.I.; Wei, Y.; Alotaibi, S.H.; Amer, H.H.; Goda, A.E.-S.; Hamad, N.A. Synthesis of a Novel Adsorbent Based on Chitosan Magnetite Nanoparticles for the High Sorption of Cr (VI) Ions: A Study of Photocatalysis and Recovery on Tannery Effluents. Catalysts 2022, 12, 678. https://doi.org/10.3390/catal12070678
Zahra MH, Hamza MF, El-Habibi G, Abdel-Rahman AA-H, Mira HI, Wei Y, Alotaibi SH, Amer HH, Goda AE-S, Hamad NA. Synthesis of a Novel Adsorbent Based on Chitosan Magnetite Nanoparticles for the High Sorption of Cr (VI) Ions: A Study of Photocatalysis and Recovery on Tannery Effluents. Catalysts. 2022; 12(7):678. https://doi.org/10.3390/catal12070678
Chicago/Turabian StyleZahra, Maram H., Mohammed F. Hamza, Gehan El-Habibi, Adel A.-H. Abdel-Rahman, Hamed I. Mira, Yuezhou Wei, Saad H. Alotaibi, Hamada H. Amer, Adel E.-S. Goda, and Nora A. Hamad. 2022. "Synthesis of a Novel Adsorbent Based on Chitosan Magnetite Nanoparticles for the High Sorption of Cr (VI) Ions: A Study of Photocatalysis and Recovery on Tannery Effluents" Catalysts 12, no. 7: 678. https://doi.org/10.3390/catal12070678
APA StyleZahra, M. H., Hamza, M. F., El-Habibi, G., Abdel-Rahman, A. A. -H., Mira, H. I., Wei, Y., Alotaibi, S. H., Amer, H. H., Goda, A. E. -S., & Hamad, N. A. (2022). Synthesis of a Novel Adsorbent Based on Chitosan Magnetite Nanoparticles for the High Sorption of Cr (VI) Ions: A Study of Photocatalysis and Recovery on Tannery Effluents. Catalysts, 12(7), 678. https://doi.org/10.3390/catal12070678